Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.816
Filter
2.
Int J Health Geogr ; 23(1): 18, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972982

ABSTRACT

BACKGROUND: The spread of mosquito-transmitted diseases such as dengue is a major public health issue worldwide. The Aedes aegypti mosquito, a primary vector for dengue, thrives in urban environments and breeds mainly in artificial or natural water containers. While the relationship between urban landscapes and potential breeding sites remains poorly understood, such a knowledge could help mitigate the risks associated with these diseases. This study aimed to analyze the relationships between urban landscape characteristics and potential breeding site abundance and type in cities of French Guiana (South America), and to evaluate the potential of such variables to be used in predictive models. METHODS: We use Multifactorial Analysis to explore the relationship between urban landscape characteristics derived from very high resolution satellite imagery, and potential breeding sites recorded from in-situ surveys. We then applied Random Forest models with different sets of urban variables to predict the number of potential breeding sites where entomological data are not available. RESULTS: Landscape analyses applied to satellite images showed that urban types can be clearly identified using texture indices. The Multiple Factor Analysis helped identify variables related to the distribution of potential breeding sites, such as buildings class area, landscape shape index, building number, and the first component of texture indices. Models predicting the number of potential breeding sites using the entire dataset provided an R² of 0.90, possibly influenced by overfitting, but allowing the prediction over all the study sites. Predictions of potential breeding sites varied highly depending on their type, with better results on breeding sites types commonly found in urban landscapes, such as containers of less than 200 L, large volumes and barrels. The study also outlined the limitation offered by the entomological data, whose sampling was not specifically designed for this study. Model outputs could be used as input to a mosquito dynamics model when no accurate field data are available. CONCLUSION: This study offers a first use of routinely collected data on potential breeding sites in a research study. It highlights the potential benefits of including satellite-based characterizations of the urban environment to improve vector control strategies.


Subject(s)
Aedes , Cities , Satellite Imagery , Animals , Satellite Imagery/methods , Mosquito Vectors , French Guiana/epidemiology , Dengue/epidemiology , Dengue/transmission , Dengue/prevention & control , Humans , Breeding/methods
3.
Risk Anal ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987233

ABSTRACT

Dengue fever (DF) is a pervasive public health concern in tropical climates, with densely populated regions, such as India, disproportionately affected. Addressing this issue requires a multifaceted understanding of the environmental and sociocultural factors that contribute to the risk of dengue infection. This study aimed to identify high-risk zones for DF in Jaipur, Rajasthan, India, by integrating physical, demographic, and epidemiological data in a comprehensive risk analysis framework. We investigated environmental variables, such as soil type and plant cover, to characterize the potential habitats of Aedes aegypti, the primary dengue vector. Concurrently, demographic metrics were evaluated to assess the population's susceptibility to dengue outbreaks. High-risk areas were systematically identified through a comparative analysis that integrated population density and incidence rates per ward. The results revealed a significant correlation between high population density and an increased risk of dengue, predominantly facilitated by vertical transmission. Spatially, these high-risk zones are concentrated in the northern and southern sectors of Jaipur, with the northern and southwestern wards exhibiting the most acute risk profiles. This study underscores the importance of targeted public health interventions and vaccination campaigns in vulnerable areas. It further lays the groundwork for future research to evaluate the effectiveness of such interventions, thereby contributing to the development of robust evidence-based strategies for dengue risk mitigation.

5.
Pest Manag Sci ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38993039

ABSTRACT

BACKGROUND: This study investigated the behavioral responses and toxicity of three basic amines: 1-methylpiperazine, 1-methylpyrrolidine, and triethylamine (TEA), compounds suggested previously to be anosmic in vapor exposures to caged mosquitoes. RESULTS: These compounds showed repellency of Aedes aegypti mosquitoes, followed by flightlessness, knockdown, and paralysis, all increasing with exposure time and dosage. Electrophysiological experiments showed a blocking effect on nerve discharge of the Drosophila melanogaster larval central nervous system (CNS) with little evidence of hyperexcitation. Blockage of voltage-gated (Kv2) potassium channel currents under patch clamp occurred at similar concentrations. Involvement of K+ channels in the action of basic amines was supported by behavior and CNS recordings of a Shaker Kv1 mutant exposed to TEA, where instead of blockage, a hyperexcitation of nerve firing was observed. Experiments on cockroach leg mechanoreceptors demonstrated neuronal excitation and on mosquito antennae strong electroantennogram (EAG) signals with an augmentation of blank air responses after a single puff of basic amine. CONCLUSIONS: The neurophysiological effects of basic amines are consistent with K+ channel block, whereas the antennal EAG response was not obviously associated with anosmia. The low-dose effects of basic amines appear to be repellency and bradykinesia. Overall, the findings provide key insights into the mechanisms underlying the biological activity of basic amines. © 2024 Society of Chemical Industry.

6.
J Insect Physiol ; 157: 104674, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997103

ABSTRACT

Wolbachia, an endosymbiotic bacterium, relies on nutrients from its host to complete its life cycle. The presence of Wolbachia strain wAlbB in the mosquito Aedes aegypti during egg or larval stages affects the host's development, leading to the absence of developed and visible ovaries in adult mosquito females. In this study, we investigated the impacts of egg quiescence and Wolbachia infection on lipid profiles of adult Ae. aegypti females, and discerned the role of ovaries in lipid synthesis in the reproductive process. The lipidomes of Wolbachia infected and uninfected female individuals at various developmental stages were quantitatively analyzed by LC-MS/MS. Lipidomic change patterns were systematically further investigated in wAlbB-infected fertile females and infertile females following blood feeding. Prolonged egg quiescence induced a shortage of acyl-carnitine (CAR) and potentially impacted some molecules of diacyl-phospholipid (diacyl-PL) and sphingolipid (SL) in young adult mosquitoes. After the first gonotrophic cycle, infertile females accumulated more CAR and lyso-phospholipid (lyso-PL) than fertile females. Then in the second gonotrophic cycle, the patterns of different lipid groups remained similar between fertile and infertile females. Only a small proportion of molecules of triglyceride (TG), phospholipid (lyso-PL and diacyl-PL) and ceramide (Cer) increased exclusively in fertile females from 0 h to 16 h post blood meal, suggesting that the generation or prescence of these lipids rely on ovaries. In addition, we found cardiolipins (CL) might be impacted by Wolbachia infection at the egg stage, and infected mosquitoes also showed distinct patterns between fertile and infertile females at their second gonotrophic cycle. Our study provides new insights into the long-term influence of Wolbachia on lipid profiles throughout various life stages of mosquitoes. Additionally, it suggests a role played by ovaries in lipid synthesis during mosquito reproduction.

7.
Article in English | MEDLINE | ID: mdl-38953876

ABSTRACT

Summary: Background. Papular Urticaria (PU) is a cutaneous hypersensitivity disorder triggered by hematophagous arthropod bites. Despite being a common condition, especially in tropical environments, many knowledge gaps are observed for this disease. The main objective of this study was to investigate the patterns of humoral immune response to mosquito antigens in children with PU and establish a correlation between this response and the severity of clinical symptoms. Methods. An analytical cross-sectional observational study was carried out. Clinical and sociodemographic data and children's blood samples were collected to measure the specific antibodies from: 1. A. aegypti salivary gland antigens; 2. A. aegypti whole body antigens (both produced in the laboratory of the Center for Health Sciences at the Federal University of Rio de Janeiro). A PU severity score based on clinical data is proposed to correlate disease severity with antibody reactivity signatures. Results. According to the clinical data, 58.9% of children received high severity scores. A significant statistical correlation was found between patients with high PU severity score and the development of symptoms before the age of two (p = 0.0326) and high IgG4 anti-salivary gland antigens concentration (p less than 0.05). Conclusion. It is suggested that PU severity in children is associated with a high concentration of IgG4 anti-salivary gland antigens from Aedes aegypti. Further studies are recommended to deepen the understanding of the mechanisms involved.

8.
Ecol Evol ; 14(7): e11670, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957696

ABSTRACT

Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.

9.
BMC Genomics ; 25(1): 697, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014352

ABSTRACT

BACKGROUND: Real-time quantitative PCR (RT-qPCR) is one of the most widely used gene expression analyses for validating RNA-seq data. This technique requires reference genes that are stable and highly expressed, at least across the different biological conditions present in the transcriptome. Reference and variable candidate gene selection is often neglected, leading to misinterpretation of the results. RESULTS: We developed a software named "Gene Selector for Validation" (GSV), which identifies the best reference and variable candidate genes for validation within a quantitative transcriptome. This tool also filters the candidate genes concerning the RT-qPCR assay detection limit. GSV was compared with other software using synthetic datasets and performed better, removing stable low-expression genes from the reference candidate list and creating the variable-expression validation list. GSV software was used on a real case, an Aedes aegypti transcriptome. The top GSV reference candidate genes were selected for RT-qPCR analysis, confirming that eiF1A and eiF3j were the most stable genes tested. The tool also confirmed that traditional mosquito reference genes were less stable in the analyzed samples, highlighting the possibility of inappropriate choices. A meta-transcriptome dataset with more than ninety thousand genes was also processed successfully. CONCLUSION: The GSV tool is a time and cost-effective tool that can be used to select reference and validation candidate genes from the biological conditions present in transcriptomic data.


Subject(s)
Real-Time Polymerase Chain Reaction , Reference Standards , Software , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Animals , RNA-Seq/methods , RNA-Seq/standards , Gene Expression Profiling/methods , Transcriptome
10.
bioRxiv ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38895389

ABSTRACT

Aedes transmitted arboviral human cases are increasing worldwide and spreading to new areas of the United States of America (USA). These diseases continue to re-emerge likely due to changes in vector ecology, urbanization, human migration, and larger range of climatic suitability. Recent shifts in landscape and weather variables are predicted to impact the habitat patterns of urban mosquitoes such as Aedes aegypti and Aedes albopictus. Miami (FL) is in the tropical zone and an established hotspot for arboviruses, while Charleston (SC) is in the humid subtropical zone and newly vulnerable. Although these coastal cities have distinct climates, both have hot summers. To understand mosquito infestation in both cities and potentiate our surveillance effort, we performed egg collections in the warmest season. We applied remote sensing with land-use cover and weather variation to identify mosquito infestation patterns. Our study found predominant occurrence of Ae. aegypti and, to a lesser extent, Ae. albopictus in both cities. We detected statistically significant positive and negative associations between entomological indicators and most weather variables in combined data from both cities. For all entomological indices, weekly wind speed and relative humidity were significantly positively associated, while precipitation and maximum temperature were significantly negatively associated. Aedes egg abundance was significantly positively associated with open land in Charleston but was negatively associated with vegetation cover in combined data. There is a clear need for further observational studies to determine the impact of climate change on Ae. aegypti and Ae. albopictus infestation in the Southeastern region of the USA.

11.
Sci Rep ; 14(1): 13447, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862628

ABSTRACT

Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.


Subject(s)
Aedes , Genetic Variation , Insecticide Resistance , Insecticide Resistance/genetics , Animals , Aedes/genetics , Aedes/drug effects , Genomics/methods , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Insect Proteins/genetics , Whole Genome Sequencing/methods , DNA Copy Number Variations
12.
Parasit Vectors ; 17(1): 254, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863023

ABSTRACT

BACKGROUND: Aedes aegypti is the primary mosquito vector for several arboviruses, such as dengue, chikungunya and Zika viruses, which cause frequent outbreaks of human disease in tropical and subtropical regions. Control of these outbreaks relies on vector control, commonly in the form of insecticide sprays that target adult female mosquitoes. However, the spatial coverage and frequency of sprays needed to optimize effectiveness are unclear. In this study, we characterize the effect of ultra-low-volume (ULV) indoor spraying of pyrethroid insecticides on Ae. aegypti abundance within households. We also evaluate the effects of spray events during recent time periods or in neighboring households. Improved understanding of the duration and distance of the impact of a spray intervention on Ae. aegypti populations can inform vector control interventions, in addition to modeling efforts that contrast vector control strategies. METHODS: This project analyzes data from two large-scale experiments that involved six cycles of indoor pyrethroid spray applications in 2 years in the Amazonian city of Iquitos, Peru. We developed spatial multi-level models to disentangle the reduction in Ae. aegypti abundance that resulted from (i) recent ULV treatment within households and (ii) ULV treatment of adjacent or nearby households. We compared fits of models across a range of candidate weighting schemes for the spray effect, based on different temporal and spatial decay functions to understand lagged ULV effects. RESULTS: Our results suggested that the reduction of Ae. aegypti in a household was mainly due to spray events occurring within the same household, with no additional effect of sprays that occurred in neighboring households. Effectiveness of a spray intervention should be measured based on time since the most recent spray event, as we found no cumulative effect of sequential sprays. Based on our model, we estimated the spray effect is reduced by 50% approximately 28 days after the spray event. CONCLUSIONS: The reduction of Ae. aegypti in a household was mainly determined by the number of days since the last spray intervention in that same household, highlighting the importance of spray coverage in high-risk areas with a spray frequency determined by local viral transmission dynamics.


Subject(s)
Aedes , Family Characteristics , Insecticides , Mosquito Control , Mosquito Vectors , Pyrethrins , Spatio-Temporal Analysis , Animals , Aedes/drug effects , Insecticides/pharmacology , Insecticides/administration & dosage , Mosquito Control/methods , Mosquito Vectors/drug effects , Pyrethrins/pharmacology , Female , Peru , Humans , Population Density , Dengue/prevention & control , Dengue/transmission
13.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893531

ABSTRACT

In this study, the chemical composition, repellent, and oviposition deterrent effects of five plant essential oils (EOs) extracted from Lantana camara (Verbenaceae), Schinus terebinthifolia (Anacardiaceae), Callistemon viminalis (Myrtaceae), Helichrysum odoratissimum (Asteraceae), and Hyptis suaveolens (Lamiaceae) were evaluated against Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus. When tested at 33.3 µg/cm2, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum were effective repellents against Ae. aegypti (89%, 91%, 90%, and 51% repellency, respectively), but they were less repellent against An. gambiae (66%, 86%, 59%, and 49% repellency, respectively). Interestingly, L. camara, S. terebinthifolia, C. viminalis, and H. odoratissimum exhibited 100% repellency against Cx. quinquefasciatus at 33.3 µg/cm2. In time-span bioassays performed at 333 µg/cm2, the EO of L. camara exhibited 100% repellence against Ae. aegypti and An. gambiae for up to 15 min and against Cx. quinquefasciatus for 75 min. The oviposition bioassays revealed that L. camara exhibited the highest activity, showing 85%, 59%, and 89% oviposition deterrence against Ae. aegypti, An. gambiae, and Cx. quinquefasciatus, respectively. The major compounds of L. camara, S. terebinthifolia, and C. viminalis were trans-ß-caryophyllene (16.7%), α-pinene (15.5%), and 1,8-cineole (38.1%), respectively. In conclusion, the L. camara and S. terebinthifolia EOs have the potential to be natural mosquito repellents.


Subject(s)
Aedes , Insect Repellents , Oils, Volatile , Oviposition , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Insect Repellents/pharmacology , Insect Repellents/chemistry , Oviposition/drug effects , Aedes/drug effects , Culex/drug effects , Anopheles/drug effects , Anopheles/physiology , Culicidae/drug effects , Plant Oils/pharmacology , Plant Oils/chemistry , Lantana/chemistry , Anacardiaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Female
14.
Article in English | MEDLINE | ID: mdl-38914258

ABSTRACT

NaCCC2 transport proteins, including those from Drosophila melanogaster (Ncc83) and Aedes aegypti (aeCCC2), are an insect-specific clade with sequence similarity to Na+-K+-2Cl- cotransporters. Whereas the Na+-K+-2Cl- cotransporters and other cation-chloride cotransporters are electroneutral, recent work indicates that Ncc83 and aeCCC2 carry charge across membranes. Here, we further characterize the regulation and transport properties of Ncc83 and aeCCC2 expressed in Xenopus oocytes. In cation uptake experiments, Li+ was used as a tracer for Na+ and Rb+ was used as a tracer for K+. Li+ uptake of oocytes expressing either aeCCC2 or Ncc83 was greater than uptake in water-injected controls, activated by hypotonic swelling, and not inhibited by ouabain or ethyl cinnamate. Rb+ uptake of oocytes expressing either aeCCC2 or Ncc83 was not different than water injected controls. In oocytes expressing either aeCCC2 or Ncc83, Li+ uptake plateaued with increasing Li+ concentrations, with apparent Km values in the range of 10 to 20 mM. Following exposure to ouabain, intracellular [Na+] was greater in oocytes expressing aeCCC2 than in controls. Elevating intracellular cAMP (via 8-bromo-cAMP) in Ncc83 oocytes significantly stimulated both Li+ uptake and membrane conductances. Elevating intracellular cAMP in aeCCC2 oocytes did not affect Li+ uptake, but stimulated membrane conductances. Overall, these results confirm that the NaCCC2s resemble other cation-chloride cotransporters in their regulation and some transport properties. However, unlike other cation-chloride cotransporters, they carry charge across membranes.

15.
Insects ; 15(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38921108

ABSTRACT

The mosquito Aedes aegypti is distributed worldwide and is recognized as the primary vector for dengue in numerous countries. To investigate whether the fitness cost of a single DENV-1 isolate varies among populations, we selected four Ae. aegypti populations from distinct localities: Australia (AUS), Brazil (BRA), Pakistan (PAK), and Peru (PER). Utilizing simple methodologies, we concurrently assessed survival rates and fecundity. Overall, DENV-1 infection led to a significant decrease in mosquito survival rates, with the exception of the PER population. Furthermore, infected Ae. aegypti from PAK, the population with the lowest infection rate among those tested, exhibited a noteworthy reduction in egg laying. These findings collectively suggest that local mosquito-virus adaptations may influence dengue transmission in endemic settings.

16.
Insects ; 15(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38921116

ABSTRACT

The study assessed the trapping efficacy of locally modified (1) Gravid Aedes Trap (GAT) lined with insecticide-treated net (ITN) as a killing agent and (2) Autocidal Gravid Ovitrap (AGO) with sticky board in the semi-field system (SFS) and field setting. Fully balanced Latin square experiments were conducted to compare GAT lined with ITN vs. AGO, both with either yeast or grass infusion. Biogent-Sentinel (BGS) with BG-Lure and no CO2 was used as a standard trap for Aedes mosquitoes. In the SFS, GAT outperformed AGO in collecting both nulliparous (65% vs. 49%, OR = 2.22, [95% CI: 1.89-2.60], p < 0.001) and gravid mosquitoes (73% vs. 64%, OR = 1.67, [95% CI: 1.41-1.97], p < 0.001). Similar differences were observed in the field. Yeast and grass infusion did not significantly differ in trapping gravid mosquitoes (OR = 0.91, [95% CI: 0.77-1.07], p = 0.250). The use of ITN improved mosquito recapture from 11% to 70% in the SFS. The same trend was observed in the field. Yeast was chosen for further evaluation in the optimized GAT due to its convenience and bifenthrin net for its resistance management properties. Mosquito density was collected when using 4× GATs relative to BGS-captured gravid mosquitoes 64 vs. 58 (IRR = 0.82, [95% CI: 0.35-1.95], p = 0.658) and showed no density dependence. Deployment of multiple yeast-baited GAT lined with bifenthrin net is cost-effective (single GAT < $8) compared to other traps such as BGS ($160).

17.
Insects ; 15(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921167

ABSTRACT

iGABAR, a member of the Cys-loop ligand-gated ion channel superfamily, is a significant target of the insecticide ivermectin (IVM). GRD is the potential subunit of the insect iGABAR. However, little information about GRD in Ae. aegypti has been reported. In this study, we involved cloning and characterizing the iGABAR subunit GRD of Ae. aegypti (Ae-GRD). Sequence analysis indicated that Ae-GRD, as part of the cysteine-loop ligand-gated ion channel family, is similar to other insect GRD. RNA interference (RNAi) was employed to explore IVM resistance in Ae. aegypti, resulting in a significant reduction in Ae-GRD expression (p < 0.05), and the mortality of Ae. aegypti adults with Ae-GRD knockdown was significantly decreased after exposure to ivermectin. Bioinformatics prediction identified miR-71-5p as a potential regulator of Ae-GRD. In vitro, dual-luciferase reporter assays confirmed that Ae-GRD expression was regulated by miR-71-5p. Microinjection of miR-71-5p mimics upregulated miR-71-5p expression and downregulated Ae-GRD gene expression, reducing mortality by 34.52% following IVM treatment. Conversely, microinjection of a miR-71-5p inhibitor decreased miR-71-5p expression but did not affect the susceptibility to IVM despite increased Ae-GRD expression (p < 0.05). In conclusion, Ae-GRD, as one of the iGABA receptor subunits, is a potential target of ivermectin. It may influence ivermectin resistance by modulating the GABA signaling pathway. The inhibition of Ae-GRD expression by miR-71-5p decreased ivermectin resistance and consequently lowered the mortality rate of Ae. aegypti mosquitoes. This finding provides empirical evidence of the relationship between Ae-GRD and its miRNA in modulating insecticide resistance, offering novel perspectives for mosquito control strategies.

18.
Parasit Vectors ; 17(1): 276, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937807

ABSTRACT

BACKGROUND: Female Aedes aegypti mosquitoes can spread disease-causing pathogens when they bite humans to obtain blood nutrients required for egg production. Following a complete blood meal, host-seeking is suppressed until eggs are laid. Neuropeptide Y-like receptor 7 (NPYLR7) plays a role in endogenous host-seeking suppression and previous work identified small-molecule NPYLR7 agonists that inhibit host-seeking and blood-feeding when fed to mosquitoes at high micromolar doses. METHODS: Using structure-activity relationship analysis and structure-guided design we synthesized 128 compounds with similarity to known NPYLR7 agonists. RESULTS: Although in vitro potency (EC50) was not strictly predictive of in vivo effect, we identified three compounds that reduced blood-feeding from a live host when fed to mosquitoes at a dose of 1 µM-a 100-fold improvement over the original reference compound. CONCLUSIONS: Exogenous activation of NPYLR7 represents an innovative vector control strategy to block mosquito biting behavior and prevent mosquito-human host interactions that lead to pathogen transmission.


Subject(s)
Aedes , Feeding Behavior , Mosquito Vectors , Receptors, Neuropeptide Y , Animals , Aedes/drug effects , Female , Feeding Behavior/drug effects , Receptors, Neuropeptide Y/metabolism , Receptors, Neuropeptide Y/agonists , Mosquito Vectors/drug effects , Structure-Activity Relationship , Humans
19.
Parasit Vectors ; 17(1): 233, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769579

ABSTRACT

BACKGROUND: The adaptive divergence of Aedes aegypti populations to heterogeneous environments can be a driving force behind the recent expansion of their habitat distribution and outbreaks of dengue disease in urbanized areas. In this study, we investigated the population genomics of Ae. aegypti at a regional scale in Metropolitan Manila, Philippines. METHODS: We used the Pool-Seq double digestion restriction-site association DNA sequencing (ddRAD-Seq) approach to generate a high number of single nucleotide polymorphisms (SNPs), with the aim to determine local adaptation and compare the population structure with 11 microsatellite markers. A total of 217 Ae. aegypti individuals from seven female and seven male populations collected from Metropolitan Manila were used in the assays. RESULTS: We detected 65,473 SNPs across the populations, of which 76 were non-neutral SNPs. Of these non-neutral SNPs, the multivariate regression test associated 50 with eight landscape variables (e.g. open space, forest, etc.) and 29 with five climate variables (e.g. air temperature, humidity, etc.) (P-value range 0.005-0.045) in female and male populations separately. Male and female populations exhibited contrasting spatial divergence, with males exhibiting greater divergence than females, most likely reflecting the different dispersal abilities of male and female mosquitoes. In the comparative analysis of the same Ae. aegypti individuals, the pairwise FST values of 11 microsatellite markers were lower than those of the neutral SNPs, indicating that the neutral SNPs generated via pool ddRAD-Seq were more sensitive in terms of detecting genetic differences between populations at fine-spatial scales. CONCLUSIONS: Overall, our study demonstrates the utility of pool ddRAD-Seq for examining genetic differences in Ae. aegypti populations in areas at fine-spatial scales that could inform vector control programs such as Wolbachia-infected mosquito mass-release programs. This in turn would provide information on mosquito population dispersal patterns and the potential barriers to mosquito movement within and around the release area. In addition, the potential of environmental adaptability observed in Ae. aegypti could help population control efforts.


Subject(s)
Aedes , Genetics, Population , Microsatellite Repeats , Mosquito Vectors , Polymorphism, Single Nucleotide , Animals , Aedes/genetics , Aedes/classification , Aedes/physiology , Philippines , Female , Male , Microsatellite Repeats/genetics , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Ecosystem , Genetic Variation , Dengue/transmission , Adaptation, Physiological/genetics
20.
Microbiol Spectr ; 12(7): e0379223, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38809029

ABSTRACT

The entomopathogenic fungus Beauveria bassiana provides an eco-friendly substitute to chemical insecticides for mosquito control. Nevertheless, its widespread application has been hindered by its comparatively slow efficacy in eliminating mosquitoes. To augment the potency of B. bassiana against Aedes mosquitoes, a novel recombinant strain, Bb-Cyt1Aa, was developed by incorporating the Bacillus thuringiensis toxin gene Cyt1Aa into B. bassiana. The virulence of Bb-Cyt1Aa was evaluated against Aedes aegypti and Aedes albopictus using insect bioassays. Compared to the wild-type (WT) strain, the median lethal time (LT50) for A. aegypti larvae infected with Bb-Cyt1Aa decreased by 33.3% at a concentration of 1 × 108 conidia/mL and by 22.2% at 1 × 107 conidia/mL. The LT50 for A. aegypti adults infected with Bb-Cyt1Aa through conidia ingestion was reduced by 37.5% at 1 × 108 conidia/mL and by 33.3% at 1 × 107 conidia/mL. Likewise, the LT50 for A. aegypti adults infected with Bb-Cyt1Aa through cuticle contact decreased by 33.3% and 30.8% at the same concentrations, respectively. Furthermore, the Bb-Cyt1Aa strain also demonstrated increased toxicity against both larval and adult A. albopictus, when compared to the WT strain. In conclusion, our study demonstrated that the expression of B. thuringiensis toxin Cyt1Aa in B. bassiana enhanced its virulence against Aedes mosquitoes. This suggests that B. bassiana expressing Cyt1Aa has potential value for use in mosquito control. IMPORTANCE: Beauveria bassiana is a naturally occurring fungus that can be utilized as a bioinsecticide against mosquitoes. Cyt1Aa is a delta-endotoxin protein produced by Bacillus thuringiensis that exhibits specific and potent insecticidal activity against mosquitoes. In our study, the expression of this toxin Cyt1Aa in B. bassiana enhances the virulence of B. bassiana against Aedes aegypti and Aedes albopictus, thereby increasing their effectiveness in killing mosquitoes. This novel strain can be used alongside chemical insecticides to reduce dependence on harmful chemicals, thereby minimizing negative impacts on the environment and human health. Additionally, the potential resistance of B. bassiana against mosquitoes in the future could be overcome by acquiring novel combinations of exogenous toxin genes. The presence of B. bassiana that expresses Cyt1Aa is of significant importance in mosquito control as it enhances genetic diversity, creates novel virulent strains, and contributes to the development of safer and more sustainable methods of mosquito control.


Subject(s)
Aedes , Bacillus thuringiensis Toxins , Bacillus thuringiensis , Beauveria , Endotoxins , Hemolysin Proteins , Larva , Mosquito Control , Pest Control, Biological , Animals , Beauveria/genetics , Beauveria/pathogenicity , Beauveria/metabolism , Aedes/microbiology , Mosquito Control/methods , Bacillus thuringiensis Toxins/genetics , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Pest Control, Biological/methods , Larva/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics , Spores, Fungal/genetics , Insecticides/pharmacology , Insecticides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...