Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Front Public Health ; 12: 1365161, 2024.
Article in English | MEDLINE | ID: mdl-38807988

ABSTRACT

Introduction: Treatments that currently exist in the strategic national stockpile for acute radiation syndrome (ARS) focus on the hematopoietic subsyndrome, with no treatments on gastrointestinal (GI)-ARS. While the gut microbiota helps maintain host homeostasis by mediating GI epithelial and mucosal integrity, radiation exposure can alter gut commensal microbiota which may leave the host susceptible to opportunistic pathogens and serious sequelae such as sepsis. To mitigate the effects of hematopoietic ARS irradiation, currently approved treatments exist in the form of colony stimulating factors and antibiotics: however, there are few studies examining how these therapeutics affect GI-ARS and the gut microbiota. The aim of our study was to examine the longitudinal effects of Neulasta and/or ciprofloxacin treatment on the gut microbiota after exposure to 9.5 Gy 60Co gamma-radiation in mice. Methods: The gut microbiota of vehicle and drug-treated mice exposed to sham or gamma-radiation was characterized by shotgun sequencing with alpha diversity, beta diversity, and taxonomy analyzed on days 2, 4, 9, and 15 post-irradiation. Results: No significant alpha diversity differences were observed following radiation, while beta diversity shifts and taxonomic profiles revealed significant alterations in Akkermansia, Bacteroides, and Lactobacillus. Ciprofloxacin generally led to lower Shannon diversity and Bacteroides prevalence with increases in Akkermansia and Lactobacillus compared to vehicle treated and irradiated mice. While Neulasta increased Shannon diversity and by day 9 had more similar taxonomic profiles to sham than ciprofloxacin-or vehicle-treated irradiated animals. Combined therapy of Neulasta and ciprofloxacin induced a decrease in Shannon diversity and resulted in unique taxonomic profiles early post-irradiation, returning closer to vehicle-treated levels over time, but persistent increases in Akkermansia and Bacteroides compared to Neulasta alone. Discussion: This study provides a framework for the identification of microbial elements that may influence radiosensitivity, biodosimetry and the efficacy of potential therapeutics. Moreover, increased survival from H-ARS using these therapeutics may affect the symptoms and appearance of what may have been subclinical GI-ARS.


Subject(s)
Ciprofloxacin , Gastrointestinal Microbiome , Animals , Ciprofloxacin/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/radiation effects , Mice , Anti-Bacterial Agents/pharmacology , Acute Radiation Syndrome/drug therapy , Gamma Rays , Male , Female
2.
Heliyon ; 10(10): e30527, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778981

ABSTRACT

Objective: It's crucial to identify an easily detectable biomarker that is specific to radiation injury in order to effectively classify injured individuals in the early stage in large-scale nuclear accidents. Methods: C57BL/6J mice were subjected to whole-body and partial-body γ irradiation, as well as whole-body X-ray irradiation to explore the response of serum sSelectin-L to radiation injury. Then, it was compared with its response to lipopolysaccharide-induced acute infection and doxorubicin-induced DNA damage to study the specificity of sSelectin-L response to radiation. Furthermore, it was further evaluated in serum samples from nasopharyngeal carcinoma patients before and after radiotherapy. Simulated rescue experiments using Amifostine or bone marrow transplantation were conducted in mice with acute radiation syndrome to determine the potential for establishing sSelectin-L as a prognostic marker. The levels of sSelectin-L were dynamically measured using the ELISA method. Results: Selectin-L is mainly expressed in hematopoietic tissues and lymphatic tissues. Mouse sSelectin-L showed a dose-dependent decrease from 1 day after irradiation and exhibited a positive correlation with lymphocyte counts. Furthermore, the level of sSelectin-L reflected the degree of radiation injury in partial-body irradiation mice and in nasopharyngeal carcinoma patients. sSelectin-L was closely related to the total dose of γ or X ray. There was no significant change in the sSelectin-L levels in mice intraperitoneal injected with lipopolysaccharide or doxorubicin. The sSelectin-L was decreased slower and recovered faster than lymphocyte count in acute radiation syndrome mice treated with Amifostine or bone marrow transplantation. Conclusions: Our study shows that sSelectin-L has the potential to be an early biomarker to classify injured individuals after radiation accidents, and to be a prognostic indicator of successful rescue of radiation victims.

3.
Stem Cell Res Ther ; 15(1): 123, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679747

ABSTRACT

BACKGROUND: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has yet to be elucidated. METHODS: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 h post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. RESULTS: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. CONCLUSIONS: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.


Subject(s)
Acute Radiation Syndrome , Bone Marrow , Mice, Inbred C57BL , Thrombopoietin , Animals , Male , Mice , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/pathology , Bone Marrow/drug effects , Bone Marrow/radiation effects , Bone Marrow/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/radiation effects , Stem Cell Niche/drug effects , Stem Cell Niche/radiation effects , Thrombopoietin/pharmacology , Whole-Body Irradiation , Biomimetic Materials/pharmacology , Biomimetic Materials/therapeutic use
4.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674120

ABSTRACT

Hematopoietic acute radiation syndrome (H-ARS) involves injury to multiple organ systems following total body irradiation (TBI). Our laboratory demonstrated that captopril, an angiotensin-converting enzyme inhibitor, mitigates H-ARS in Göttingen minipigs, with improved survival and hematopoietic recovery, as well as the suppression of acute inflammation. However, the effects of captopril on the gastrointestinal (GI) system after TBI are not well known. We used a Göttingen minipig H-ARS model to investigate captopril's effects on the GI following TBI (60Co 1.79 or 1.80 Gy, 0.42-0.48 Gy/min), with endpoints at 6 or 35 days. The vehicle or captopril (0.96 mg/kg) was administered orally twice daily for 12 days, starting 4 h post-irradiation. Ilea were harvested for histological, protein, and RNA analyses. TBI increased congestion and mucosa erosion and hemorrhage, which were modulated by captopril. GPX-4 and SLC7A11 were downregulated post-irradiation, consistent with ferroptosis at 6 and 35 days post-irradiation in all groups. Interestingly, p21/waf1 increased at 6 days in vehicle-treated but not captopril-treated animals. An RT-qPCR analysis showed that radiation increased the gene expression of inflammatory cytokines IL1B, TNFA, CCL2, IL18, and CXCL8, and the inflammasome component NLRP3. Captopril suppressed radiation-induced IL1B and TNFA. Rectal microbiome analysis showed that 1 day of captopril treatment with radiation decreased overall diversity, with increased Proteobacteria phyla and Escherichia genera. By 6 days, captopril increased the relative abundance of Enterococcus, previously associated with improved H-ARS survival in mice. Our data suggest that captopril mitigates senescence, some inflammation, and microbiome alterations, but not ferroptosis markers in the intestine following TBI.


Subject(s)
Acute Radiation Syndrome , Captopril , Disease Models, Animal , Ferroptosis , Gastrointestinal Microbiome , Inflammation , Swine, Miniature , Whole-Body Irradiation , Animals , Acute Radiation Syndrome/drug therapy , Swine , Inflammation/pathology , Captopril/pharmacology , Whole-Body Irradiation/adverse effects , Ferroptosis/drug effects , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Intestines/pathology , Intestines/drug effects , Intestines/radiation effects , Male , Angiotensin-Converting Enzyme Inhibitors/pharmacology
5.
Medicina (Kaunas) ; 60(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674299

ABSTRACT

Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (ß) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.


Subject(s)
Radiation, Ionizing , Humans , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/physiopathology , Human Body , Linear Energy Transfer
6.
Stem Cell Res Ther ; 15(1): 72, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38475968

ABSTRACT

BACKGROUND: Hematopoietic acute radiation syndrome (H-ARS) occurring after exposure to ionizing radiation damages bone marrow causing cytopenias, increasing susceptibility to infections and death. We and others have shown that cellular therapies like human mesenchymal stromal cells (MSCs), or monocytes/macrophages educated ex-vivo with extracellular vesicles (EVs) from MSCs were effective in a lethal H-ARS mouse model. However, given the complexity of generating cellular therapies and the potential risks of using allogeneic products, development of an "off-the-shelf" cell-free alternative like EVs may have utility in conditions like H-ARS that require rapid deployment of available therapeutics. The purpose of this study was to determine the feasibility of producing MSC-derived EVs at large scale using a bioreactor and assess critical quality control attributes like identity, sterility, and potency in educating monocytes and promoting survival in a lethal H-ARS mouse model. METHODS: EVs were isolated by ultracentrifugation from unprimed and lipopolysaccharide (LPS)-primed MSCs grown at large scale using a hollow fiber bioreactor and compared to a small scale system using flasks. The physical identity of EVs included a time course assessment of particle diameter, yield, protein content and surface marker profile by flow-cytometry. Comparison of the RNA cargo in EVs was determined by RNA-seq. Capacity of EVs to generate exosome educated monocytes (EEMos) was determined by qPCR and flow cytometry, and potency was assessed in vivo using a lethal ARS model with NSG mice. RESULTS: Physical identity of EVs at both scales were similar but yields by volume were up to 38-fold more using a large-scale bioreactor system. RNA-seq indicated that flask EVs showed upregulated let-7 family and miR-143 micro-RNAs. EEMos educated with LPS-EVs at each scale were similar, showing increased gene expression of IL-6, IDO, FGF-2, IL-7, IL-10, and IL-15 and immunophenotyping consistent with a PD-L1 high, CD16 low, and CD86 low cell surface expression. Treatment with LPS-EVs manufactured at both scales were effective in the ARS model, improving survival and clinical scores through improved hematopoietic recovery. EVs from unprimed MSCs were less effective than LPS-EVs, with flask EVs providing some improved survival while bioreactor EVs provide no survival benefit. CONCLUSIONS: LPS-EVs as an effective treatment for H-ARS can be produced using a scale-up development manufacturing process, representing an attractive off-the-shelf, cell-free therapy.


Subject(s)
Acute Radiation Syndrome , Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Mice , Animals , Lipopolysaccharides , Extracellular Vesicles/metabolism , Disease Models, Animal , Mesenchymal Stem Cells/metabolism
7.
Res Sq ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38463959

ABSTRACT

Background: Acute radiation syndrome (ARS) manifests after exposure to high doses of radiation in the instances of radiologic accidents or incidents. Facilitating the regeneration of the bone marrow (BM), namely the hematopoietic stem and progenitor cells (HSPCs), is a key in mitigating ARS and multi-organ failure. JNJ-26366821, a PEGylated thrombopoietin mimetic (TPOm) peptide, has been shown as an effective medical countermeasure (MCM) to treat hematopoietic-ARS (H-ARS) in mice. However, the activity of TPOm on regulating BM vascular and stromal niches to support HSPC regeneration has not yet been elucidated. Methods: C57BL/6J mice (9-14 weeks old) received sublethal or lethal total body irradiation (TBI), a model for H-ARS, by 137Cs or X-rays. At 24 hours post-irradiation, mice were subcutaneously injected with a single dose of TPOm (0.3 mg/kg or 1.0 mg/kg) or PBS (vehicle). At homeostasis and on days 4, 7, 10, 14, 18, and 21 post-TBI with and without TPOm treatment, BM was harvested for histology, BM flow cytometry of HSPCs, endothelial (EC) and mesenchymal stromal cells (MSC), and whole-mount confocal microscopy. For survival, irradiated mice were monitored and weighed for 30 days. Lastly, BM triple negative cells (TNC; CD45-, TER-119-, CD31-) were sorted for single-cell RNA-sequencing to examine transcriptomics after TBI with or without TPOm treatment. Results: At homeostasis, TPOm expanded the number of circulating platelets and HSPCs, ECs, and MSCs in the BM. Following sublethal TBI, TPOm improved BM architecture and promoted recovery of HSPCs, ECs, and MSCs. Furthermore, TPOm elevated VEGF-C levels in normal and irradiated mice. Following lethal irradiation, mice improved body weight recovery and 30-day survival when treated with TPOm after 137Cs and X-ray exposure. Additionally, TPOm reduced vascular dilation and permeability. Finally, single-cell RNA-seq analysis indicated that TPOm increased the expression of collagens in MSCs to enhance their interaction with other progenitors in BM and upregulated the regeneration pathway in MSCs. Conclusions: TPOm interacts with BM vascular and stromal niches to locally support hematopoietic reconstitution and systemically improve survival in mice after TBI. Therefore, this work warrants the development of TPOm as a potent radiation MCM for the treatment of ARS.

8.
Eur J Med Chem ; 269: 116346, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38518524

ABSTRACT

Considering the increasing risk of nuclear attacks worldwide, the development of develop potent and safe radioprotective agents for nuclear emergencies is urgently needed. γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have demonstrated a potent radioprotective effect by inducing the production of granulocyte-colony stimulating factor (G-CSF) in vivo. However, their application is limited because of their low bioavailability. The utilization of ester prodrugs can be an effective strategy for modifying the pharmacokinetic properties of drug molecules. In this study, we initially confirmed that DT3 exhibited the most significant potential for inducing G-CSF effects among eight natural vitamin E homologs. Consequently, we designed and synthesized a series of DT3 ester and ether derivatives, leading to improved radioprotective effects. The metabolic study conducted in vitro and in vivo has identified DT3 succinate 5b as a prodrug of DT3 with an approximately seven-fold higher bioavailability compared to DT3 alone. And DT3 ether derivative 8a were relatively stable and approximately 4 times more bioavailable than DT3 prototype. Furthermore, 5b exhibited superior ability to mitigate radiation-induced pancytopenia, enhance the recovery of bone marrow hematopoietic stem and progenitor cells, and promote splenic extramedullary hematopoiesis in sublethal irradiated mice. Similarly, 8a shown potential radiation protection, but its radiation protection is less than DT3. Based on these findings, we identified 5b as a DT3 prodrug, and providing an attractive candidate for further drug development.


Subject(s)
Hematopoietic System , Prodrugs , Radiation Protection , Vitamin E/analogs & derivatives , Animals , Mice , Granulocyte Colony-Stimulating Factor/pharmacology , Esters/pharmacology , Ethers , Prodrugs/pharmacology , Granulocytes
9.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542312

ABSTRACT

Radiation therapy for abdominopelvic malignancies often results in damage to the gastrointestinal tract (GIT) and permanent changes in bowel function. An overlooked component of the pathophysiology of radiation-induced bowel injury is the role of the gut microbiome. The goal of this research was to identify the impacts of acute radiation exposure on the GIT and gut microbiome. C57BL/6 mice exposed to whole-body X-rays (0.1-3 Gy) were assessed for histological and microbiome changes 48 h post-radiation exposure. Within the ileum, a dose of 3 Gy significantly decreased crypt depth as well as the number of goblet cells, but increased overall goblet cell size. Overall, radiation altered the microbial distribution within each of the main phyla in a dose- and tissue-dependent manner. Within the Firmicutes phylum, high dose irradiation resulted in significant alterations in bacteria from the class Bacilli within the small bowels, and from the class Clostridia in the large bowels. The 3 Gy radiation also significantly increased the abundance of bacterial families from the Bacteroidetes phylum in the colon and feces. Overall, we identified various alterations in microbiome composition following acute radiation exposure, which could potentially lead to novel biomarkers for tracking patient toxicities or could be used as targets for mitigation strategies against radiation damage.


Subject(s)
Gastrointestinal Microbiome , Radiation Exposure , Radiation Injuries , Humans , Animals , Mice , Gastrointestinal Microbiome/physiology , Mice, Inbred C57BL , Gastrointestinal Tract/microbiology , Bacteria/radiation effects , Firmicutes , X-Rays
10.
Biochem Biophys Res Commun ; 704: 149661, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38417343

ABSTRACT

To date only four recombinant growth factors, including Filgrastim (rhG-CSF), have been approved by FDA as radiomitigators to ameliorate hematopoietic acute radiation syndrome (H-ARS). These approved agents are not stable under room-temperature, needing to be stored at 2-8 °C, and would not be feasible in a mass casualty scenario where rapid and cost-effective intervention is crucial. Delta-tocotrienol (δ-T3H), the most potent G-CSF-inducing agent among vitamin E isoforms, exhibited efficiency and selectivity on G-CSF production in comparison with TLR and STING agonists in mice. Five-dose δ-T3H was utilized as the optimal therapeutic regimen due to long-term G-CSF production and the best peripheral blood (PB) recovery of irradiated mice. Comparable with rhG-CSF, sequential administration of δ-T3H post-irradiation improved hematologic recovery and accelerated the regeneration of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) in the bone marrow (BM) and spleen of 6.5Gy irradiated mice; and consistently enhanced repopulation of BM-HSCs. In 4.0Gy irradiated nonhuman primates, δ-T3H exhibited comparable efficacy as rhG-CSF to promote PB recovery and colony-formation of BM-HPCs. Altogether, we demonstrated that sequential administration of delta-tocotrienol ameliorates radiation-induced myelosuppression in mice and non-human primates through inducing G-CSF production, indicated δ-T3H as a promising radiomitigator for the management of H-ARS, particularly in a mass casualty scenario.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Vitamin E , Animals , Mice , Bone Marrow/pathology , Bone Marrow/radiation effects , Granulocyte Colony-Stimulating Factor/drug effects , Granulocyte Colony-Stimulating Factor/metabolism , Primates , Recombinant Proteins/pharmacology , Vitamin E/analogs & derivatives , Vitamin E/therapeutic use
12.
Disaster Med Public Health Prep ; 17: e571, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163973

ABSTRACT

The Food and Drug Administration's (FDA) approval to market drug products for use as medical countermeasures, to prevent or mitigate injury caused by various threat agents, is commonly based on evidence of efficacy obtained in animals. Animal studies are necessary when human studies are not feasible and challenge studies are not ethical. The successful development of countermeasures to radio-nuclear threats that cause Acute Radiation Syndrome (ARS) provides the opportunity to explore potential areas of overlap in the scientific approaches to studies of injuries caused by radiation and sulfur mustard exposures in animals. The aim is to evaluate the available scientific knowledge for radiation threat agents and sulfur mustard for potential analogies of fundamental mechanisms of organ injury and dysfunction. This evaluation is needed to determine the applicability of regulatory strategies for product development and approval adopted by manufacturers of countermeasures for radiation threat agents. Key elements of an efficient development plan based on animal efficacy studies include characterizing the pathophysiology of organ injury and the mechanism of action (MOA) of the countermeasure; modeling the clinical condition in animals to establish the manifestations of the injury caused by various levels of exposures to the threat agent and the response to various doses of the countermeasure candidate; as well as selecting a maximally effective human dose.


Subject(s)
Acute Radiation Syndrome , Mustard Gas , Radiation-Protective Agents , Animals , Humans , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use
13.
Disaster Med Public Health Prep ; 18: e7, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38239015

ABSTRACT

OBJECTIVE: Radiological emergency preparedness and response are increasingly acknowledged as vital components of both emergency readiness and public health. Previous studies have shown that medical providers feel unprepared to respond to radiation incidents. The existing level of knowledge, attitudes, and awareness held by emergency medicine residents and physicians in Oman, remain unexplored. This study aims to evaluate the knowledge, attitude, and awareness level of emergency residents and physicians in Oman regarding the management of radiation emergencies. METHODS: An electronic survey was distributed to 44 emergency residents and 57 emergency physicians. RESULTS: The response rate was 62.7% (N = 69/110). Notably, 62% reported no prior engagement in radiation emergency training. The majority of participants had neither employed nor received training in operating radiation detection devices. A significant gap in knowledge emerged, with the median self-reported knowledge score of 50/100. The majority of participants (59%) expressed a need for educational programs and materials. CONCLUSION: Our findings underscore the imperative for enhanced training in radiological incident preparedness for emergency medicine residents and physicians in Oman. The study reveals a clear necessity to bridge the existing gaps in knowledge and attitudes to bolster the readiness of health-care professionals to respond effectively to radiation emergencies.


Subject(s)
Disaster Planning , Physicians , Humans , Emergencies , Health Knowledge, Attitudes, Practice , Oman , Surveys and Questionnaires , Self Report
14.
Int J Radiat Biol ; 100(3): 317-334, 2024.
Article in English | MEDLINE | ID: mdl-37967239

ABSTRACT

PURPOSE: The growing concern over potential unintended nuclear accidents or malicious activities involving nuclear/radiological devices cannot be overstated. Exposure to whole-body doses of radiation can result in acute radiation syndrome (ARS), colloquially known as "radiation sickness," which can severely damage various organ systems. Long-term health consequences, such as cancer and cardiovascular disease, can develop many years post-exposure. Identifying effective medical countermeasures and devising a strategic medical plan represents an urgent, unmet need. Various clinical studies have investigated the therapeutic use of umbilical cord blood (UCB) for a range of illnesses, including ARS. The objective of this review is to thoroughly discuss ARS and its sub-syndromes, and to highlight recent findings regarding the use of UCB for radiation injury. UCB, a rich source of stem cells, boasts numerous advantages over other stem cell sources, like bone marrow, owing to its ease of collection and relatively low risk of severe graft-versus-host disease. Preclinical studies suggest that treatment with UCB, and often UCB-derived mesenchymal stromal cells (MSCs), results in improved survival, accelerated hematopoietic recovery, reduced gastrointestinal tract damage, and mitigation of radiation-induced pneumonitis and pulmonary fibrosis. Interestingly, recent evidence suggests that UCB-derived exosomes and their microRNAs (miRNAs) might assist in treating radiation-induced damage, largely by inhibiting fibrotic pathways. CONCLUSION: UCB holds substantial potential as a radiation countermeasure, and future research should focus on establishing treatment parameters for ARS victims.


Subject(s)
Acute Radiation Syndrome , Mesenchymal Stem Cells , MicroRNAs , Humans , Acute Radiation Syndrome/prevention & control , Acute Radiation Syndrome/metabolism , Fetal Blood , Stem Cells , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism
15.
Drug Discov Today ; 29(2): 103856, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097137

ABSTRACT

Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.


Subject(s)
Acute Radiation Syndrome , Radiation-Protective Agents , United States , Humans , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/prevention & control , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Androstenediol/pharmacokinetics , Immunity, Innate
16.
Bull Exp Biol Med ; 176(1): 34-37, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38091132

ABSTRACT

NOD SCID mice were humanized by transplanting human hematopoietic cells isolated from umbilical cord blood. A dose-dependent death of hematopoietic cells and their subsequent recovery were shown after acute external γ-irradiation in the model of humanized mice. The proposed approach can be used for preclinical studies of radioprotective agents and for assessment of the impact of adverse factors on the survival rate and functional properties of human hematopoietic stem cells in vivo.


Subject(s)
Hematopoietic Stem Cell Transplantation , Humans , Animals , Mice , Mice, SCID , Hematopoietic Stem Cells , Mice, Inbred NOD , Whole-Body Irradiation , Fetal Blood , Transplantation, Heterologous , Antigens, CD34
17.
Disaster Med Public Health Prep ; 17: e552, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37852927

ABSTRACT

PURPOSE: To summarize presentations and discussions from the 2022 trans-agency workshop titled "Overlapping science in radiation and sulfur mustard (SM) exposures of skin and lung: Consideration of models, mechanisms, organ systems, and medical countermeasures." METHODS: Summary on topics includes: (1) an overview of the radiation and chemical countermeasure development programs and missions; (2) regulatory and industry perspectives for drugs and devices; 3) pathophysiology of skin and lung following radiation or SM exposure; 4) mechanisms of action/targets, biomarkers of injury; and 5) animal models that simulate anticipated clinical responses. RESULTS: There are striking similarities between injuries caused by radiation and SM exposures. Primary outcomes from both types of exposure include acute injuries, while late complications comprise chronic inflammation, oxidative stress, and vascular dysfunction, which can culminate in fibrosis in both skin and lung organ systems. This workshop brought together academic and industrial researchers, medical practitioners, US Government program officials, and regulators to discuss lung-, and skin- specific animal models and biomarkers, novel pathways of injury and recovery, and paths to licensure for products to address radiation or SM injuries. CONCLUSIONS: Regular communications between the radiological and chemical injury research communities can enhance the state-of-the-science, provide a unique perspective on novel therapeutic strategies, and improve overall US Government emergency preparedness.


Subject(s)
Burns, Chemical , Mustard Gas , Animals , Humans , Mustard Gas/toxicity , Lung , Skin , Biomarkers/metabolism
18.
J Radiat Res ; 64(6): 880-892, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37697698

ABSTRACT

On the basis of the previous research, the Traditional Chinese Medicine theory was used to improve the drug composition for gastrointestinal acute radiation syndrome (GI-ARS). The purpose of this study was to study the therapeutic mechanism of Liangxue-Guyuan-Yishen decoction (LGYD) on GI-ARS and to provide a new scheme for the treatment of radiation injury. Here, we investigated the effects of LGYD on intestinal stem cells (ISCs) in a GI-ARS rat model. Rat health and survival and the protective efficacy of LGYD on the intestines were analyzed. The active principles in LGYD were detected using liquid chromatography-mass spectrometry (LC-MS). ISC proliferation, intestinal epithelial tight junction (TJ) protein expression and regulatory pathways were explored using immunohistochemistry, western blotting (WB) and reverse transcription quantitative polymerase chain reaction (RT-qPCR), respectively. Involvement of the WNT and MEK/ERK pathways in intestinal recovery was screened using network pharmacology analysis and validated by WB and RT-qPCR. LGYD administration significantly improved health and survival in GI-ARS rats. Pathological analysis showed that LGYD ameliorated radiation-induced intestinal injury and significantly promoted LGR5+ stem cell regeneration in the intestinal crypts, upregulated TJ protein, and accelerated crypt reconstruction in the irradiated rats. LC-MS revealed ≥13 constituents that might contribute to LGYD's protective effects. Collectively, LGYD can promote crypt cell proliferation and ISCs after radiation damage, the above effect may be related to WNT and MEK/ERK pathway.


Subject(s)
Acute Radiation Syndrome , Rats , Animals , Acute Radiation Syndrome/drug therapy , Intestines/pathology , Stem Cells/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology , Intestinal Mucosa
19.
MedEdPORTAL ; 19: 11331, 2023.
Article in English | MEDLINE | ID: mdl-37538304

ABSTRACT

Introduction: Acute radiation syndrome (ARS) is a high-risk, low-frequency diagnosis that can be fatal and is difficult to diagnose without an obvious history of ionizing radiation exposure. Methods: Twenty-two emergency medicine residents and one pharmacy resident participated in an hour-long simulation session. To accommodate all learners, the simulation was conducted eight times over a block of scheduled time (two to four learners/session). Sessions included a prebriefing, pre/post questionnaires, the ARS case, and a debriefing. Learners evaluated and managed a 47-year-old male (manikin) with the hematopoietic and cutaneous subsyndromes of ARS who presented with hand pain/erythema/edema and underlying signs of infection 2 weeks after an unrecognized radiation exposure. Learners had to perform a history and physical, recognize/manage abnormal vitals, order/interpret labs, consult appropriate disciplines, and initiate supportive care. Results: There was a mean reported increase in ability to recognize signs and symptoms of ARS (p < .001) and appropriately manage a patient with this condition (p = .03) even after controlling for baseline confidence in ability to make and manage uncommon diagnoses, respectively. Learners rated this simulation as a valuable learning experience, effective in teaching them how to diagnose and treat ARS, and one they would recommend to other health care professionals. Discussion: This simulation aimed to teach the diagnosis and initial management of the hematopoietic and cutaneous subsyndromes of ARS. It should be used to increase awareness of the potential for ionizing radiation exposure under less obvious conditions and raise the index of suspicion for ARS in the undifferentiated patient.


Subject(s)
Acute Radiation Syndrome , Emergency Medicine , High Fidelity Simulation Training , Simulation Training , Male , Humans , Middle Aged , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/therapy , Emergency Medicine/education , Patient Simulation
20.
Expert Opin Drug Saf ; 22(9): 783-788, 2023.
Article in English | MEDLINE | ID: mdl-37594915

ABSTRACT

INTRODUCTION: Nuclear reactor incidents and bioterrorism outbreaks are concerning public health disasters. Little is known about US Food and Drug Administration (FDA)-approved agents that can mitigate consequences of these events. We review FDA data supporting regulatory approvals of these agents. AREAS COVERED: We reviewed pharmaceutical products approved to treat Hematopoietic Acute Radiation Syndrome (H-ARS) and to treat or prevent pulmonary infections following Bacillus anthracis (anthrax) exposure. Four drugs were approved for H-ARS: granulocyte-colony stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor, pegylated G-CSF, and romiplostim. For bioterrorism-associated anthrax, the FDA approved five antibiotics (doxycycline, penicillin-G, levofloxacin, moxifloxacin, and ciprofloxacin), two monoclonal antibodies (obiltoxaximab and raxibacumab), one polyclonal antitoxin (Anthrax Immune Globulin Intravenous) and two vaccines (Anthrax Vaccine Adsorbed and Anthrax Vaccine Adsorbed with an adjuvant). A national stockpile system ensures that communities have ready access to these agents. Our literature search was based on data included in drugs@FDA (2001-2023). EXPERT OPINION: Two potential mass public health disasters are aerosolized anthrax dissemination and radiological incidents. Five agents authorized for anthrax emergencies only have FDA approval for this indication, five antibiotics have FDA approvals as antibiotics for common infections and for bacillus anthrax, and four agents have regulatory approvals for supportive care for cancer and for radiological incidents.


Subject(s)
Acute Radiation Syndrome , Anthrax Vaccines , Anthrax , Bacillus anthracis , Humans , United States , Anthrax/drug therapy , Anthrax/prevention & control , Anthrax Vaccines/therapeutic use , Bioterrorism/prevention & control , Explosions , Anti-Bacterial Agents , Acute Radiation Syndrome/drug therapy , Nuclear Reactors , Granulocyte Colony-Stimulating Factor/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...