Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.421
Filter
1.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38948727

ABSTRACT

Mitochondria are central to cellular metabolism; hence, their dysfunction contributes to a wide array of human diseases including cancer, cardiopathy, neurodegeneration, and heritable pathologies such as Barth syndrome. Cardiolipin, the signature phospholipid of the mitochondrion promotes proper cristae morphology, bioenergetic functions, and directly affects metabolic reactions carried out in mitochondrial membranes. To match tissue-specific metabolic demands, cardiolipin typically undergoes an acyl tail remodeling process with the final step carried out by the phospholipid-lysophospholipid transacylase tafazzin. Mutations in the tafazzin gene are the primary cause of Barth syndrome. Here, we investigated how defects in cardiolipin biosynthesis and remodeling impact metabolic flux through the tricarboxylic acid cycle and associated pathways in yeast. Nuclear magnetic resonance was used to monitor in real-time the metabolic fate of 13C3-pyruvate in isolated mitochondria from three isogenic yeast strains. We compared mitochondria from a wild-type strain to mitochondria from a Δtaz1 strain that lacks tafazzin and contains lower amounts of unremodeled cardiolipin, and mitochondria from a Δcrd1 strain that lacks cardiolipin synthase and cannot synthesize cardiolipin. We found that the 13C-label from the pyruvate substrate was distributed through about twelve metabolites. Several of the identified metabolites were specific to yeast pathways, including branched chain amino acids and fusel alcohol synthesis. Most metabolites showed similar kinetics amongst the different strains but mevalonate and α-ketoglutarate, as well as the NAD+/NADH couple measured in separate nuclear magnetic resonance experiments, showed pronounced differences. Taken together, the results show that cardiolipin remodeling influences pyruvate metabolism, tricarboxylic acid cycle flux, and the levels of mitochondrial nucleotides.

2.
Heart Vessels ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981910

ABSTRACT

Continuous intravenous adenosine triphosphate (ATP) administration is the standard method for inducing maximal hyperemia in fractional flow reserve (FFR) measurements. Several cases have demonstrated fluctuations in the ratio of mean distal coronary pressure to mean arterial pressure (Pd/Pa) value during ATP infusion, which raised our suspicions of FFR value inaccuracy. This study aimed to investigate our hypothesis that Pd/Pa fluctuations may indicate inaccurate FFR measurements caused by insufficient hyperemia. We examined 57 consecutive patients with angiographically intermediate coronary lesions who underwent fractional flow reverse (FFR) measurements in our hospital between November 2016 and September 2018. Pd/Pa was measured after continuous ATP administration (150 µg/kg/min) via a peripheral forearm vein for 5 min (FFRA); and we analyzed the FFR value variation in the final 20 s of the 5 min, defining 'Fluctuation' as variation range > 0.03. Then, 2 mg of nicorandil was administered into the coronary artery during continued ATP infusion, and the Pd/Pa was remeasured (FFRA+N). Fluctuations were observed in 23 of 57 patients. The cases demonstrating discrepancies of > 0.05 between FFRA and FFRA+N were observed more frequently in the fluctuation group than in the non-fluctuation group (12/23 vs. 1/34; p < 0.0001). The discrepancy between FFRA and FFRA+N values was smaller in the non-fluctuation group (mean difference ± SD; -0.00026 ± 0.04636 vs. 0.02608 ± 0.1316). Pd/Pa fluctuation with continuous ATP administration could indicate inaccurate FFR measurements caused by incomplete hyperemia. Additional vasodilator administration may achieve further hyperemia when Pd/Pa fluctuations are observed.

4.
Cell Biochem Funct ; 42(4): e4025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845083

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. Metabolic and mitochondrial dysregulation are critical causal factors in the pathogenesis and progression of RA. Mitochondrial dysfunction include abnormal energy metabolism, and excessive production of reactive oxygen species (ROS). This study aimed to investigate the adenosine triphosphate (ATP), mitochondrial membrane potential (ΔΨm), ROS, and mRNA expression level of ROMO1 (as ROS modulator) and OMA1 (as regulator mitochondrial dynamics) of peripheral blood mononuclear cells (PBMC) in RA patients. The study participants were 50 patients with RA and 50 sex- and age-matched healthy volunteers. PBMC of all participant were isolated by Ficoll-Paque. Alteration in ΔΨm and cellular ROS were measured using flow cytometry, ATP level was also assessed via luminometry, and ROMO1 and OMA1 mRNA expression via qRT-PCR assay. A significant decrease in ATP (p = .005) and ΔΨm (p < .001) was observed in the PBMC of RA compared to control. The ROS levels were significantly higher in the PBMC of RA compared to the control (p < .001). ROMO1 and OMA1 mRNA expression was also significantly increased in RA patients compared to control (p < .001). The decrease in ATP is strongly associated with ROS increasing in PBMC of RA patients, denoting an inverse and negative relationship between ATP and ROS production. Also, a decrease in ΔΨm was observed. It seems that in line with mitochondrial dysfunction in PBMC, increased expression of ROMO1 and OMA1 genes could also be involved in the development of RA.


Subject(s)
Arthritis, Rheumatoid , Leukocytes, Mononuclear , Mitochondria , Reactive Oxygen Species , Humans , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Leukocytes, Mononuclear/metabolism , Female , Male , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Middle Aged , Biomarkers/metabolism , Biomarkers/blood , Adenosine Triphosphate/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Adult , Membrane Potential, Mitochondrial , Membrane Proteins/metabolism , Membrane Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
5.
Immun Inflamm Dis ; 12(6): e1286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860755

ABSTRACT

OBJECTIVE: This study aimed to link intracellular adenosine triphosphate content in CD4+ T lymphocytes (CD4+ iATP) with sepsis patient mortality, seeking a new predictive biomarker for outcomes and enhanced management. METHODS: 61 sepsis patients admitted to the Intensive Care Unit between October 2021 and November 2022 were enrolled. iATP levels were gauged using whole blood CD4+ T cells stimulated with mitogen PHA-L. Based on CD4+ iATP levels (<132.24 and ≥132.24 ng/mL), patients were categorized into two groups. The primary endpoint was all-cause mortality. To identify factors associated with mortality, both univariate and multivariate Cox proportional hazard analyses were conducted. RESULTS: Of the patients, 40 had high CD4+ iATP levels (≥132.24 ng/mL) and 21 had low levels (<132.24 ng/mL). In a 28-day follow-up, 21 (34.4%) patients perished. Adjusting for confounders like SOFA score, APACHE II score, lactic acid, and albumin, those with low CD4+ iATP had three- to fivefold higher mortality risk compared to high CD4+ iATP patients (61.9% vs. 20.0%; hazard ratio [95% confidence interval], Model 1: 4.515 [1.276-15.974], p = .019, Model 2: 3.512 [1.197-10.306], p = .022). CD4+ iATP correlated positively with white blood cell and neutrophil counts but not with lymphocytes, CD3, and CD4 counts. CONCLUSIONS: Low CD4+ iATP levels were associated with a higher risk of mortality in sepsis patients. Measurement of CD4+ iATP may serve as a useful tool for identifying patients at a higher risk of mortality and could potentially provide a basis for clinical treatment. Further research is warranted to fully elucidate the underlying mechanisms of this association.


Subject(s)
Adenosine Triphosphate , CD4-Positive T-Lymphocytes , Sepsis , Humans , Adenosine Triphosphate/metabolism , Sepsis/mortality , Sepsis/immunology , Sepsis/blood , Male , Female , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Middle Aged , Prospective Studies , Aged , Biomarkers , Prognosis , Intensive Care Units/statistics & numerical data , Adult
6.
J Therm Biol ; 122: 103877, 2024 May.
Article in English | MEDLINE | ID: mdl-38850622

ABSTRACT

The objective of the study was to examine the lower limbs skin temperature (TSK) changes in response to exhaustive whole-body exercise in trained individuals in reference to changes in plasma adenosine triphosphate (ATP). Eighteen trained participants from distinct sport type ‒ endurance (25.2 ± 4.9 yr) and speed-power (25.8 ± 3.1 yr), and 9 controls (24,9 ± 4,3 yr) ‒ were examined. Lower limbs TSK and plasma ATP measures were applied in parallel in response to incremental treadmill test and during 30-min recovery period. Plasma ATP kinetics were inversely associated to changes in TSK. The first significant decrease in TSK (76-89% of V˙ O2MAX) occurred shortly before a significant plasma ATP increase (86-97% of V˙ O2MAX). During recovery, TSK increased, reaching pre-exercise values (before exercise vs. after 30-min recovery: 31.6 ± 0.4 °C vs. 32.0 ± 0.8 °C, p = 0.855 in endurance; 32.4 ± 0.5 °C vs. 32.9 ± 0.5 °C, p = 0.061 in speed-power; 31.9 ± 0.7 °C vs. 32.4 ± 0.8 °C, p = 0.222 in controls). Plasma ATP concentration did not returned to pre-exercise values in well trained participants (before exercise vs. after 30-min recovery: 699 ± 57 nmol l-1 vs. 854 ± 31 nmol l-1, p < 0.001, η2 = 0.961 and 812 ± 35 nmol l-1 vs. 975 ± 55 nmol l-1, p < 0.001, η2 = 0.974 in endurance and speed-power, respectively), unlike in controls (651 ± 40 nmol l-1 vs. 687 ± 61 nmol·l-1, p = 0.58, η2 = 0.918). The magnitude of TSK and plasma ATP response differed between the groups (p < 0.001, η2 = 0.410 for TSK; p < 0.001, η2 = 0.833 for plasma ATP). We conclude that lower limbs TSK change indirectly corresponds to the reverse course of plasma ATP during incremental exercise and the magnitude of the response depends on the level of physical activity and the associated to it long-term metabolic adaptation.


Subject(s)
Adenosine Triphosphate , Exercise , Lower Extremity , Skin Temperature , Humans , Male , Adenosine Triphosphate/blood , Adenosine Triphosphate/metabolism , Adult , Exercise/physiology , Lower Extremity/physiology , Lower Extremity/blood supply , Young Adult , Female , Physical Endurance
7.
Biosens Bioelectron ; 261: 116476, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38852325

ABSTRACT

DNA hydrogel represents a noteworthy biomaterial. The preparation of biosensors by combining DNA hydrogel with electrochemiluminescence can simplify the modification process and raise the experimental efficiency. In this study, an electrochemiluminescence (ECL) biosensor based on DNA hydrogel was fabricated to detect adenosine triphosphate (ATP) simply and quickly. CdTe-Ru@SiO2 nanospheres capable of ECL resonance energy transfer (RET) were synthesized and encapsulated CdTe-Ru@SiO2 in the DNA hydrogel to provide strong and stable ECL signals. DNA hydrogel avoided the labeling of ECL signal molecules. The aptamer of ATP as the linker of the hydrogel for the specificity of ATP detection. The cross-linked structure of the aptamer and the polymer chains was opened by ATP, and then the decomposition of the DNA hydrogel initiated the escape of CdTe-Ru@SiO2 to generate an ECL signal. The designed biosensor detected ATP without too much modification and complex experimental steps on the electrode surface, with good specificity and stability, and a wide linear range. The detection range was 10-5000 nM, and the detection limit was 6.68 nM (S/N = 3). The combination of DNA hydrogel and ECL biosensor provided a new way for clinical detection of ATP and other biomolecule.


Subject(s)
Adenosine Triphosphate , Aptamers, Nucleotide , Biosensing Techniques , DNA , Electrochemical Techniques , Hydrogels , Limit of Detection , Luminescent Measurements , Silicon Dioxide , Biosensing Techniques/methods , Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , Hydrogels/chemistry , Luminescent Measurements/methods , Electrochemical Techniques/methods , DNA/chemistry , Silicon Dioxide/chemistry , Tellurium/chemistry , Cadmium Compounds/chemistry , Humans
8.
Fundam Res ; 4(3): 442-454, 2024 May.
Article in English | MEDLINE | ID: mdl-38933213

ABSTRACT

The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.

9.
Oncol Lett ; 28(2): 369, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38933807

ABSTRACT

Introducing the exploration of stimulated CD4+ cells adenosine triphosphate (sATPCD4) levels for immune monitoring post non-small cell lung cancer (NSCLC) chemotherapy, the present study aimed to investigate its efficacy in gauging the potential risk of disease progression (PD) in patients with NSCLC. Therefore, a total of 89 patients with advanced NSCLC, who underwent chemotherapy between August 15 2022 and August 30 2023 at the Fifth Affiliated Hospital of Guangzhou Medical University (Guangzhou, China), were retrospectively studied. Patients were divided into the PD (n=21) and disease stability (non-PD; n=68) groups and their clinical data were compared. The thresholds for predicting PD were identified using receiver operating characteristics (ROC) curves. Multivariate logistic regression analysis was carried out to assess the association between peripheral blood markers and the incidence of PD. Therefore, post-chemotherapy, significant differences in white blood cell count, non-stimulated CD4+ cells ATP and sATPCD4 levels were obtained between patients in the PD and non-PD groups (P<0.05). In addition, sATPCD4 levels were notably decreased in the PD group compared with the non-PD group. Furthermore, ROC analysis revealed that the predictive threshold for PD was 224.5 ng/ml [area under the curve=0.887; 95% confidence interval, 0.811-0.963]. Additionally, patients with low immunity (ATP <224.5 ng/ml) exhibited a higher risk of PD compared with the high-immunity group (ATP >224.5 ng/ml; P<0.0001). Finally, multivariate logistic regression analysis suggested that sATPCD4 could serve as an independent factor for predicting NSCLC progression. Overall, the current study predicted that immune function could be possibly associated with the risk of PD in patients with NSCLC.

10.
Mil Med Res ; 11(1): 41, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937853

ABSTRACT

BACKGROUND: Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet ß cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS: db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS: In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS: PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.


Subject(s)
Adenosine Triphosphate , Connexins , Gluconeogenesis , Lipogenesis , Liver , Nerve Tissue Proteins , Animals , Connexins/metabolism , Mice , Gluconeogenesis/physiology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Adenosine Triphosphate/metabolism , Lipogenesis/physiology , Liver/metabolism , Mice, Knockout , Male , Humans , Diet, High-Fat/adverse effects , Cytokines
11.
Biol Reprod ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836439

ABSTRACT

In pigs, the majority of embryonic mortality occurs when free-floating conceptuses (embryos/fetuses and associated placental membranes) elongate and the uterine-placental interface undergoes folding and develops areolae. Both periods involve proliferation, migration, and changes in morphology of cells that require ATP. We hypothesize that insufficient ATP in conceptus and uterine tissues contributes to conceptus loss in pigs. Creatine is stored in cells as phosphocreatine (PCr) for ATP regeneration through the creatine (Cr)-creatine kinase (CK)-PCr pathway. However, the expression of components of this pathway in pigs has not been examined throughout gestation. Results of qPCR analyses indicated increases in AGAT, GAMT, CKM, CKB, and SLC6A8 mRNAs in elongating porcine conceptuses and immunofluorescence microscopy localized GAMT, CKM, and CKB proteins to the trophectoderm of elongating conceptuses, to the columnar chorionic epithelial cells at the bottom of chorioallantoic troughs, and to endometrial luminal epithelium (LE) at the tops of the endometrial ridges of uterine-placental folds on Days 40, 60, and 90 of gestation. GAMT protein is expressed in endometrial LE at the uterine-placental interface, but immunostaining is more intense in LE at the bottoms of the endometrial ridges. Results of this study indicate that key elements of the pathway for creatine metabolism are expressed in cells of the conceptus, placenta, and uterus for potential production of ATP during two timepoints in pregnancy with a high demand for energy; elongation of the conceptus for implantation and development of uterine-placental folding during placentation.

12.
Drug Deliv Transl Res ; 14(8): 2146-2157, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822092

ABSTRACT

While long-acting injectable treatments are gaining increasing interest in managing chronic diseases, the available drug delivery systems almost exclusively rely on hydrophobic matrixes, limiting their application to either hydrophobic drugs or large and hydrophilic molecules such as peptides. To address the technological lock for long-acting delivery systems tailored to small, hydrophilic drugs such as anticancer and antiviral nucleoside/nucleotide analogues, we have synthesized and characterized an original approach with a multi-scale structure: (i) a nucleotide (adenosine triphosphate, ATP) is first incorporated in hydrophilic chitosan-Fe(III) nanogels; (ii) these nanogels are then transferred by freeze-drying and resuspension into a water-free, hydrophobic medium containing PLGA and an organic solvent, N-methyl-2-pyrrolidone. We show that this specific association allows an injectable and homogeneous dispersion, able to form in situ implants upon injection in physiological or aqueous environments. This system releases ATP in vitro without any burst effect in a two-step mechanism, first as nanogels acting as an intermediate reservoir over a week, then as free drug over several weeks. In vivo studies confirmed the potential of such nanostructured implants for sustained drug release following subcutaneous injection to mice hock, opening perspectives for sustained and targeted delivery through the lymphatic system.


Subject(s)
Adenosine Triphosphate , Chitosan , Hydrophobic and Hydrophilic Interactions , Nanostructures , Animals , Adenosine Triphosphate/administration & dosage , Chitosan/chemistry , Chitosan/administration & dosage , Nanostructures/administration & dosage , Nanostructures/chemistry , Drug Liberation , Mice , Delayed-Action Preparations/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Drug Delivery Systems , Drug Implants , Injections, Subcutaneous , Nanogels/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/administration & dosage , Pyrrolidinones
13.
Biochem Soc Trans ; 52(3): 1293-1304, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38716884

ABSTRACT

ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.


Subject(s)
Adenosine Triphosphate , Nerve Growth Factor , Protein Binding , Nerve Growth Factor/metabolism , Adenosine Triphosphate/metabolism , Humans , Animals , Protein Precursors/metabolism , Nerve Growth Factors/metabolism , Nerve Growth Factors/chemistry , Ligands , Binding Sites
14.
Angew Chem Int Ed Engl ; 63(28): e202319908, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38693057

ABSTRACT

Upon pathogenic stimulation, activated neutrophils release nuclear DNA into the extracellular environment, forming web-like DNA structures known as neutrophil extracellular traps (NETs), which capture and kill bacteria, fungi, and cancer cells. This phenomenon is commonly referred to as NETosis. Inspired by this, we introduce a cell surface-constrained web-like framework nucleic acids traps (FNATs) with programmable extracellular recognition capability and cellular behavior modulation. This approach facilitates dynamic key chemical signaling molecule recognition such as adenosine triphosphate (ATP), which is elevated in the extracellular microenvironment, and triggers FNA self-assembly. This, in turn, leads to in situ tightly interwoven FNAs formation on the cell surface, thereby inhibiting target cell migration. Furthermore, it activates a photosensitizer-capturing switch, chlorin e6 (Ce6), and induces cell self-destruction. This cascade platform provides new potential tools for visualizing dynamic extracellular activities and manipulating cellular behaviors using programmable in situ self-assembling DNA molecular devices.


Subject(s)
Extracellular Traps , Porphyrins , Extracellular Traps/metabolism , Extracellular Traps/chemistry , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , DNA/chemistry , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Nucleic Acids/chemistry , Chlorophyllides , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Neutrophils/metabolism , Cell Movement/drug effects
15.
Talanta ; 277: 126306, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38795592

ABSTRACT

Adenosine triphosphate (ATP) is the main source of energy required for all life activities and is used as a biomarker for diseases such as cancer. It is of great significance to design a novel fluorescent probe with favorable performance for monitoring the changes of ATP concentration. Herein, a fluorescence probe named ZnCPs@AuNCs for ATP sensing was designed and fabricated by integrating AuNCs into ZnCPs. The emission intensity of AuNCs was greatly enhanced upon the formation of the ZnCPs@AuNCs nanocomposites, which may be attributed to ZnCPs restricting the molecular motion of AuNCs. Upon the introduction of ATP, the fluorescence intensity at 564 nm of ZnCPs@AuNCs is quenched. According to this phenomenon, a sensitive and reliable ATP sensing platform was established. Moreover, ZnCPs@AuNCs were incorporated into a poly (vinyl alcohol) matrix for the fabrication of fluorescent film, which exhibited solid-state fluorescence. Inspired by the remarkable fluorescent properties of ZnCPs@AuNCs, the fluorescent hydrogel was prepared by mixing ZnCPs@AuNCs with κ-carrageenan, which demonstrated a response to ATP and favorable self-healing ability. This work presents a perspective of ZnCPs@AuNCs in multiple applications such as biosensing, fluorescent film, and hydrogel construction.

16.
Cell Stem Cell ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38772377

ABSTRACT

Aging generally predisposes stem cells to functional decline, impairing tissue homeostasis. Here, we report that hematopoietic stem cells (HSCs) acquire metabolic resilience that promotes cell survival. High-resolution real-time ATP analysis with glucose tracing and metabolic flux analysis revealed that old HSCs reprogram their metabolism to activate the pentose phosphate pathway (PPP), becoming more resistant to oxidative stress and less dependent on glycolytic ATP production at steady state. As a result, old HSCs can survive without glycolysis, adapting to the physiological cytokine environment in bone marrow. Mechanistically, old HSCs enhance mitochondrial complex II metabolism during stress to promote ATP production. Furthermore, increased succinate dehydrogenase assembly factor 1 (SDHAF1) in old HSCs, induced by physiological low-concentration thrombopoietin (TPO) exposure, enables rapid mitochondrial ATP production upon metabolic stress, thereby improving survival. This study provides insight into the acquisition of resilience through metabolic reprogramming in old HSCs and its molecular basis to ameliorate age-related hematopoietic abnormalities.

17.
Heliyon ; 10(9): e29950, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756598

ABSTRACT

Epilepsy is a chronic, relapsing neurological disorder, and current treatments focus primarily on neurons, yet one-third of patients still develop drug-resistant epilepsy. Therefore, there is an urgent need to explore new therapeutic targets. Interestingly, astrocytes can transfer their healthy mitochondria into neighboring neurons, thus preventing neuronal damage. Astrocyte mitochondria have been shown to have a therapeutic role in stroke and neurodegenerative diseases. However, their therapeutic effect in epilepsy and its related mechanisms have been less studied. In this review, we mainly summarize the regulatory role of astrocyte mitochondria in glutamate, calcium ion, and adenosine triphosphate (ATP) homeostasis and outline the protective role of astrocyte mitochondria in nervous system diseases, revealing a new target for epilepsy treatment.

18.
Methods Enzymol ; 697: 269-291, 2024.
Article in English | MEDLINE | ID: mdl-38816126

ABSTRACT

The design of small peptides that assemble into catalytically active intermolecular structures has proven to be a successful strategy towards developing minimalistic catalysts that exhibit some of the unique functional features of enzymes. Among these, catalytic amyloids have emerged as a fruitful source to unravel many different activities. These assemblies can potentially have broad applications that range from biotechnology to prebiotic chemistry. Although many peptides that assemble into catalytic amyloids have been developed in recent years, the elucidation of convergent mechanistic aspects of the catalysis and the structure/function relationship is still a challenge. Novel catalytic activities are necessary to better address these issues and expand the current repertoire of applicability. In this chapter, we described a methodology to produce catalytic amyloids that are specifically active towards the hydrolysis of phosphoanhydride bonds of nucleotides. The design of potentially active amyloid-prone peptide sequences is explored using as template the active site of enzymes with nucleotidyltransferase activity. The procedures include an approach for sequence design, in vitro aggregation assays, morphological characterization of the amyloid state and a comprehensive methodology to measure activity in vitro using nucleoside and deoxynucleosides triphosphates as model substrates. The proposed strategy can also be implemented to explore different types of activities for the design of future catalytic amyloids.


Subject(s)
Amyloid , Nucleotides , Hydrolysis , Amyloid/chemistry , Amyloid/metabolism , Nucleotides/chemistry , Nucleotides/metabolism , Catalytic Domain , Amino Acid Sequence , Catalysis , Biocatalysis
19.
Water Res ; 255: 121517, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574613

ABSTRACT

Total adenosine triphosphate (tATP) was investigated for its potential as a rapid indicator of cyanobacterial growth and algaecide effectiveness. tATP and other common bloom monitoring parameters were measured over the growth cycles of cyanobacteria and green algae in laboratory cultures and examined at a drinking water source during an active bloom. Strong correlations (R2>0.78) were observed between tATP and chlorophyll-a in cyanobacteria cultures. tATP offered greater sensitivity by increasing two orders of magnitude approximately 7 d before changes in chlorophyll-a or optical density were observed in Lyngbya sp. and Dolichospermum sp. cultures. Increases in tATP per cell coincided with the onset of exponential growth phases in lab cultures and increase in cell abundance in field samples, suggesting that ATP/cell is a sensitive indicator that may be used to identify the development of blooms. Bench-scale trials using samples harvested during a bloom showed that tATP exhibited a clear dose-response during copper sulfate (CuSO4) and hydrogen peroxide (H2O2) treatment compared to chlorophyll-a and cell counts, indicating that cellular production and storage of ATP decreases even when live and dead cells cannot be distinguished. During Copper (Cu) algaecide application at a reservoir used as a drinking water source, tATP and cell counts decreased following initial algaecide application; however, the bloom rebounded within 10 d showing that the Cu algaecide only has limited effectiveness. In this case, tATP was a sensitive indicator to bloom rebounding after algaecide treatments and correlated positively with cell counts (R2=0.7). These results support the use of tATP as a valuable complementary bloom monitoring tool for drinking water utilities to implement during the monitoring and treatment of cyanobacterial blooms.

20.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38639724

ABSTRACT

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Subject(s)
Heart Failure , Reperfusion Injury , Humans , Creatine Kinase/metabolism , Adenosine Triphosphate/metabolism , Heart , Energy Metabolism/physiology , Reperfusion Injury/metabolism , Phosphocreatine/metabolism , Chronic Disease , Myocardium/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...