Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
1.
Small ; : e2406803, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375961

ABSTRACT

The poor ability of covalent organic frameworks (COFs) based adsorbents at low relative humidity (RH) conditions limits their applications for air-water harvesting in arid environments. In the present work, the sulfonated COFs (DAAQ-TFP-SO3H@LiCl) composites are prepared through the functionalization of sulfonic acid and LiCl composite to improve its hydrophilicity. TheDAAQ-TFP-SO3H@LiCl composites exhibit a good adsorption performance, outperforming many other COF adsorbents developed so far. It can absorb 0.22 ± 0.005 g g-1 and 1.01 ± 0.027 g g-1 of water at room temperature under 20% RH and 90% RH, respectively while demonstrating good cyclic stability. Compared with the isotherm of the DAAQ-TFP, the introduction of the sulfonic acid group shifts the inflection point of the water isotherm toward low humidity, indicating that the sulfonic acid group effectively expends the working humidity range of the adsorbent and enables the effective water adsorption in an arid environment. Furthermore, the DAAQ-TFP-SO3H@LiCl composites display rapid kinetics during both the adsorption and desorption processes, reaching saturation within 60 min in the equilibrium adsorption test and completing desorption within 12 min at 50 °C. This innovative approach provides a new method for designing adsorbent materials with low energy input requirements and high daily water consumption capabilities.

2.
Molecules ; 29(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39202828

ABSTRACT

The interfacial dilational rheology of silica nanoparticles (NPs) directly reflects the relationship between surface structure and interfacial behaviors in NPs, which has attracted significant attention in various industrial fields. In this work, modified silica nanoparticles (MNPs) with various alkyl chain lengths were synthesized and systematically characterized using Fourier transform infrared spectra, Zeta potential, and water contact angle measurements. It was found that the MNPs were successfully fabricated with similar degrees of modification. Subsequently, the interfacial behaviors of the MNPs in an n-octane/water system were investigated through interfacial dilational rheological experiments. The length of the modified alkyl chain dominated the hydrophilic-lipophile balance and the interfacial activity of the MNPs, evaluated by the equilibrium interfacial tension (IFT) variation and dilational elasticity modulus. In the large amplitude compression experiment, the balance between the electrostatic repulsion and interfacial activity in the MNPs was responsible for their ordered interfacial arrangement. The MNPs with the hexyl alkyl chain (M6C) presented the optimal amphipathy and could partly overcome the repulsion, causing a dramatic change in surface pressure. This was further confirmed by the variations in IFT and dilational elasticity during the compression path. The study provides novel insights into the interfacial rheology and interactions of functionally modified NPs.

3.
Adv Mater ; 36(32): e2404694, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857532

ABSTRACT

Due to the broadband response and low selectivity of external light, negative photoconductivity (NPC) effect holds great potential applications in photoelectric devices. Herein, different photoresponsive carbon nanodots (CDs) are prepared from diverse precursors and the broadband response from the NPC CDs are utilized to achieve the optoelectronic logic gates and optical imaging for the first time. In detail, the mcu-CDs which are prepared by the microwave-assisted polymerization of citric acid and urea possess the large specific surface area and abundant hydrophilic groups as sites for the adsorption of H2O molecules and thereby present a high conductivity in dark. Meanwhile, the low affinity of mcu-CDs to H2O molecules permits the light-induced desorption of H2O molecules by heat effect and thus endow the mcu-CDs with a low conductivity under illumination. The easy absorption and desorption of H2O molecules contribute to the extraordinary NPC of mcu-CDs. With the broadband NPC response in CDs, the optoelectronic logic gates and flexible optical imaging system are established, achieving the applications of "NOR" or "NAND" logic operations and high-quality optical images. These findings unveil the unique optoelectronic properties of CDs, and have the potential to advance the applications of CDs in optoelectronic devices.

4.
Sci Total Environ ; 943: 173789, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38851340

ABSTRACT

Nanoplastics (<1 µm) can serve as a transport vector of environmental pollutants (e.g., heavy metals) and change their toxicities and bioavailabilities. Up to date the behaviors of adsorption and desorption heavy metals on/off nanoplastics are largely unknown. Herein, polymeric membrane potentiometric ion sensors are proposed for in-situ assessment of the real-time kinetics of heavy metal adsorption and desorption on/off nanoplastics. Results show that nanoplastics can adsorb and release heavy metals in a fast manner, indicating their superior ability in transferring heavy metals. The adsorption behaviors are closely related to the characteristics of nanoplastics and background electrolytes. Particle aggregation and increases in salinity and acidity suppress the adsorption of heavy metals on nanoplastics. The desorption efficiencies of different heavy metals are Pb2+ (31 %) < Cu2+ (40 %) < Cd2+ (97 %). Our proposed method is applicable for the detection of the plastic pollutants with size <100 nm and of the samples with high salinities (e.g., seawater). This work would provide new insights into the assessment of environmental risks posed by nanoplastics and heavy metals.

5.
Chemistry ; 30(35): e202400587, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38639718

ABSTRACT

A novel calcium-based metal-organic framework (CaMOF@LSB) was designed and synthesized, exhibiting dual functionality for both selective detection and removal of Cu2+ ions from aqueous solutions. The framework's stability, including solvent and pH variations, was established with notable thermal resilience. Colorimetric Cu2+ detection (≥5 ppm) with a high capture capacity of 484.2 mg g-1 by CaMOF@LSB places this material among the few that ensure efficient colorimetric detection and high removal capabilities of Cu2+ ions. Batch adsorption experiments revealed pH-dependent behavior and competitive interactions. Langmuir and pseudo-second-order kinetics models aptly described adsorption isotherms and kinetics, respectively. Thermodynamic assessments confirmed spontaneous and endothermic adsorption. Mechanistically, nanoparticle deposition contributes to the Cu2+ uptake. CaMOF@LSB also exhibited one of the best removal behaviour of Cu2+ by means of oxide formation on the surface. Regeneration of CaMOF@LSB was achieved by simple sonication in 0.1 M aqueous NaOH solution. The recyclability was also tested up to 5 cycles, and it exhibited a small decrease in adsorption capacity observed across the cycles. This research presents a promising avenue for addressing heavy metal pollution using metal-organic frameworks, thereby offering potential applications in water purification and environmental pollution monitoring and remediation.

6.
Materials (Basel) ; 17(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38591579

ABSTRACT

Adsorptive atmospheric water harvesting systems (AWHs) represent an innovative approach to collecting freshwater resources from the atmosphere, with a hygroscopic agent at their core. This method has garnered significant attention due to its broad applicability, strong recycling capacity, and sustainability. It is being positioned as a key technology to address global freshwater scarcity. The core agent's hygroscopic properties play a crucial role in determining the performance of the AWHs. This article provides a comprehensive review of the latest advancements in hygroscopic agents, including their adsorption mechanisms and classifications. This study of hygroscopic agents analyzes the performance and characteristics of relevant porous material composite polymer composites and plant composites. It also evaluates the design and preparation of these materials. Aiming at the problems of low moisture adsorption and desorption difficulty of the hygroscopic agent, the factors affecting the water vapor adsorption performance and the method of enhancing the hygroscopic performance of the material are summarized and put forward. For the effect of hygroscopic agents on the volume of water catchment devices, the difference in density before and after hygroscopicity is proposed as part of the evaluation criteria. Moisture absorption per unit volume is added as a performance evaluation criterion to assess the effect of hygroscopic agents on the volume of water collection equipment. The article identifies areas that require further research and development for moisture absorbers, exploring their potential applications in other fields and anticipating the future development direction and opportunities of moisture-absorbing materials. The goal is to promote the early realization of adsorptive atmospheric water harvesting technology for large-scale industrial applications.

7.
Gels ; 10(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38534619

ABSTRACT

The aim of this work was to analyze and compare the adsorption and desorption processes of carbohydrates (glucose as a model molecule), polyphenols (gallic acid as a model molecule), and proteins (bovine serum albumin, BSA as a model molecule) on alginate microcapsules. The adsorption and desorption processes were described by mathematical models (pseudo-first-order, pseudo-second-order, and Weber-Morris intraparticle diffusion model for adsorption, and first-order, Korsmeyer-Peppas, and the Higuchi model for desorption) in order to determine the dominant mechanisms responsible for both processes. By comparing the values of adsorption rate (k2) and initial adsorption rate (h0) based on the pseudo-first-order model, the lowest values were recorded for BSA (k1 = 0.124 ± 0.030 min-1), followed by glucose (k1 = 0.203 ± 0.041 min-1), while the model-obtained values for gallic acid were not considered significant at p < 0.05. For glucose and gallic acid, the limiting step of the adsorption process is the chemical sorption of substances, and the rate of adsorption does not depend on the adsorbate concentration, but depends on the capacity of the hydrogel adsorbent. Based on the desorption rates determined by the Korsmeyer-Peppas model (k), the highest values were recorded for gallic acid (k = 3.66236 ± 0.20776 g beads/mg gallic acid per min), followed by glucose (k = 2.55760 ± 0.16960 g beads/mg glucose per min) and BSA (k = 0.78881 ± 0.11872 g beads/mg BSA per min). The desorption process from alginate hydrogel microcapsules is characterized by the pseudo Fickian diffusion mechanism.

8.
Chemosphere ; 350: 141067, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163463

ABSTRACT

Aged microplastics are ubiquitous in the aquatic environment, which inevitably accumulate metals, and then alter their migration. Whereas, the synergistic behavior and effect of microplastics and Hg(II) were rarely reported. In this context, the adsorptive behavior of Hg(II) by pristine/aged microplastics involving polystyrene, polyethylene, polylactic acid, and tire microplastics were investigated via kinetic (pseudo-first and second-order dynamics, the internal diffusion model), Langmuir, and Freundlich isothermal models; the adsorption and desorption behavior was also explored under different conditions. Microplastics aged by ozone exhibited a rougher surface attached with abundant oxygen-containing groups to enhance hydrophilicity and negative surface charge, those promoted adsorption capacity of 4-20 times increment compared with the pristine microplastics. The process (except for aged tire microplastics) was dominated by a monolayer chemical reaction, which was significantly impacted by pH, salinity, fulvic acid, and co-existing ions. Furthermore, the adsorbed Hg(II) could be effectively eluted in 0.04% HCl, simulated gastric liquids, and seawater with a maximum desorption amount of 23.26 mg/g. An artificial neural network model was used to predict the performance of microplastics in complex media and accurately capture the main influencing factors and their contributions. This finding revealed that aged microplastics had the affinity to trap Hg(II) from freshwater, whereafter it released the Hg(II) once transported into the acidic medium, the organism's gastrointestinal system, or the estuary area. These indicated that aged microplastics could be the sink or the source of Hg(II) depending on the surrounding environment, meaning that aged microplastics could be the vital carrier to Hg(II).


Subject(s)
Deep Learning , Mercury , Water Pollutants, Chemical , Microplastics , Plastics , Adsorption , Water Pollutants, Chemical/analysis
9.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569435

ABSTRACT

Over the past two decades, there has been increasing interest in the use of low-cost and effective sorbents in water treatment. Hybrid chitosan sorbents are potential materials for the adsorptive removal of phosphorus, which occurs in natural waters mainly in the form of orthophosphate(V). Even though there are numerous publications on this topic, the use of such sorbents in industrial water treatment and purification is limited and controversial. However, due to the explosive human population growth, the ever-increasing global demand for food has contributed to the consumption of phosphorus compounds and other biogenic elements (such as nitrogen, potassium, or sodium) in plant cultivation and animal husbandry. Therefore, the recovery and reuse of phosphorus compounds is an important issue to investigate for the development and maintenance of a circular economy. This paper characterizes the problem of the presence of excess phosphorus in water reservoirs and presents methods for the adsorptive removal of phosphate(V) from water matrices using chitosan composites. Additionally, we compare the impact of modifications, structure, and form of chitosan composites on the efficiency of phosphate ion removal and adsorption capacity. The state of knowledge regarding the mechanism of adsorption is detailed, and the results of research on the desorption of phosphates are described.


Subject(s)
Chitosan , Water Pollutants, Chemical , Water Purification , Humans , Phosphates , Chitosan/chemistry , Wastewater , Phosphorus , Adsorption , Water Purification/methods , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Kinetics
10.
Ecotoxicol Environ Saf ; 258: 114955, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37121076

ABSTRACT

The effect of mean flow velocity on phosphorus (P) partitioning between water and sediment has received much attention in recent decades. However, the impact of turbulence on the efficiency and capability of sediment adsorbing and desorbing dissolved inorganic phosphorus (DIP) is still unclear. A series of contrasting experiments on the sediment sorption and desorption of DIP with the flow turbulence kinetic energy (TKE) ranging from 1.95 to 2.93 pa have been conducted. It was found that the adsorbed P onto unit mass of sediment increases with the increase in TKE. It is because an increase in TKE results in a rise in the effective adsorption capacity of sediment (bm) by 20-30% during the adsorption process. The bm shows the maximum rise from 0.18 to 0.25 mg/g when TKE increases from 1.95 to 2.93 pa with a fixed sediment concentration of 0.5 g/L. To account for the direct effect of TKE on P adsorption, the Langmuir model is modified by introducing a newly defined coefficient (fA-TKE). The fA-TKE shows a good linear relationship with TKE. Comparison between the modified model and the classic model shows that the amount of adsorbed P could be overestimated by over 50% if the direct effect of turbulence intensity is ignored. The experimental data show that the increase in TKE also enhances the desorption process, with the degree of P desorption (Ddes) increased by 44%. The relation between Ddes and TKE can be well represented using a logarithmic function to quantify the direct effect of turbulence intensity on desorption of P.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Geologic Sediments , Adsorption , Water , Water Pollutants, Chemical/analysis
11.
Sci Total Environ ; 868: 161694, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36690114

ABSTRACT

Sediment phosphorus (P) release in shallow eutrophic lakes is a major contributor of P to algal blooms. This research proposes an innovative notion in which the P diffusive fluxes at the sediment-water interface (SWI) of shallow lakes are controlled by the P adsorption-desorption equilibria, with pH as the major regulating factor. The P equilibrium concentration (Ce) at SWI was conceptualized into a dependent variable responding to two factor-dependent variables, the algae/cyanobacteria-available P pools of the SWI and the pH in the water column, resulting in the empirical equation Ce(pH) = Cm/[1 + e-k(pH-pH1/2)]. Cm is the maximum P equilibrium concentration when all algae/cyanobacteria-available P in sediments is released, and the value relies on the thickness of the oxygen and pH transition layer that contains iron/aluminium (hydr)oxide-adsorbed P. The parameters in the empirical equation are accessible from P desorption tests conducted on a set of sediment samples with different P pollution levels. This research provides a quantitative approach for determining the sediment P criteria of shallow lakes, with sediment iron/aluminium (hydr)oxide-adsorbed P and water depth as two main indicators with ecological implications. A decrease in water depth would proportionally increase the P concentration at a similar sediment P releasing flux and increase algae/cyanobacteria-available P pools that are ready to equilibrate with the water column by increasing hydrodynamic disturbance of the SWI.

12.
J Hazard Mater ; 443(Pt A): 130215, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36308927

ABSTRACT

Prussian blue (PB) analog (NiFe, CoFe, FeFe, and commercial(cPB)) decorated carbon nanofiber (CNF) electrodes were synthesized by the drop casting method in this study to investigate the interaction between PB and CNF for the electrochemical adsorption (EA) and electrochemical desorption (ED) of Cs ion (Cs+). The adhesion of PB on the electrode and the EA and ED of Cs+ were substantially higher when the CNF electrode was used, compared with the fluorine-doped tin oxide supporting electrode. The use of CNF led to the smooth occurrence of EA and ED of Cs+, where the reported efficiency was: NiFe > FeFe > cPB. The EA and ED of Cs+ on NiFe decorated CNF (C-NiFe) were strongly affected by the loading amount of NiFe. Although the strongest EA capacity was identified when 1 mg of NiFe was used, it decreased as the loading amount of NiFe increased. Thus, the EA of Cs+ occurs under the reduction of NiFe with some Fe(III) reduced to Fe(II) of NiFe, thus inducing more adsorption of Cs+. Overall, we confirmed that the C-NiFe electrode with appropriate thickness of NiFe layer is potentially an excellent adsorbent for Cs removal.


Subject(s)
Carbon , Nanofibers , Adsorption , Ferric Compounds , Electrodes
13.
Chemosphere ; 311(Pt 1): 137032, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36330975

ABSTRACT

Microplastics widely exist in diverse matrices to become important hosts of pollutants. Little information regarding adsorption of emerging contaminants on coastal saline soils influenced by co-existing microplastics is available. Thus, the adsorption behaviors of nonylphenol (NP) on coastal saline soil influenced by microplastics were discussed. Polyvinyl chloride (PVC, 4.7 mm), polyethylene (4.85 mm), and polypropylene (4.51 mm) with addition dose of 10% were used to discuss the effect of microplastic type on adsorption of NP by coastal saline soil while PVC samples with size of 4.7 mm and 0.11 mm were used to explore the effect of microplastic size on NP adsorption. The NP adsorption capacity of the saline soil containing 10% of PVC (4.7 mm) was twice that of soil without PVC. Smaller-size PVC (0.11 mm) with addition amount of 10% enhanced the NP adsorption capacity of the coastal saline soil by 117% to reach 8.91 µg g-1. The desorption capacity of NP on saline soil decreased from 40% to 30% of total adsorption capacity with co-existing PVC. Adsorption/desorption kinetics of NP on coastal saline soil with PVC microplastics could be well explained by pseudo second order model while Freundlich model could better fit the isotherm data of NP adsorption/desorption to show possible occurrence of the multiple-layer adsorption. This study will provide new information regarding the environmental behaviors of typical emerging contaminants on coastal saline soil containing microplastics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Adsorption , Soil , Plastics , Polyvinyl Chloride , Polyethylene , Water Pollutants, Chemical/analysis
14.
Chemosphere ; 313: 137617, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563727

ABSTRACT

Graphene-based membranes (GBM) will migrate in the soil and enter the groundwater system or plant roots, which will eventually pose potential risks to human beings. The migration mechanism of GBM depends on the interface behavior of complex soil components. Herein, we use molecular dynamics (MD) simulations to probe the interface behavior between GBM and three type minerals (quartz, calcite and kaolinite). Based on the investigation of binding energy, maximum pulling force and barrier energy, the order of the difficulty of GBM adsorption and desorption on the three minerals from small to large is roughly: quartz, calcite and kaolinite respectively. The graphene-oxide (GO), improves the binding energy and energy barrier, making GBM difficult to migrate in soil. Remarkably, a larger GBM sheet and high velocity external load improve GBM migration in soil to a certain extent. These investigations give the dynamic information on the GBM/mineral interaction and provide nanoscale insights into the migration mechanisms of GBM in soil.


Subject(s)
Graphite , Humans , Graphite/chemistry , Soil/chemistry , Kaolin/chemistry , Quartz , Minerals/chemistry , Calcium Carbonate/chemistry , Adsorption
15.
Sci Total Environ ; 863: 160866, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36526173

ABSTRACT

As the application of biodegradable polymers has grown, so has the interest in exploring the environmental behaviors of biodegradable microplastics (MPs). In this study, we investigated the interaction of oxytetracycline (OTC) with poly(butylene adipate-co-terephthalate) (PBAT) MPs after biodegradation, and explored the effect of the coexisting Cu(II) on OTC adsorption and desorption processes. The maximum adsorption amounts of virgin PBAT, biofilm PBAT, and degraded PBAT reached 692.05 µg·g-1, 1396.21 µg·g-1, and 1869.93 µg·g-1, respectively, and the presence of Cu(II) increased the OTC adsorption capacities by 431.16 %, 165.99 %, and 132.94 %, respectively. The enhanced adsorption capacities were attributed to the formation of PBAT-Cu-OTC complexes. The remarkable desorption hysteresis of OTC was observed on the degraded PBAT but not on the biofilm PBAT when Cu(II) was present, due to the complexation between Cu(II) and biofilms. The effect of Cu(II) varied depending on the MP physiochemical properties (e.g., surface areas, zeta potentials, and functional groups) and the environmental factors (e.g., the solution pH and coexisting dissolved organic matter). Fourier transform infrared spectroscopy (FTIR) coupled with X-ray photoelectron spectroscopy (XPS) identified the Cu(II) bridging effect, and various interaction forces between PBAT and OTC, including hydrogen-bonding, π-π, cation-π, and electrostatic interactions.


Subject(s)
Microplastics , Oxytetracycline , Plastics , Polyesters/chemistry , Dissolved Organic Matter , Water , Adsorption , Adipates , Hydrogen-Ion Concentration
16.
Front Microbiol ; 13: 1062399, 2022.
Article in English | MEDLINE | ID: mdl-36504820

ABSTRACT

The extended concept of one health integrates biological, geological, and chemical (bio-geo-chemical) components. Anthropogenic antibiotics are constantly and increasingly released into the soil and water environments. The fate of these drugs in the thin Earth space ("critical zone") where the biosphere is placed determines the effect of antimicrobial agents on the microbiosphere, which can potentially alter the composition of the ecosystem and lead to the selection of antibiotic-resistant microorganisms including animal and human pathogens. However, soil and water environments are highly heterogeneous in their local composition; thus the permanence and activity of antibiotics. This is a case of "molecular ecology": antibiotic molecules are adsorbed and eventually inactivated by interacting with biotic and abiotic molecules that are present at different concentrations in different places. There are poorly explored aspects of the pharmacodynamics (PD, biological action) and pharmacokinetics (PK, rates of decay) of antibiotics in water and soil environments. In this review, we explore the various biotic and abiotic factors contributing to antibiotic detoxification in the environment. These factors range from spontaneous degradation to the detoxifying effects produced by clay minerals (forming geochemical platforms with degradative reactions influenced by light, metals, or pH), charcoal, natural organic matter (including cellulose and chitin), biodegradation by bacterial populations and complex bacterial consortia (including "bacterial subsistence"; in other words, microbes taking antibiotics as nutrients), by planktonic microalgae, fungi, plant removal and degradation, or sequestration by living and dead cells (necrobiome detoxification). Many of these processes occur in particulated material where bacteria from various origins (microbiota coalescence) might also attach (microbiotic particles), thereby determining the antibiotic environmental PK/PD and influencing the local selection of antibiotic resistant bacteria. The exploration of this complex field requires a multidisciplinary effort in developing the molecular ecology of antibiotics, but could result in a much more precise determination of the one health hazards of antibiotic production and release.

17.
Biosensors (Basel) ; 12(11)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36421166

ABSTRACT

Observing interfacial molecular adsorption and desorption dynamics in a label-free manner is fundamentally important for understanding spatiotemporal transports of matter and energy across interfaces. Here, we report a label-free real-time sensing technique utilizing strong optical second harmonic generation of monolayer 2D semiconductors. BSA molecule adsorption and desorption dynamics on the surface of monolayer MoS2 in liquid environments have been all-optically observed through time-resolved second harmonic generation (SHG) measurements. The proposed SHG detection scheme is not only interface specific but also expected to be widely applicable, which, in principle, undertakes a nanometer-scale spatial resolution across interfaces.


Subject(s)
Second Harmonic Generation Microscopy , Adsorption
18.
Bioresour Technol ; 365: 128133, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36252763

ABSTRACT

In this study, adsorption strategy using diethylenetriamine-modified cotton fiber (DETA-cotton) was investigated to control the target cells in aqueous phase. Adsorptive removal of M. aeruginosa using the DETA-cotton showed decrease in cell concentration from (100 ± 4.0) × 104 cells/mL to (32.1 ± 0.7) × 104 cells/mL in 24 h, and the concentration of microcystin did not increase during the removal process. Also, an increase in the amine groups on the surface was confirmed through the surface characterization by FT-IR and XPS. Desorption process was performed to analyze total lipid and fatty acid contents for potential use as bio-energy resources. About 90 % of the adsorbed cells were recovered through desorption, and the lipid content and composition were more suitable for use as biodiesel raw materials. Our adsorption-based approach might provide feasible solution not only to counteract environmental issue HABs but also to recover energy-resources from the harmful cyanobacterial species.


Subject(s)
Cyanobacteria , Microcystis , Adsorption , Harmful Algal Bloom , Spectroscopy, Fourier Transform Infrared , DEET , Microcystins , Lipids
19.
Nanomaterials (Basel) ; 12(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35889552

ABSTRACT

Olive mill waste water (OMWW), a by-product created during the processing of olive oil, contains high amounts of polyphenolic compounds. If put to further use, these polyphenolic compounds could be a valuable resource for the speciality chemical industry. In order to achieve this, isolation of the polyphenolic compounds from OMWW is needed. Several techniques for this process already exist, the most widely used of which is adsorption beds. This research describes new ways of collecting polyphenolic compounds by using unmodified iron oxide (Fe3O4) particles and Fe3O4 modified with silica gel (Fe3O4@C18), citric acid (Fe3O4@CA), and sodium dodecyl sulphate (Fe3O4@SDS). This approach is superior to adsorption beds since it can be used in a continuous system without clogging, while the nano-sized shapes create a high surface area for adsorption. The results of this study show that, if used in a loop system of several adsorption and desorption cycles, (un)modified Fe3O4 has the potential to collect high concentrations of polyphenolic compounds. A combination of different modifications of the Fe3O4 particles is also beneficial, as these combinations can be tailored to allow for the removal of specific polyphenolic compounds.

20.
J Colloid Interface Sci ; 622: 431-442, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35525146

ABSTRACT

Understanding the characteristics of pyrite-phase transition metal sulfides for the adsorption and desorption of gaseous elemental mercury (Hg0) is of vital significance for their applications in gaseous Hg0 capture. In this study, the adsorption and desorption of gaseous Hg0 onto pyrite-phase transition metal sulfides (i.e., FeS2/TiO2, CoS2/TiO2, and NiS2/TiO2) were compared, and the mechanisms of their differences were revealed by the kinetic analysis. The Co/NiS and SS bonds in dumbbell-shaped CoS2 and NiS2 were not entirely broken after oxidizing physically adsorbed Hg0, whereas the FeS and SS bonds in dumbbell-shaped FeS2 were. Thus, the activation energies of CoS2/TiO2 and NiS2/TiO2 for oxidizing physically adsorbed Hg0 were smaller than that of FeS2/TiO2, causing the stronger abilities of CoS2/TiO2 and NiS2/TiO2 to oxidize physically adsorbed Hg0 than that of FeS2/TiO2. However, the bonding strengths of Hg-S in HgS adsorbed on dumbbell-shaped CoS2 and NiS2 were relatively weaker because of the sharing of S2- in HgS with S- and Co2+/Ni2+, causing the decreases in heat stabilities of HgS adsorbed on CoS2/TiO2 and NiS2/TiO2. Therefore, HgS adsorbed on CoS2/TiO2 and NiS2/TiO2 can be voluntarily decomposed to release gaseous Hg0, which should be combined with FeS2/TiO2 for the emergency treatment of liquid Hg0 leakage indoors.


Subject(s)
Air Pollution, Indoor , Mercury , Adsorption , Air Pollution, Indoor/analysis , Gases/analysis , Iron , Kinetics , Mercury/analysis , Metals , Sulfides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL