Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38979229

ABSTRACT

Over the past 15 years, hundreds of previously undiscovered bacterial small open reading frame (sORF)-encoded polypeptides (SEPs) of fewer than fifty amino acids have been identified, and biological functions have been ascribed to an increasing number of SEPs from intergenic regions and small RNAs. However, despite numbering in the dozens in Escherichia coli, and hundreds to thousands in humans, same-strand nested sORFs that overlap protein coding genes in alternative reading frames remain understudied. In order to provide insight into this enigmatic class of unannotated genes, we characterized GndA, a 36-amino acid, heat shock-regulated SEP encoded within the +2 reading frame of the gnd gene in E. coli K-12 MG1655. We show that GndA pulls down components of respiratory complex I (RCI) and is required for proper localization of a RCI subunit during heat shock. At high temperature GndA deletion (ΔGndA) cells exhibit perturbations in cell growth, NADH+/NAD ratio, and expression of a number of genes including several associated with oxidative stress. These findings suggest that GndA may function in maintenance of homeostasis during heat shock. Characterization of GndA therefore supports the nascent but growing consensus that functional, overlapping genes occur in genomes from viruses to humans.

2.
Mol Ecol ; 33(12): e17374, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38727686

ABSTRACT

Understanding genetic incompatibilities and genetic introgression between incipient species are major goals in evolutionary biology. Mitochondrial genes evolve rapidly and exist in dense gene networks with coevolved nuclear genes, suggesting that mitochondrial respiration may be particularly susceptible to disruption in hybrid organisms. Mitonuclear interactions have been demonstrated to contribute to hybrid dysfunction between deeply divergent taxa crossed in the laboratory, but there are few empirical examples of mitonuclear interactions between younger lineages that naturally hybridize. Here, we use controlled hybrid crosses and high-resolution respirometry to provide the first experimental evidence in a bird that inter-lineage mitonuclear interactions impact mitochondrial aerobic metabolism. Specifically, respiration capacity of the two mitodiscordant backcrosses (with mismatched mitonuclear combinations) differs from one another, although they do not differ significantly from the parental groups or mitoconcordant backcrosses as we would expect of mitonuclear disruptions. In the wild hybrid zone between these subspecies, the mitochondrial cline centre is shifted west of the nuclear cline centre, which is consistent with the direction of our experimental results. Our results therefore demonstrate asymmetric mitonuclear interactions that impact the capacity of cellular mitochondrial respiration and may help to explain the geographic discordance between mitochondrial and nuclear genomes observed in the wild.


Subject(s)
Hybridization, Genetic , Animals , Mitochondria/genetics , Mitochondria/metabolism , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Male , Birds/genetics
3.
Mar Environ Res ; 197: 106467, 2024 May.
Article in English | MEDLINE | ID: mdl-38520956

ABSTRACT

Marine hypoxia poses a significant challenge in the contemporary marine environment. The horseshoe crab, an ancient benthic marine organism, is confronted with the potential threat of species extinction due to hypoxia, making it an ideal candidate for studying hypoxia tolerance mechanisms. In this experiment, juvenile Tachypleus tridentatus were subjected to a 21-day trial at DO:2 mg/L (hypoxia) and DO:6 mg/L conditions. The experimental timeline included a 14-day exposure phase followed by a 7-day recovery period. Sampling occurred on days 0, 7, 14, and 21, where the period from day 14 to day 21 corresponds to seven days of recuperation. Several enzymatic activities of important proteins throughout this investigation were evaluated, such as succinate dehydrogenase (SDH), phosphofructokinase (PFK), hexokinase (HK), lactate dehydrogenase (LDH), and pyruvate kinase (PK). Concurrently, the relative expression of hexokinase-1 (HK), hypoxia-inducible factor 1-alpha inhibitor (FIH), and hypoxia-inducible factor 1-alpha (HIF-1α), pyruvate dehydrogenase phosphatase (PDH), succinate dehydrogenase assembly factor 4 (SDH), and Glucose-6-phosphatase (G6Pase) were also investigated. These analyses aimed to elucidate alterations in the hypoxia signaling pathway and respiratory energy metabolism. It is revealed that juvenile T. tridentatus initiated the HIF pathway under hypoxic conditions, resulting in an upregulation of HIF-1α and FIH-1 gene expression, which in turn, influenced a shift in metabolic patterns. Particularly, the activity of glycolysis-related enzymes was promoted significantly, including PK, HK, PKF, LDH, and the related HK gene. In contrast, enzymes linked to aerobic respiration, PDH, and SDH, as well as the related PDH and SDH genes, displayed down-regulation, signifying a transition from aerobic to anaerobic metabolism. Additionally, the activity of gluconeogenesis-related enzymes such as PK and G6Pase gene expression were significantly elevated, indicating the activation of gluconeogenesis and glycogenolysis pathways. Consequently, juvenile T. tridentatus demonstrated an adaptive response to hypoxic conditions, marked by changes in respiratory energy metabolism modes and the activation of hypoxia signaling pathways.


Subject(s)
Horseshoe Crabs , Succinate Dehydrogenase , Animals , Horseshoe Crabs/genetics , Horseshoe Crabs/metabolism , Succinate Dehydrogenase/metabolism , Hexokinase/metabolism , Hypoxia/metabolism , Signal Transduction , Glucose/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
4.
Environ Res ; 238(Pt 1): 117110, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37696322

ABSTRACT

Understanding the control mechanisms of carbon dioxide (CO2) emissions in intertidal wetland sediments is beneficial for the concern of global carbon biogeochemistry and climate change. Nevertheless, multiple controls on CO2 emissions from intertidal wetland sediments to the atmosphere still need to be clarified. This study investigated the effect of tidal action on CO2 emissions from salt marsh sediments covered by Spartina alterniflora in the Jiaozhou Bay wetland using the static chamber method combined with an infrared CO2 detector. The results showed that the CO2 emission fluxes from the sediment during ebb tides were higher than those during flood tides. The whole wetland sediment acted as a weak source of atmospheric CO2 (average flux: 24.44 ± 16.80 mg C m-2 h-1) compared to terrestrial soils and was affected by the cycle of seawater inundation and exposure. The tidal influence on vertical dissolved inorganic carbon (DIC) transport in the sediment was also quantitated using a two-end member mixing model. The surface sediment layer (5-15 cm) with maximum DIC concentration during ebb tides became the one with minimum DIC concentration during flood tides, indicating the DIC transport from the surface sediment to seawater. Furthermore, aerobic respiration by microorganisms was the primary process of CO2 production in the sediment according to 16 S rDNA sequencing analysis. This study revealed the strong impact of tidal action on CO2 emissions from the wetland sediment and provided insights into the source-sink pattern of CO2 and DIC at the land-ocean interface.


Subject(s)
Carbon Dioxide , Wetlands , Carbon Dioxide/analysis , Methane/analysis , Seawater , Soil/chemistry
5.
Acta Biomater ; 170: 330-343, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37607616

ABSTRACT

Metal-organic frameworks (MOFs) with periodically arranged porphyrinic linkers avoiding the self-quenching issue of porphyrins in photodynamic therapy (PDT) have been widely applied. However, the porphyrinic MOFs still face challenges of poor stability under physiological conditions and limited photodynamic efficiency by the hypoxia condition of tumors. Herein, we fabricate the MOF@MOF structure with a protective MOF shell to improve the stability and relieve the hypoxia condition of tumors for sensitized PDT. Under protection of the MOF shell, the MOF@MOF structure can keep intact for 96 h under physiological conditions. Consequently, the tumoral accumulation efficiency is two folds of the MOF core. Furthermore, the MOF shell decomposes under acidic environment, and the loaded inhibitor of mitochondria pyruvate carrier (7-amino carboxycoumarins-2, 7ACC2) will be released. 7ACC2 inhibits the mitochondrial pyruvate influx and simultaneously blocks glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. Under a 5-min laser irradiation, the 7ACC2 carrying MOF@MOF nanoplatforms induced doubled cellular apoptosis and reduced 70% of the tumor growth compared with the cargo-free MOF@MOF. In summary, the design of this stable and hypoxia self-relievable MOF@MOF nanoplatform will enlighten the future development of MOF-based nanomedicines and PDT. STATEMENT OF SIGNIFICANCE: Though widely used for photodynamic therapy (PDT) in previous studies, porphyrinic metal-organic frameworks (MOFs) still face challenges in poor stability under physiological conditions and limited photodynamic efficiency due to the hypoxia condition of tumors. In order to solve these problems, (1) we develop the MOF@MOF strategy to improve the physiological stability; (2) an inhibitor of mitochondria pyruvate carrier, 7-amino carboxycoumarins-2 (7ACC2), is loaded to inhibit the mitochondrial pyruvate influx and simultaneously block glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. In comparison with previous studies, our strategy simultaneously improves stability and overcomes the limited PDT efficiency in the hypoxia tumor tissue, which will enlighten the future development of MOF-based nanomedicines and PDT.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Metal-Organic Frameworks/pharmacology , Metal-Organic Frameworks/chemistry , Monocarboxylic Acid Transporters , Neoplasms/drug therapy , Hypoxia , Respiration , Mitochondria , Lactates , Glucose , Pyruvates , Cell Line, Tumor , Nanoparticles/chemistry
6.
Appl Microbiol Biotechnol ; 107(14): 4605-4619, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37249587

ABSTRACT

Cat8 is a C6 zinc cluster transcription activator in yeast. It is generally recognized that the transcription of CAT8 is inhibited and that Cat8 is inactive in the presence of high concentrations of glucose. However, our recent study found that constitutively overexpressed Cat8 played a regulatory role in Saccharomyces cerevisiae in the presence of 20 g/L glucose. To explore the regulatory network of Cat8 at high glucose concentrations, CAT8 was both overexpressed and deleted in this study. Cell growth and glucose consumption in different media were significantly accelerated by the deletion of CAT8, while the lag period was greatly shortened. RNA-seq and genetic modification showed that the deletion of CAT8 changed the type of energy metabolism in yeast cells. Many genes related to the mitochondrial respiratory chain were downregulated, resulting in a reduction in aerobic respiration and the tricarboxylic acid cycle. Meanwhile, both the energy supply of anaerobic ethanol fermentation and the Crabtree effect of S. cerevisiae were enhanced by the deletion of CAT8. CAT8 knockout cells show a higher sugar uptake rate, a higher cell growth rate, and higher tolerance to glucose than the wild-type strain YS58. This study expands the understanding of the regulatory network of Cat8 and provides guidance for modulating yeast cell growth. KEY POINTS: • The deletion of CAT8 promoted cell growth of S. cerevisiae. • Transcriptome analysis revealed the regulation network of Cat8 under 1% glucose condition. • CAT8 deletion increases the glucose tolerance of cells by enhancing the Crabtree effect.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Energy Metabolism , Fermentation , Glucose/metabolism , Trans-Activators/genetics
7.
Int J Mol Sci ; 24(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36982347

ABSTRACT

Despite the wide application of radiotherapy in HCC, radiotherapy efficacy is sometimes limited due to radioresistance. Although radioresistance is reported with high glycolysis, the underlying mechanism between radioresistance and cancer metabolism, as well as the role of cathepsin H (CTSH) within it, remain unclear. In this study, tumor-bearing models and HCC cell lines were used to observe the effect of CTSH on radioresistance. Proteome mass spectrometry, followed by enrichment analysis, were used to investigate the cascades and targets regulated by CTSH. Technologies such as immunofluorescence co-localization flow cytometry and Western blot were used for further detection and verification. Through these methods, we originally found CTSH knockdown (KD) perturbed aerobic glycolysis and enhanced aerobic respiration, and thus promoted apoptosis through up-regulation and the release of proapoptotic factors such as AIFM1, HTRA2, and DIABLO, consequently reducing radioresistance. We also found that CTSH, together with its regulatory targets (such as PFKL, HK2, LDH, and AIFM1), was correlated with tumorigenesis and poor prognosis. In summary, our study found that the cancer metabolic switch and apoptosis were regulated by CTSH signaling, leading to the occurrence of radioresistance in HCC cells and suggesting the potential value of HCC diagnosis and therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/radiotherapy , Liver Neoplasms/metabolism , Cathepsin H/metabolism , Signal Transduction , Apoptosis/genetics , Gene Expression Regulation, Neoplastic , Glycolysis , Cell Proliferation , Cell Line, Tumor
8.
Biochim Biophys Acta Bioenerg ; 1864(1): 148929, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36265564

ABSTRACT

While alternative oxidase (AOX) was discovered in bacteria in 2003, the expression, function, and evolutionary history of this protein in these important organisms is largely unexplored. To date, expression and functional analysis is limited to studies in the Proteobacteria Novosphingobium aromaticivorans and Vibrio fischeri, where AOX likely plays roles in maintenance of cellular energy homeostasis and supporting responses to cellular stress. This review describes the history of the study of AOX in bacteria, details current knowledge of the predicted biochemical and structural characteristics, distribution, and function of bacterial AOX, and highlights interesting areas for the future study of AOX in bacteria.


Subject(s)
Mitochondrial Proteins , Oxidoreductases , Oxidoreductases/metabolism , Mitochondrial Proteins/metabolism , Plant Proteins/chemistry , Bacteria/metabolism
9.
Front Microbiol ; 13: 978859, 2022.
Article in English | MEDLINE | ID: mdl-36569073

ABSTRACT

Pathogens such as Staphylococcus aureus must overcome host-induced selective pressures, including limited iron availability. To cope with the harsh conditions of the host environment, S. aureus can adapt its physiology in multiple ways. One of these adaptations is the fermenting small-colony variant (SCV) phenotype, which is known to be inherently tolerant to certain classes of antibiotics and heme toxicity. We hypothesized that SCVs might also behave uniquely in response to iron starvation since one of the major cellular uses of iron is the respiration machinery. In this study, a respiring strain of S. aureus and fermenting SCV strains were treated with different concentrations of the iron chelator, 2,2' dipyridyl (DIP). Our data demonstrate that a major impact of iron starvation in S. aureus is the repression of respiration and the induction of the SCV phenotype. We demonstrate that the SCV phenotype transiently induced by iron starvation mimics the aminoglycoside recalcitrance exhibited by genetic SCVs. Furthermore, prolonged growth in iron starvation promotes increased emergence of stable aminoglycoside-resistant SCVs relative to the naturally occurring subpopulation of SCVs within an S. aureus community. These findings may have relevance to physiological and evolutionary processes occurring within bacterial populations infecting iron-limited host environments.

10.
mBio ; 13(6): e0218722, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36314837

ABSTRACT

Oxygenic photoautotrophic bacteria, cyanobacteria, have the tricarboxylic acid (TCA) cycle, and metabolite production using the cyanobacterial TCA cycle has been spotlighted recently. The unicellular cyanobacterium Synechocystis sp. strain PCC 6803 (Synechocystis 6803) has been used in various studies on the cyanobacterial TCA cycle. Malate oxidation in the TCA cycle is generally catalyzed by malate dehydrogenase (MDH). However, Synechocystis 6803 MDH (SyMDH) is less active than MDHs from other organisms. Additionally, SyMDH uses only NAD+ as a coenzyme, unlike other TCA cycle enzymes from Synechocystis 6803 that use NADP+. These results suggest that MDH rarely catalyzes malate oxidation in the cyanobacterial TCA cycle. Another enzyme catalyzing malate oxidation is malic enzyme (ME). We clarified which enzyme oxidizes malate that originates from the cyanobacterial TCA cycle using analyses focusing on ME and MDH. In contrast to SyMDH, Synechocystis 6803 ME (SyME) showed high activity when NADP+ was used as a coenzyme. Unlike the Synechocystis 6803 mutant lacking SyMDH, the mutant lacking SyME accumulated malate in the cells. ME was more highly preserved in the cyanobacterial genomes than MDH. These results indicate that ME mainly oxidizes malate that originates from the cyanobacterial TCA cycle (named the ME-dependent TCA cycle). The ME-dependent TCA cycle generates NADPH, not NADH. This is consistent with previous reports that NADPH is an electron carrier in the cyanobacterial respiratory chain. Our finding suggests the diversity of enzymes involved in the TCA cycle in the organisms, and analyses such as those performed in this study are necessary to determine the enzymes. IMPORTANCE Oxygenic photoautotrophic bacteria, namely, cyanobacteria, have the tricarboxylic acid (TCA) cycle. Recently, metabolite production using the cyanobacterial TCA cycle has been well studied. To enhance the production volume of metabolites, understanding the biochemical properties of the cyanobacterial TCA cycle is required. Generally, malate dehydrogenase oxidizes malate in the TCA cycle. However, cyanobacterial malate dehydrogenase shows low activity and does not use NADP+ as a coenzyme, unlike other cyanobacterial TCA cycle enzymes. Our analyses revealed that another malate oxidation enzyme, the malic enzyme, mainly oxidizes malate that originates from the cyanobacterial TCA cycle. These findings provide better insights into metabolite production using the cyanobacterial TCA cycle. Furthermore, our findings suggest that the enzymes related to the TCA cycle vary from organism to organism and emphasize the importance of analyses to identify the enzymes such as those performed in this study.


Subject(s)
Citric Acid Cycle , Synechocystis , NADP/metabolism , Synechocystis/metabolism , Oxidation-Reduction , Tricarboxylic Acids/metabolism
11.
Environ Sci Technol ; 56(12): 9083-9091, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35671404

ABSTRACT

The relevance of wastewater treatment plant (WWTP) effluents in fluvial networks is increasing as urbanization grows in catchments. Urban-sourced fine particles from WWTP effluents deposit and accumulate in the streambed sediment of receiving streams over time and can fuel respiration rates, which can thus potentially increase rates of biogeochemical reactions and CO2 emissions to the atmosphere. We aimed to provide a quantitative assessment of the influence of WWTP-sourced fine particles deposited in the streambed sediment on stream metabolic activity for 1 year in an intermittent Mediterranean stream. More nutrient-rich and metabolically active fine particle standing stocks were observed downstream of the WWTP, propagating to the end of the 820 m study reach, especially during the dry period (i.e., when the dilution capacity of the stream to WWTP inputs is <40%). Based on the longitudinal patterns of fine particle standing stocks and their metabolic activity, we estimated that the in-stream bioreactive capacity associated with these fine particles could potentially lead to substantial carbon dioxide emissions to the atmosphere (3.1 g C/m2/d). We show the importance of incorporating fine particle standing stocks downstream of point source inputs, particularly WWTPs in intermittent streams, into carbon budgets.


Subject(s)
Hydrology , Water Purification , Carbon Dioxide , Urbanization
12.
Beijing Da Xue Xue Bao Yi Xue Ban ; 54(3): 532-540, 2022 Jun 18.
Article in Chinese | MEDLINE | ID: mdl-35701132

ABSTRACT

OBJECTIVE: To explore the amino acid metabolomics characteristics of myeloid-derived suppressor cells (MDSCs) in mice with sepsis induced by the cecal ligation and puncture (CLP). METHODS: The sepsis mouse model was prepared by CLP, and the mice were randomly divided into a sham operation group (sham group, n = 10) and a CLP model group (n = 10). On the 7th day after the operation, 5 mice were randomly selected from the surviving mice in each group, and the bone marrow MDSCs of the mice were isolated. Bone marrow MDSCs were separated to measure the oxygen consumption rate (OCR) by using Agilent Seahorse XF technology and to detect the contents of intracellular amino acids and oligopeptides through ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) technology. Different metabolites and potential biomarkers were analyzed by univariate statistical analysis and multivariate statistical analysis. The major metabolic pathways were enriched using the small molecular pathway database (SMPDB). RESULTS: The proportion of MDSCs in the bone marrow of CLP group mice (75.53% ± 6.02%) was significantly greater than that of the sham group (43.15%± 7.42%, t = 7.582, P < 0.001), and the basal respiratory rate [(50.03±1.20) pmol/min], maximum respiration rate [(78.07±2.57) pmol/min] and adenosine triphosphate (ATP) production [(25.30±1.21) pmol/min] of MDSCs in the bone marrow of CLP group mice were significantly greater than the basal respiration rate [(34.53±0.96) pmol/min, (t = 17.41, P < 0.001)], maximum respiration rate [(42.57±1.87) pmol/min, (t = 19.33, P < 0.001)], and ATP production [(12.63±0.96) pmol/min, (t = 14.18, P < 0.001)] of sham group. Leucine, threonine, glycine, etc. were potential biomarkers of septic MDSCs (all P < 0.05). The increased amino acids were mainly enriched in metabolic pathways, such as malate-aspartate shuttle, ammonia recovery, alanine metabolism, glutathione metabolism, phenylalanine and tyrosine metabolism, urea cycle, glycine and serine metabolism, ß-alanine metabolism, glutamate metabolism, arginine and proline metabolism. CONCLUSION: The enhanced mitochondrial oxidative phosphorylation, malate-aspartate shuttle and alanine metabolism in MDSCs of CLP mice may provide raw materials for mitochondrial aerobic respiration, thereby promoting the immunosuppressive function of MDSCs. Blocking the above metabolic pathways may reduce the risk of secondary infection in sepsis and improve the prognosis.


Subject(s)
Myeloid-Derived Suppressor Cells , Sepsis , Adenosine Triphosphate/metabolism , Alanine/metabolism , Animals , Aspartic Acid/metabolism , Biomarkers/metabolism , Chromatography, Liquid , Glycine/metabolism , Malates/metabolism , Mice , Myeloid-Derived Suppressor Cells/metabolism , Sepsis/complications , Tandem Mass Spectrometry
13.
Int J Biol Sci ; 18(8): 3137-3155, 2022.
Article in English | MEDLINE | ID: mdl-35637951

ABSTRACT

The Fas-associated death domain (FADD) has long been regarded as a crucial adaptor protein in the extrinsic apoptotic pathway. Despite the non-apoptotic function of FADD is gradually being discovered and confirmed, its corresponding physiological and pathological significance is still unclear. Based on the database of GWAS catalog and GTEx Portal, 17 SNPs associated with leukemia susceptibility were found to be linked to FADD expression. We then investigated a regulatory role of FADD in T-acute lymphoblastic leukemia (T-ALL) using Jurkat cells as a model. Jurkat cells stably depleted of FADD (FADD-/- Jurkat) expression exhibited dampened proliferation, hypersensitivity to Etoposide-induced intrinsic apoptosis whereas near total resistance to TRAIL-induced extrinsic apoptosis. Comparison between wild type and FADD-/- Jurkat cells using iTRAQ-based proteomics revealed considerably altered expression spectrum of genes, and led us to focus on metabolic pathways. Investigation of glycolytic and mitochondrial pathways and relevant enzymes revealed that FADD knockout triggered a metabolic shift from glycolysis to mitochondrial respiration in Jurkat cells. Re-expression of FADD in FADD-/- Jurkat cells partially rescued glycolytic capacity. FADD loss triggers global metabolic reprogramming in Jurkat cells and therefore remains as a potential druggable target for ALL treatment.


Subject(s)
Apoptosis , Fas-Associated Death Domain Protein , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Apoptosis/genetics , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Glycolysis/genetics , Humans , Jurkat Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
14.
Meat Sci ; 189: 108828, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35461106

ABSTRACT

The roles of energy pathways in postmortem muscles are still debated. In this study, the contributions of different pathways to ATP production and pH variations were analyzed by using a kinetic model based on data from beef longissimus lumborum. Phosphocreatine represents over 92% of the initial ATP production but, after 24 h, glycolysis, phosphocreatine, myokinase reaction, and aerobic respiration contribute, respectively, 89.44%, 5.26%, 4.44%, and 0.86% of the cumulative amount of ATP produced. ATP hydrolysis and glycolysis result in 0.52 and 0.6 units of pH decline, respectively, at 24 h with ATP hydrolysis accounting for most of the early decline. Phosphocreatine, myokinase reaction, and aerobic respiration lead to, respectively, 0.08, 0.07, and 0.004 units of pH increase after 24 h though phosphocreatine is depleted within the first 30 min. Furthermore, electrical stimulation affects pH primarily through ATP hydrolysis and glycolysis. The initial muscle oxygen saturation level and phosphocreatine content affect pH but the influences are small.


Subject(s)
Adenosine Triphosphate , Adenylate Kinase , Animals , Cattle , Phosphocreatine/metabolism , Adenosine Triphosphate/metabolism , Adenylate Kinase/metabolism , Muscles/metabolism , Glycolysis , Hydrogen-Ion Concentration , Energy Metabolism
15.
Antimicrob Agents Chemother ; 66(4): e0204121, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35262374

ABSTRACT

We previously identified a series of triazolopyrimidines with antitubercular activity. We determined that Mycobacterium tuberculosis strains with mutations in QcrB, a subunit of the cytochrome bcc-aa3 supercomplex, were resistant. A cytochrome bd oxidase deletion strain was more sensitive to this series. We isolated resistant mutants with mutations in Rv1339. Compounds led to the depletion of intracellular ATP levels and were active against intracellular bacteria, but they did not inhibit human mitochondrial respiration. These data are consistent with triazolopyrimidines acting via inhibition of QcrB.


Subject(s)
Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Cytochromes , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Respiration
16.
Microbiology (Reading) ; 168(3)2022 03.
Article in English | MEDLINE | ID: mdl-35343886

ABSTRACT

Escherichia coli is a facultative anaerobe that can grow in a variety of environmental conditions. In the complete absence of O2, E. coli can perform a mixed-acid fermentation that contains within it an elaborate metabolism of formic acid. In this study, we use cavity-enhanced Raman spectroscopy (CERS), FTIR, liquid Raman spectroscopy, isotopic labelling and molecular genetics to make advances in the understanding of bacterial formate and H2 metabolism. It is shown that, under anaerobic (anoxic) conditions, formic acid is generated endogenously, excreted briefly from the cell, and then taken up again to be disproportionated to H2 and CO2 by formate hydrogenlyase (FHL-1). However, exogenously added D-labelled formate behaves quite differently from the endogenous formate and is taken up immediately, independently, and possibly by a different mechanism, by the cell and converted to H2 and CO2. Our data support an anion-proton symport model for formic acid transport. In addition, when E. coli was grown in a micro-aerobic (micro-oxic) environment it was possible to analyse aspects of formate and O2 respiration occurring alongside anaerobic metabolism. While cells growing under micro-aerobic conditions generated endogenous formic acid, no H2 was produced. However, addition of exogenous formate at the outset of cell growth did induce FHL-1 biosynthesis and resulted in formate-dependent H2 production in the presence of O2.


Subject(s)
Escherichia coli K12 , Escherichia coli Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Hydrogen/metabolism , Oxygen/metabolism
17.
ACS Synth Biol ; 11(4): 1568-1576, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35289165

ABSTRACT

Lactococcus lactis is a food-grade chassis for delivery of bioactive molecules to the intestinal mucosa in situ, while its ability to produce lycopene for detoxification of reactive oxidative species (ROS) is not realized yet. Here, L. lactis NZ9000 was engineered to synthesize lycopene by heterologous expression of a gene cluster crtEBI in plasmids or chromosomes, yielding the recombinant strains NZ4 and NZ5 with 0.59 and 0.54 mg/L lycopene production, respectively. To reroute the pyruvate flux to lycopene, the main lactate dehydrogenase and α-acetolactate synthase pathways were sequentially disrupted. The resultant strains NZΔldh-1 and NZΔldhΔals-1 increased lycopene accumulation to 0.70 and 0.73 mg/L, respectively, while their biomasses were reduced by 12.42% and the intracellular NADH/NAD+ ratios increased by 3.05- and 2.10-fold. To increase the biomasses of these engineered strains, aerobic respiration was activated and tuned by the addition of exogenous heme and oxygen. As a result, the engineered L. lactis strains partly recovered the growth and redox balance, yielding the lycopene levels of 0.91-1.09 mg/L. The engineered L. lactis strain protected the intestinal epithelial cells NCM460 against H2O2 challenge, with a 30.09% increase of cell survival and a 29.2% decrease of the intracellular ROS level compared with strain NZ9000 treatment. In summary, this work established the use of the engineered probiotic L. lactis for lycopene production and prospected its potential in the prevention of intestinal oxidative damage.


Subject(s)
Lactococcus lactis , Probiotics , Epithelial Cells , Hydrogen Peroxide/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Lycopene/metabolism , Reactive Oxygen Species/metabolism
18.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162964

ABSTRACT

The branched aerobic respiratory chain in Bacillus cereus comprises three terminal oxidases: cytochromes aa3, caa3, and bd. Cytochrome caa3 requires heme A for activity, which is produced from heme O by heme A synthase (CtaA). In this study, we deleted the ctaA gene in B. cereus AH187 strain, this deletion resulted in loss of cytochrome caa3 activity. Proteomics data indicated that B. cereus grown in glucose-containing medium compensates for the loss of cytochrome caa3 activity by remodeling its respiratory metabolism. This remodeling involves up-regulation of cytochrome aa3 and several proteins involved in redox stress response-to circumvent sub-optimal respiratory metabolism. CtaA deletion changed the surface-composition of B. cereus, affecting its motility, autoaggregation phenotype, and the kinetics of biofilm formation. Strikingly, proteome remodeling made the ctaA mutant more resistant to cold and exogenous oxidative stresses compared to its parent strain. Consequently, we hypothesized that ctaA inactivation could improve B. cereus fitness in a nutrient-limited environment.


Subject(s)
Bacillus cereus/growth & development , Bacterial Proteins/genetics , Cytochrome b Group/genetics , Cytochrome c Group/metabolism , Cytochromes a3/metabolism , Cytochromes a/metabolism , Gene Deletion , Membrane Proteins/genetics , Bacillus cereus/genetics , Bacillus cereus/metabolism , Bacterial Proteins/metabolism , Biofilms/growth & development , Electron Transport Complex IV/metabolism , Heme/analogs & derivatives , Heme/metabolism , Oxidative Stress , Phenotype , Proteomics , Signal Transduction
19.
FEMS Microbiol Rev ; 46(3)2022 05 06.
Article in English | MEDLINE | ID: mdl-35094062

ABSTRACT

Oxygen (O2) is the ultimate oxidant on Earth and its respiration confers such an energetic advantage that microorganisms have evolved the capacity to scavenge O2 down to nanomolar concentrations. The respiration of O2 at extremely low levels is proving to be common to diverse microbial taxa, including organisms formerly considered strict anaerobes. Motivated by recent advances in O2 sensing and DNA/RNA sequencing technologies, we performed a systematic review of environmental metatranscriptomes revealing that microbial respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats. These habitats were key to the early evolution of life and are projected to become more prevalent in the near future due to anthropogenic-driven environmental change. Here, we summarize our current understanding of aerobic microbial respiration under apparent anoxia, including novel processes, their underlying biochemical pathways, the involved microorganisms, and their environmental importance and evolutionary origin.


Subject(s)
Ecosystem , Oxygen , Humans , Hypoxia , Oxygen/metabolism , Respiration
20.
J Appl Microbiol ; 132(3): 1840-1855, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34779074

ABSTRACT

AIMS: Because the Staphylococcus aureus is one of the most well-known pathogens associated with medical devices and nosocomial infections, the aim of the study was to examine antibiofilm potential of emodin against it. METHODS AND RESULTS: Antibacterial activity was examined through microdilution assay. Antibiofilm testing included crystal violet staining of biofilm biomass and morphology analysis by Atomic force microscopy (AFM). Furthermore, aerobic respiration was monitored using the Micro-Oxymax respirometer. For investigation of gene expression qRT-PCR was performed. Emodin demonstrated strong antibacterial activity and ability to inhibit biofilm formation of all tested strains. The effect on preformed biofilms was spotted in few strains. AFM revealed that emodin affects biofilm structure and roughness. Monitoring of respiration under emodin treatment in planktonic and biofilm form revealed that emodin influenced aerobic respiration. Moreover, qRT-PCR showed that emodin modulates expression of icaA, icaD, srrA and srrB genes, as well as RNAIII, and that this activity was strain-specific. CONCLUSION: The results obtained in this study indicate the novel antibiofilm activity of emodin and its multiple pathways of action. SIGNIFICANCE AND IMPACT OF STUDY: This is the first study that examined pathways through which emodin expressed its antibiofilm activity.


Subject(s)
Emodin , Staphylococcal Infections , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms , Emodin/pharmacology , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...