Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
Eng. sanit. ambient ; 22(2): 391-401, mar.-abr. 2017. tab, graf
Article in Portuguese | LILACS | ID: biblio-840402

ABSTRACT

RESUMO: Avaliou-se a degradação anaeróbia do alquilbenzeno linear sulfonato (LAS) e seus homólogos em experimento em escala de laboratório. Foi usado lodo disperso para minimizar o efeito da adsorção. Em primeiro lugar, determinaram-se a maior concentração de LAS (substrato) e a menor concentração de etanol (cossubstrato) que manteriam os micro-organismos ativos, resultando em 25 e 200 mg.L-1, nessa ordem. Posteriormente, o experimento (90 dias) foi realizado em um reator somente com etanol (controle) e outro (reator teste, triplicata) com ambos os substratos nas concentrações anteriores. Os micro-organismos apresentaram crescimento exponencial em 48 h para os 2 reatores; não ocorreu toxicidade pelo LAS no reator teste durante esse período inicial, quando o etanol foi todo consumido. Após então, houve decréscimo de micro-organismos, indicando possível toxicidade por LAS ou intermediários. Observou-se também a diminuição ou ausência da produção de ácidos graxos voláteis e de metano. Portanto, com lodo disperso, a maior parcela da remoção foi por conta da biodegradação, porém, com formação de intermediários que não o acetato nem o metano, apontando a inibição à acidogênese e à metanogênese. Ao final, a remoção do LAS foi de 35% por biodegradação e apenas 0,35% por adsorção ao lodo. A ordem preferencial de biodegradação para os homólogos foi de C13 para C12, C11 e C10, com percentual de degradação em relação à massa inicial de 49, 31, 24 e 17%, respectivamente. A mesma ordem deu-se para a adsorção, da maior para a menor cadeia alquílica, sendo a remoção por adsorção de 0,85; 0,32; 0,13 e 0,01%, respectivamente.


ABSTRACT: The anaerobic degradation of linear alquibenzene sulfonate (LAS) and its homologues was evaluated in batch experiment. Dispersed sludge was used to minimize the effect of adsorption. Initially, the highest concentration of LAS (substrate) and the lowest concentration of ethanol (co-substrate) were determined to maintain the microorganisms active; the results were 25 and 200 mg.L-1, respectively. Afterwards, a 90-day period experiment was conducted with one reactor with only the addition of ethanol (control) and the other (test reactor in triplicate) with both substrates and the previous concentrations found. The microorganisms showed exponential growth in the first 48 h for both reactors; LAS toxicity has not occurred in the test reactor during the first 4 days, during which ethanol was consumed. After that, the microorganisms decreased, indicating possible toxicity due to LAS or intermediates; a decrease or absence of volatile organic acids and methane production was also observed. Therefore, with dispersed sludge the largest removal was due to biodegradation, but with formation of intermediates other than acetate or methane, indicating inhibition of acidogenesis and methanogenesis. At the end, the removal was 35% by biodegradation and only 0.35% by adsorption to the biomass. The preferential order of the biodegradation for the homologues was from C13 to C12, C11 and C10; and the removal in relation to the initial mass of each was 49, 31, 24 and 17%, respectively. The same order occurred to adsorption, from the higher to the lower alkyl chain, with removal of 0.86, 0.32, 0.13 and 0.01%, respectively.

2.
J Environ Manage ; 129: 384-97, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-23995140

ABSTRACT

A wide range of Pharmaceuticals and Personal Care Products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The emergence of new compounds or changes in regulations have led to dynamical studies of occurrence, impact and treatment, which consider geographical areas and trends in consumption and innovation in the pharmaceutical industry. A Quantitative study of Structure-Activity Relationship ((Q)SAR) was performed to assess the possible adverse effects of ninety six PPCPs and metabolites with negligible experimental data and establish a ranking of concern, which was supported by the EPA EPI Suite™ interface. The environmental and toxicological indexes, the persistence (P), the bioaccumulation (B), the toxicity (T) (extensive) and the occurrence in Spanish aquatic environments (O) (intensive) were evaluated. The most hazardous characteristics in the largest number of compounds were generated by the P index, followed by the T and B indexes. A high number of metabolites has a concern score equal to or greater than their parent compounds. Three PBT and OPBT rankings of concern were proposed using the total and partial ranking method (supported by a Hasse diagram) by the Decision Analysis by Ranking Techniques (DART) tool, which was recently recommended by the European Commission. An analysis of the sensibility of the relative weights of these indexes has been conducted. Hormones, antidepressants (and their metabolites), blood lipid regulators and all of the personal care products considered in this study were at the highest levels of risk according to the PBT and OPBT total rankings. Furthermore, when the OPBT partial ranking was performed, X-ray contrast media, H2 blockers and some antibiotics were included at the highest level of concern. It is important to improve and incorporate useful indexes for the predicted environmental impact of PPCPs and metabolites and thus focus experimental analysis on the compounds that require urgent attention.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Environmental Monitoring/methods , Household Products/toxicity , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/toxicity , Household Products/analysis , Models, Theoretical , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Spain , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...