Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 545
Filter
1.
Article in English | MEDLINE | ID: mdl-39001919

ABSTRACT

PURPOSE: Olfactory dysfunction is increasingly common among COVID-19 patients, impacting their well-being. Reports have demonstrated decreased levels of cyclic adenosine monophosphate and cyclic guanosine monophosphate among patients with chronic olfactory dysfunction. A prospective randomized clinical trial was developed to demonstrate the efficacy of an oral forskolin regimen treatment, an adenylyl cyclase activator that raises intracellular levels of cyclic adenosine monophosphate, for the treatment of olfactory dysfunction following COVID-19, compared to placebo regimen. METHODS: The study enrolled 285 participants with persistent olfactory dysfunction post COVID-19 infection, randomly assigning them to receive either placebo capsules (n = 120) or oral forskolin capsules (n = 165). Follow-up was conducted to track progress, with 18 participants from the placebo group and 12 from the forskolin group lost during this period. Olfactory function was assessed using the "Sniffin' Sticks" test, measuring threshold, discrimination and identification scores before and after treatment. RESULTS: Subjects administered forskolin capsules demonstrated a significant enhancement in their composite TDI (threshold, discrimination and identification) score, suggesting a notable amelioration in olfactory functionality. Moreover, the discrimination and identification scores notably improved within the forskolin group. Conversely, no significant alterations were observed in the threshold scores. CONCLUSION: This study suggests that forskolin can contribute potentially to improve chronic olfactory dysfunction post COVID-19. TRIAL REGISTRATION: DFM-IRB00012367-23-10-001.

2.
Antioxidants (Basel) ; 13(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38929182

ABSTRACT

Oxidative stress is a key factor causing mitochondrial dysfunction and retinal ganglion cell (RGC) death in glaucomatous neurodegeneration. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway is involved in mitochondrial protection, promoting RGC survival. Soluble adenylyl cyclase (sAC) is a key regulator of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway, which is known to protect mitochondria and promote RGC survival. However, the precise molecular mechanisms connecting the sAC-mediated signaling pathway with mitochondrial protection in RGCs against oxidative stress are not well characterized. Here, we demonstrate that sAC plays a critical role in protecting RGC mitochondria from oxidative stress. Using mouse models of oxidative stress induced by ischemic injury and paraquat administration, we found that administration of bicarbonate, as an activator of sAC, protected RGCs, blocked AMP-activated protein kinase activation, inhibited glial activation, and improved visual function. Moreover, we found that this is the result of preserving mitochondrial dynamics (fusion and fission), promoting mitochondrial bioenergetics and biogenesis, and preventing metabolic stress and apoptotic cell death. Notably, the administration of bicarbonate ameliorated mitochondrial dysfunction in RGCs by enhancing mitochondrial biogenesis, preserving mitochondrial structure, and increasing ATP production in oxidatively stressed RGCs. These findings suggest that activating sAC enhances the mitochondrial structure and function in RGCs to counter oxidative stress, consequently promoting RGC protection. We propose that modulation of the sAC-mediated signaling pathway has therapeutic potential acting on RGC mitochondria for treating glaucoma and other retinal diseases.

3.
Biology (Basel) ; 13(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927325

ABSTRACT

Adenylyl cyclases (ACs) are a group of enzymes that convert adenosine-5'-triphosphate (ATP) to cyclic adenosine 3',5' monophosphate (cAMP), a vital and ubiquitous signalling molecule in cellular responses to hormones and neurotransmitters. There are nine transmembrane (tmAC) forms, which have been widely studied; however, the tenth, soluble AC (sAC) is less extensively characterised. The eye is one of the most metabolically active sites in the body, where sAC has been found in abundance, making it a target for novel therapeutics and biomarking. In the cornea, AC plays a role in endothelial cell function, which is vital in maintaining stromal dehydration, and therefore, clarity. In the retina, AC has been implicated in axon cell growth and survival. As these cells are irreversibly damaged in glaucoma and injury, this molecule may provide focus for future therapies. Another potential area for glaucoma management is the source of aqueous humour production, the ciliary body, where AC has also been identified. Furthering the understanding of lacrimal gland function is vital in managing dry eye disease, a common and debilitating condition. sAC has been linked to tear production and could serve as a therapeutic target. Overall, ACs are an exciting area of study in ocular health, offering multiple avenues for future medical therapies and diagnostics. This review paper explores the diverse roles of ACs in the eye and their potential as targets for innovative treatments.

4.
Transl Cancer Res ; 13(5): 2222-2237, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38881911

ABSTRACT

Background: The adenylyl cyclase (ADCY) gene family encodes enzymes responsible for the synthesis of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP), which comprises nine transmembrane isoforms (ADCYs 1-9). Although ADCYs correlate with intracellular signalling and tumorigenesis in different malignancies, their roles in bladder cancer remain unclear. Methods: Utilizing the bladder urothelial carcinoma (BLCA) dataset from The Cancer Genome Atlas (TCGA), we employed the R package 'limma' to identify differential genes. Subsequent correlation analysis with corresponding clinical data was conducted. Prognostic significance of ADCY family genes was assessed through survival analysis. Univariate and multivariate Cox regression determined ADCY2 as a potential independent risk factor for BLCA. Validation was performed using immunohistochemistry results from independent cohorts. Additionally, we delved into the mechanism of genetic variations, methylation modifications, and signalling pathways of ADCY family genes. Evaluation of their role in the immune microenvironment was achieved through R packages single-sample gene set enrichment analysis (ssGSEA), CIBERPORT, and ESTIMATE. Results: Cases of bladder cancer were retrieved from TCGA, and the transcriptionally differentially expressed members of ADCY were identified (members 2, 4, and 5). Genomic alteration, epigenomic modification, clinicopathological characteristics and clinical survival were systematically investigated. A co-expression network was established based on the intersection of correlated genes, which was centred around ADCY2, ADCY4, and ADCY5. Enrichment analysis revealed that correlated genes were involved in epithelial-mesenchymal transition (EMT). The ADCY2 was selected as the most representative biomarker for prognosis in bladder cancer. Bladder tumour with higher ADCY2 expression had higher prognostic risk and worse survival outcomes. Moreover, ADCY2 was correlated with classic immune checkpoints, and a better responsiveness to immunotherapy was exhibited in high-expression subsets. To ameliorate universality of the conclusion, our study also included several real-world cohorts into the preliminary validation, using datasets from the Gene Expression Omnibus (GEO; GSE13507), tissue microarray (TMA) with 80 bladder cancer inclusion and clinical trial IMvigor210, which were associated with immunotherapy sensitivity, prognosis, and common biomarker presentation. Conclusions: Our study reveals that ADCY family has prognostic value in patients with bladder cancer; the ADCY2 is a prominent prognostic biomarker. The bioinformatics analyses and validation provide direction for further functional and mechanistic studies on the screened members of ADCY family.

5.
J Biol Chem ; 300(7): 107444, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838772

ABSTRACT

Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.

6.
Mol Aspects Med ; 97: 101281, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805792

ABSTRACT

Because nearly half of pregnancies worldwide are unintended, available contraceptive methods are inadequate. Moreover, due to the striking imbalance between contraceptive options available for men compared to the myriad of options available to women, there is an urgent need for new methods of contraception for men. This review summarizes ongoing efforts to develop male contraceptives highlighting the unique aspects particular to on-demand male contraception, where a man takes a contraceptive only when and as often as needed.


Subject(s)
Contraception , Contraceptive Agents, Male , Humans , Male , Contraception/methods , Female , Pregnancy
7.
Mol Pain ; 20: 17448069241258110, 2024.
Article in English | MEDLINE | ID: mdl-38744422

ABSTRACT

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Subject(s)
Adenylyl Cyclases , Colforsin , Gyrus Cinguli , Long-Term Potentiation , Animals , Mice , Gyrus Cinguli/drug effects , Gyrus Cinguli/metabolism , Colforsin/pharmacology , Long-Term Potentiation/drug effects , Adenylyl Cyclases/metabolism , Male , Receptors, AMPA/metabolism , Mice, Inbred C57BL , Synapses/drug effects , Synapses/metabolism , Calcium/metabolism
8.
Cell Calcium ; 121: 102906, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781694

ABSTRACT

The meticulous regulation of ER calcium (Ca2+) homeostasis is indispensable for the proper functioning of numerous cellular processes. Disrupted ER Ca2+ balance is implicated in diverse diseases, underscoring the need for a systematic exploration of its regulatory factors in cells. Our recent genomic-scale screen identified a scaffolding protein A-kinase anchoring protein 9 (AKAP9) as a regulator of ER Ca2+ levels, but the underlying molecular mechanisms remain elusive. Here, we reveal that Yotiao, the smallest splicing variant of AKAP9 decreased ER Ca2+ content in animal cells. Additional testing using a combination of Yotiao truncations, knock-out cells and pharmacological tools revealed that, Yotiao does not require most of its interactors, including type 1 inositol 1,4,5-trisphosphate receptors (IP3R1), protein kinase A (PKA), protein phosphatase 1 (PP1), adenylyl cyclase type 2 (AC2) and so on, to reduce ER Ca2+ levels. However, adenylyl cyclase type 9 (AC9), which is known to increases its cAMP generation upon interaction with Yotiao for the modulation of potassium channels, plays an essential role for Yotiao's ER-Ca2+-lowering effect. Mechanistically, Yotiao may work through AC9 to act on Orai1-C terminus and suppress store operated Ca2+ entry, resulting in reduced ER Ca2+ levels. These findings not only enhance our comprehension of the interplay between Yotiao and AC9 but also contribute to a more intricate understanding of the finely tuned mechanisms governing ER Ca2+ homeostasis.


Subject(s)
A Kinase Anchor Proteins , Calcium , Endoplasmic Reticulum , A Kinase Anchor Proteins/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Animals , Humans , HEK293 Cells , Mice , Calcium Signaling , Cytoskeletal Proteins
9.
Pharmacol Ther ; 258: 108653, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679204

ABSTRACT

Cyclic nucleotides are important signaling molecules that play many critical physiological roles including controlling cell fate and development, regulation of metabolic processes, and responding to changes in the environment. Cyclic nucleotides are also pivotal regulators in immune signaling, orchestrating intricate processes that maintain homeostasis and defend against pathogenic threats. This review provides a comprehensive examination of the pharmacological potential of cyclic nucleotide signaling pathways within the realm of immunity. Beginning with an overview of the fundamental roles of cAMP and cGMP as ubiquitous second messengers, this review delves into the complexities of their involvement in immune responses. Special attention is given to the challenges associated with modulating these signaling pathways for therapeutic purposes, emphasizing the necessity for achieving cell-type specificity to avert unintended consequences. A major focus of the review is on the recent paradigm-shifting discoveries regarding specialized cyclic nucleotide signals in the innate immune system, notably the cGAS-STING pathway. The significance of cyclic dinucleotides, exemplified by 2'3'-cGAMP, in controlling immune responses against pathogens and cancer, is explored. The evolutionarily conserved nature of cyclic dinucleotides as antiviral agents, spanning across diverse organisms, underscores their potential as targets for innovative immunotherapies. Findings from the last several years have revealed a striking diversity of novel bacterial cyclic nucleotide second messengers which are involved in antiviral responses. Knowledge of the existence and precise identity of these molecules coupled with accurate descriptions of their associated immune defense pathways will be essential to the future development of novel antibacterial therapeutic strategies. The insights presented herein may help researchers navigate the evolving landscape of immunopharmacology as it pertains to cyclic nucleotides and point toward new avenues or lines of thinking about development of therapeutics against the pathways they regulate.


Subject(s)
Nucleotides, Cyclic , Signal Transduction , Humans , Animals , Nucleotides, Cyclic/metabolism , Immunity, Innate , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism
10.
Methods Mol Biol ; 2794: 33-43, 2024.
Article in English | MEDLINE | ID: mdl-38630218

ABSTRACT

Two-photon FRET (Förster resonance energy transfer) and FLIM (fluorescence lifetime imaging microscopy) enable the detection of FRET changes of fluorescence reporters in deep brain tissues, which provide a valuable approach for monitoring target molecular dynamics and functions. Here, we describe two-photon FRET and FLIM imaging techniques that allow us to visualize endogenous and optogenetically induced cAMP dynamics in living neurons with genetically engineered FRET-based cAMP reporters.


Subject(s)
Fluorescence Resonance Energy Transfer , Genetic Engineering , Microscopy, Fluorescence , Neurons , Photons
11.
Front Pharmacol ; 15: 1370506, 2024.
Article in English | MEDLINE | ID: mdl-38633617

ABSTRACT

Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.

12.
Proc Natl Acad Sci U S A ; 121(16): e2322211121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593080

ABSTRACT

Adenosine 3',5'-cyclic monophosphate (cAMP) is a universal signaling molecule that acts as a second messenger in various organisms. It is well established that cAMP plays essential roles across the tree of life, although the function of cAMP in land plants has long been debated. We previously identified the enzyme with both adenylyl cyclase (AC) and cAMP phosphodiesterase (PDE) activity as the cAMP-synthesis/hydrolysis enzyme COMBINED AC with PDE (CAPE) in the liverwort Marchantia polymorpha. CAPE is conserved in streptophytes that reproduce with motile sperm; however, the precise function of CAPE is not yet known. In this study, we demonstrate that the loss of function of CAPE in M. polymorpha led to male infertility due to impaired sperm flagellar motility. We also found that two genes encoding the regulatory subunits of cAMP-dependent protein kinase (PKA-R) were also involved in sperm motility. Based on these findings, it is evident that CAPE and PKA-Rs act as a cAMP signaling module that regulates sperm motility in M. polymorpha. Therefore, our results have shed light on the function of cAMP signaling and sperm motility regulators in land plants. This study suggests that cAMP signaling plays a common role in plant and animal sperm motility.


Subject(s)
Marchantia , Male , Animals , Marchantia/genetics , Cyclic AMP/metabolism , Sperm Motility/genetics , Seeds/metabolism , Adenylyl Cyclases/metabolism , Spermatozoa/metabolism
13.
Eur Biophys J ; 53(4): 239-247, 2024 May.
Article in English | MEDLINE | ID: mdl-38625405

ABSTRACT

In this study, fluorescence recovery after photobleaching (FRAP) experiments were performed on RBC labeled by lipophilic fluorescent dye CM-DiI to evaluate the role of adenylyl cyclase cascade activation in changes of lateral diffusion of erythrocytes membrane lipids. Stimulation of adrenergic receptors with epinephrine (adrenaline) or metaproterenol led to the significant acceleration of the FRAP recovery, thus indicating an elevated membrane fluidity. The effect of the stimulation of protein kinase A with membrane-permeable analog of cAMP followed the same trend but was less significant. The observed effects are assumed to be driven by increased mobility of phospholipids resulting from the weakened interaction between the intermembrane proteins and RBC cytoskeleton due to activation of adenylyl cyclase signaling cascade.


Subject(s)
Adenylyl Cyclases , Erythrocyte Membrane , Fluorescence Recovery After Photobleaching , Membrane Fluidity , Adenylyl Cyclases/metabolism , Membrane Fluidity/drug effects , Humans , Erythrocyte Membrane/metabolism , Enzyme Activation , Signal Transduction/drug effects , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Epinephrine/pharmacology , Epinephrine/metabolism
14.
Pflugers Arch ; 476(4): 457-465, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581526

ABSTRACT

Soluble adenylyl cyclase (sAC) differs from transmembrane adenylyl cyclases (tmAC) in many aspects. In particular, the activity of sAC is not regulated by G-proteins but by the prevailing bicarbonate concentrations inside cells. Therefore, sAC serves as an exquisite intracellular pH sensor, with the capacity to translate pH changes into the regulation of localization and/or activity of cellular proteins involved in pH homeostasis. In this review, we provide an overview of literature describing the regulation of sAC activity by bicarbonate, pinpointing the importance of compartmentalization of intracellular cAMP signaling cascades. In addition, examples of processes involving proton and bicarbonate transport in different cell types, in which sAC plays an important regulatory role, were described in detail.


Subject(s)
Adenylyl Cyclases , Cyclic AMP , Adenylyl Cyclases/metabolism , Cyclic AMP/metabolism , Bicarbonates/metabolism , Signal Transduction/physiology , Hydrogen-Ion Concentration
15.
Biochem Pharmacol ; : 116160, 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38522554

ABSTRACT

Globally, despite extensive research and pharmacological advancement, cancer remains one of the most common causes of mortality. Understanding the signaling pathways involved in cancer progression is essential for the discovery of new drug targets. The adenylyl cyclase (AC) superfamily comprises glycoproteins that regulate intracellular signaling and convert ATP into cyclic AMP, an important second messenger. The present review highlights the involvement of ACs in cancer progression and suppression, broken down for each specific mammalian AC isoform. The precise mechanisms by which ACs contribute to cancer cell proliferation and invasion are not well understood and are variable among cancer types; however, AC overactivation, along with that of downstream regulators, presents a potential target for novel anticancer therapies. The expression patterns of ACs in numerous cancers are discussed. In addition, we highlight inhibitors of AC-related signaling that are currently under investigation, with a focus on possible anti-cancer strategies. Recent discoveries with small molecules regarding more direct modulation AC activity are also discussed in detail. A more comprehensive understanding of different components in AC-related signaling could potentially lead to the development of novel therapeutic strategies for personalized oncology and might enhance the efficacy of chemoimmunotherapy in the treatment of various cancers.

16.
Geroscience ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38499959

ABSTRACT

Mice with cardiac-specific overexpression of adenylyl cyclase (AC) type 8 (TGAC8) are under a constant state of severe myocardial stress. They have a remarkable ability to adapt to this stress, but they eventually develop accelerated cardiac aging and experience reduced longevity. We have previously demonstrated through bioinformatics that constitutive adenylyl cyclase activation in TGAC8 mice is associated with the activation of inflammation-related signaling pathways. However, the immune response associated with chronic myocardial stress in the TGAC8 mouse remains unexplored. Here we demonstrate that chronic activation of adenylyl cyclase in cardiomyocytes of TGAC8 mice results in activation of cell-autonomous RelA-mediated NF-κB signaling. This is associated with non-cell-autonomous activation of proinflammatory and age-associated signaling in myocardial endothelial cells and myocardial smooth muscle cells, expansion of myocardial immune cells, increase in serum levels of inflammatory cytokines, and changes in the size or composition of lymphoid organs. All these changes precede the appearance of cardiac fibrosis. We provide evidence indicating that RelA activation in cardiomyocytes with chronic activation of adenylyl cyclase is mediated by calcium-protein Kinase A (PKA) signaling. Using a model of chronic cardiomyocyte stress and accelerated aging, we highlight a novel, calcium/PKA/RelA-dependent connection between cardiomyocyte stress, myocardial inflammation, and systemic inflammation. These findings suggest that RelA-mediated signaling in cardiomyocytes might be an adaptive response to stress that, when chronically activated, ultimately contributes to both cardiac and systemic aging.

17.
Plants (Basel) ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475493

ABSTRACT

Giardiasis is a parasitosis caused by Giardia lamblia with significant epidemiological and clinical importance due to its high prevalence and pathogenicity. The lack of optimal therapies for treating this parasite makes the development of new effective chemical entities an urgent need. In the search for new inhibitors of the adenylyl cyclase gNC1 obtained from G. lamblia, 14 extracts from Argentinian native plants were screened. Lepechinia floribunda and L. meyenii extracts exhibited the highest gNC1 inhibitory activity, with IC50 values of 9 and 31 µg/mL, respectively. In silico studies showed rosmarinic acid, a hydroxycinnamic acid present in both mentioned species, to be a promising anti-gNC1 compound. This result was confirmed experimentally, with rosmarinic acid showing an IC50 value of 10.1 µM. Theoretical and experimental findings elucidate the molecular-level mechanism of rosmarinic acid, pinpointing the key interactions stabilizing the compound-enzyme complex and the binding site. These results strongly support that rosmarinic acid is a promising scaffold for developing novel compounds with inhibitory activity against gNC1, which could serve as potential therapeutic agents to treat giardiasis.

18.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473855

ABSTRACT

In order to determine the behavior of the right ventricle, we have reviewed the existing literature in the area of cardiac remodeling, signal transduction pathways, subcellular mechanisms, ß-adrenoreceptor-adenylyl cyclase system and myocardial catecholamine content during the development of left ventricular failure due to myocardial infarction. The right ventricle exhibited adaptive cardiac hypertrophy due to increases in different signal transduction pathways involving the activation of protein kinase C, phospholipase C and protein kinase A systems by elevated levels of vasoactive hormones such as catecholamines and angiotensin II in the circulation at early and moderate stages of heart failure. An increase in the sarcoplasmic reticulum Ca2+ transport without any changes in myofibrillar Ca2+-stimulated ATPase was observed in the right ventricle at early and moderate stages of heart failure. On the other hand, the right ventricle showed maladaptive cardiac hypertrophy at the severe stages of heart failure due to myocardial infarction. The upregulation and downregulation of ß-adrenoreceptor-mediated signal transduction pathways were observed in the right ventricle at moderate and late stages of heart failure, respectively. The catalytic activity of adenylate cyclase, as well as the regulation of this enzyme by Gs proteins, were seen to be augmented in the hypertrophied right ventricle at early, moderate and severe stages of heart failure. Furthermore, catecholamine stores and catecholamine uptake in the right ventricle were also affected as a consequence of changes in the sympathetic nervous system at different stages of heart failure. It is suggested that the hypertrophied right ventricle may serve as a compensatory mechanism to the left ventricle during the development of early and moderate stages of heart failure.


Subject(s)
Heart Failure , Myocardial Infarction , Humans , Heart Ventricles/metabolism , Heart Failure/metabolism , Myocardial Infarction/metabolism , Cardiomegaly/metabolism , Myocardium/metabolism , Receptors, Adrenergic, beta/metabolism , Catecholamines/metabolism , GTP-Binding Proteins/metabolism , Adenylyl Cyclases/metabolism
19.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474167

ABSTRACT

Melatonin is a neuroendocrine hormone that regulates the circadian rhythm and many other physiological processes. Its functions are primarily exerted through two subtypes of human melatonin receptors, termed melatonin type-1 (MT1) and type-2 (MT2) receptors. Both MT1 and MT2 receptors are generally classified as Gi-coupled receptors owing to their well-recognized ability to inhibit cAMP accumulation in cells. However, it remains an enigma as to why melatonin stimulates cAMP production in a number of cell types that express the MT1 receptor. To address if MT1 can dually couple to Gs and Gi proteins, we employed a highly sensitive luminescent biosensor (GloSensorTM) to monitor the real-time changes in the intracellular cAMP level in intact live HEK293 cells that express MT1 and/or MT2. Our results demonstrate that the activation of MT1, but not MT2, leads to a robust enhancement on the forskolin-stimulated cAMP formation. In contrast, the activation of either MT1 or MT2 inhibited cAMP synthesis driven by the activation of the Gs-coupled ß2-adrenergic receptor, which is consistent with a typical Gi-mediated response. The co-expression of MT1 with Gs enabled melatonin itself to stimulate cAMP production, indicating a productive coupling between MT1 and Gs. The possible existence of a MT1-Gs complex was supported through molecular modeling as the predicted complex exhibited structural and thermodynamic characteristics that are comparable to that of MT1-Gi. Taken together, our data reveal that MT1, but not MT2, can dually couple to Gs and Gi proteins, thereby enabling the bi-directional regulation of adenylyl cyclase to differentially modulate cAMP levels in cells that express different complements of MT1, MT2, and G proteins.


Subject(s)
Melatonin , Humans , Receptors, Melatonin/metabolism , Melatonin/pharmacology , HEK293 Cells , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , GTP-Binding Proteins/metabolism
20.
Reprod Biol Endocrinol ; 22(1): 31, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509558

ABSTRACT

BACKGROUND: The incidence of male reproductive dysfunction is increasing annually, and many studies have shown that obesity can cause severe harm to male reproductive function. The mechanism of male reproductive dysfunction caused by obesity is unclear, and there is no ideal treatment. Identification of effective therapeutic drugs and elucidation of the molecular mechanism involved in male reproductive health are meaningful. In this study, we investigated the effects of the GLP-1 receptor agonist liraglutide on sex hormones, semen quality, and testicular AC3/cAMP/PKA levels in high-fat-diet-induced obese mice. METHODS: Obese mice and their lean littermates were treated with liraglutide or saline for 12 weeks. Body weight was measured weekly. Fasting blood glucose (FBG) was measured using a blood glucose test strip. The serum levels of insulin (INS), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), free testosterone (F-TESTO), estradiol (E2), and sex hormone binding globulin (SHBG) were detected using ELISA. The sperm morphology and sperm count were observed after Pap staining. The mRNA and protein expression levels of testicular GLP-1R and AC3 were measured by RT-qPCR and Western blot, respectively. Testicular cAMP levels and PKA activity were detected using ELISA. RESULTS: Liraglutide treatment can decrease body weight, FBG, INS, HOMA-IR, E2 and SHBG levels; increase LH, FSH, T, and F-TESTO levels; increase sperm count; decrease the sperm abnormality rate; and increase GLP-1R and AC3 expression levels and cAMP levels and PKA activity in testicular tissue. CONCLUSIONS: Liraglutide can improve the sex hormone levels and semen quality of obese male mice. In addition to its weight loss effect, liraglutide can improve the reproductive function of obese male mice, which may also be related to the upregulation of AC3/cAMP/PKA pathway in the testis. This work lays the groundwork for future clinical studies.


Subject(s)
Liraglutide , Testis , Mice , Animals , Male , Testis/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Mice, Obese , Semen Analysis , Blood Glucose , Semen/metabolism , Body Weight , Obesity , Gonadal Steroid Hormones , Luteinizing Hormone , Testosterone , Follicle Stimulating Hormone , Insulin
SELECTION OF CITATIONS
SEARCH DETAIL
...