Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Environ Sci Technol ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332486

ABSTRACT

Plastic debris, including nanoplastic particles (NPPs), has emerged as an important global environmental issue due to its detrimental effects on human health, ecosystems, and climate. Atmospheric processes play an important role in the transportation and fate of plastic particles in the environment. In this study, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was employed to establish the first online approach for identification and quantification of airborne submicrometer polystyrene (PS) NPPs from laboratory-generated and ambient aerosols. The fragmentation ion C8H8+ is identified as the major tracer ion for PS nanoplastic particles, achieving an 1-h detection limit of 4.96 ng/m3. Ambient PS NPPs measured at an urban location in Texas are quantified to be 30 ± 20 ng/m3 by applying the AMS data with a constrained positive matrix factorization (PMF) method using the multilinear engine (ME-2). Careful analysis of ambient data reveals that atmospheric PS NPPs were enhanced as air mass passed through a waste incinerator plant, suggesting that incineration of waste may serve as a source of ambient NPPs. The online quantification of NPPs achieved through this study can significantly improve our understanding of the source, transport, fate, and climate effects of atmospheric NPPs to mitigate this emerging global environmental issue.

2.
J Hazard Mater ; 467: 133679, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38325093

ABSTRACT

Focusing on the relatively unexplored presence of micro- and nano-plastic aerosol particles, this study quantitatively assessed the emission of nano-plastic particles during the machining of carbon fiber reinforced plastic (CFRP) in the working environment. Measurements of aerosol particles smaller than 1 µm in size were performed by aerosol mass spectrometry. The findings revealed that concentrations of carbonous aerosol particles (organic aerosol and refractory black carbon (rBC)) were higher during working hours than during non-working hours. Positive matrix factorization identified CFRP particles as a significant source, contributing an average of approximately 30% of concentration of carbonous aerosol particles during working hours. This source apportionment was corroborated by the presence of bisphenol A and F fragments, principal components of the epoxy resins used in CFRP, and was corroborated by similarities to the carbon cluster ion distribution observed in rBC during CFRP pipe-cutting operations. Further, the particle size distribution suggested the existence of plastic aerosol particles smaller than 100 nm. This study established the method to quantitatively distinguish nano-plastic aerosol particles from other aerosol particles in high temporal resolution and these techniques are useful for accurately assessing exposure to nano-plastic aerosol particles in working environments.

3.
Environ Sci Technol ; 57(38): 14150-14161, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37699525

ABSTRACT

Exposure to ambient fine particulate matter (PM2.5) is associated with millions of premature deaths annually. Oxidative stress through overproduction of reactive oxygen species (ROS) is a possible mechanism for PM2.5-induced health effects. Organic aerosol (OA) is a dominant component of PM2.5 worldwide, yet its role in PM2.5 toxicity is poorly understood due to its chemical complexity. Here, through integrated cellular ROS measurements and detailed multi-instrument chemical characterization of PM in urban southeastern United States, we show that oxygenated OA (OOA), especially more-oxidized OOA, is the main OA type associated with cellular ROS production. We further reveal that highly unsaturated species containing carbon-oxygen double bonds and aromatic rings in OOA are major contributors to cellular ROS production. These results highlight the key chemical features of ambient OA driving its toxicity. As more-oxidized OOA is ubiquitous and abundant in the atmosphere, this emphasizes the need to understand its sources and chemical processing when formulating effective strategies to mitigate PM2.5 health impacts.


Subject(s)
Oxidative Stress , Oxygen , Reactive Oxygen Species , Aerosols , Southeastern United States
4.
J Hazard Mater ; 457: 131775, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37295332

ABSTRACT

Busan Port is among the world's top ten most air-polluted ports, but the role of the anchorage zone as a significant contributor to pollution has not been studied. To assess the emission characteristics of sub-micron aerosols, a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in Busan, South Korea from September 10 to October 6, 2020. The concentration of all AMS-identified species and black carbon were highest when the winds came from the anchorage zone (11.9 µg·m-3) and lowest with winds from the open ocean (6.64 µg·m-3). The positive matrix factorization model identified one hydrocarbon-like organic aerosol (HOA) and two oxygenated organic aerosol (OOA) sources. HOAs were highest with winds from Busan Port, while oxidized OOAs were predominant with winds from the anchorage zone (less oxidized) and the open ocean (more oxidized). We calculated the emissions from the anchorage zone using ship activity data and compared them to the total emissions from Busan Port. Our results suggest that emissions from ship activities in the anchorage zone should be considered a significant source of pollution in the Busan Port area, especially given the substantial contributions of gaseous emissions (NOx: 8.78%; volatile organic compounds: 7.52%) and their oxidized moieties as secondary aerosols.

5.
Sci Total Environ ; 858(Pt 3): 159903, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36334656

ABSTRACT

The aim of this study was to better understand the characteristics of volatile organic compounds (VOCs) and secondary organic aerosol (SOA) pollution in different functional areas of petrochemical industrial cities. In Lanzhou, a typical petrochemical industrial city in Northwest China, with the use of an Integrated Atmospheric Mobile Monitoring Vehicle (IAMMV), various real-time online monitoring instruments, including a VOC monitoring instrument (TH-300B) and single-particle aerosol mass spectrometer (SPAMS), were used in combination. These instruments were employed to determine PM2.5, VOCs and other factors at monitoring sites in Xigu (XG) and Chengguan (CG) districts in September 2020 and 2021, respectively. The results revealed that during the monitoring period, the average VOC concentrations at the XG and CG monitoring sites were 102.3 and 35.8 ppb, respectively. Benzene (45.58 %) and toluene (24.47 %) significantly contributed to the SOA formation potential at the XG site. M/P-xylene (27.88 %) and toluene (23.64 %) more notably contributed to the SOA formation potential at the CG site. The PM2.5 mass concentration at the XG site (24.1 µg·m-3) was similar to that at the CG site (21.2 µg·m-3), but the proportion of particulate matter components greatly differed. The proportion of organic carbon (OC) at the XG site (19.00 %) was higher than that at the CG site (9.97 %). The number of particles containing C2H3O+ (m/z = 43) accounted for 36.96 % and 15.41 % of the total particles at the XG and CG sites, respectively. The mixing ratios of OC and hybrid carbon (OCEC) with C2H3O+ (m/z = 43) were 0.81 and 0.53, respectively, at the XG site and reached only 0.48 and 0.25, respectively, at the CG site. The secondary ageing degree of particles in XG district was high. These results could provide a reference for ambient air quality improvement and the formulation of governance measures in different functional areas of petrochemical industrial cities.


Subject(s)
Volatile Organic Compounds , Cities , China , Toluene , Carbon
6.
Sci Total Environ ; 856(Pt 1): 159173, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36191721

ABSTRACT

Studies of the land-sea-air interactions of aerosol are scarce considering their significant role in global environmental changes. Here, we investigated potential sources of sub-micron aerosols over the East Sea (Sea of Japan), which is strongly influenced by continental and marine aerosols. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used to measure the size-resolved chemical compositions of sub-micron aerosols during the period March 10-15, 2020. Concentrations of all AMS species, black carbon (BC), PM10 (particulate matter <10 µm) and PM2.5 (particulate matter <2.5 µm) were higher when cruising in industrialized coastal areas compared to the offshore region. A positive matrix factorization (PMF) model identified five distinct sources, i.e., hydrocarbon-like organic aerosol, semi-volatile and low-volatile oxygenated aerosols, methanesulfonic acid (MSA), and dimethyl sulfide (DMS; C2H6S) oxidation, which accounted for 5.98 %, 21.6 %, 28.3 %, 34.5 %, and 9.64 % of the total organic mass, respectively. The spatiotemporal variation of MSA, as well as the MSA to sulfate ratio (MSA:SO42-) over the East Sea, was determined for the first time. The mass concentrations of MSA displayed a similar time series distribution pattern to those of DMS. The time series distributions of the MSA:SO42- ratio displayed distinct differences, with higher ratios downwind of the ocean (0.216 ± 0.083 µg·m-3) than land (0.089 ± 0.030 µg·m-3). The growth of ultrafine particles (10-35 nm) was observed during two of the elevated MSA:SO42- ratio events, suggesting a potential role of MSA in new particle formation.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Japan , Aerosols/analysis , Particulate Matter/analysis , Sulfates
7.
Environ Sci Technol ; 57(2): 1039-1048, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36580374

ABSTRACT

Oxidative stress is a possible mechanism by which ambient fine particulate matter (PM) exerts adverse biological effects. While multiple biological effects and reactive oxygen species (ROS) production have been observed upon PM exposure, whether the biological effects are ROS-mediated remains unclear. Secondary organic aerosols (SOA) constitute a major fraction of fine PM and can contribute substantially to its toxicity. In this work, we measured three types of cell responses (mitochondrial membrane potential (MMP), caspase 3/7 activity, and ROS) and investigated their associations upon exposure to SOA formed from anthropogenic (naphthalene) and biogenic (α-pinene) precursors. MMP and caspase 3/7 activity (an early indicator of apoptosis) are key indicators of cell health, and changes of them could occur downstream of ROS-mediated pathways. We observed a significant increase in caspase 3/7 activity after SOA exposure, suggesting that apoptosis is an important pathway of cell death induced by SOA. We further found strong associations between a decrease in MMP and increase in caspase 3/7 activity with an increase in cellular ROS level. These results suggest that cell health is largely dependent on the cellular ROS level, highlighting oxidative stress as a key mechanism for biological effects from SOA exposure. Linear regression analyses reveal greater changes of the three cellular responses with increasing carbon oxidation state (OSc) of SOA, suggesting that SOA are more toxic when they are more oxidized. Overall, our work provides critical insights into the associations between cell health and ROS level upon SOA exposure and proposes that OSc could be a suitable proxy to assess the overall SOA toxicity.


Subject(s)
Air Pollutants , Reactive Oxygen Species/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Caspase 3/analysis , Particulate Matter/analysis , Aerosols/analysis
8.
Environ Res ; 211: 113093, 2022 08.
Article in English | MEDLINE | ID: mdl-35292245

ABSTRACT

Hydroxymethanesulfonate (HMS), a key marker species of aqueous-phase processing, plays a significant role in sulfur budget in atmosphere. Here we have a comprehensive characterization of HMS at urban and rural sites in North China Plain (NCP) by using the real-time measurements from a high-resolution aerosol mass spectrometer (AMS) and a single-particle AMS together with offline filter analysis. Our results showed much higher winter concentration of HMS at the rural site (average±1σ: 2.58 ± 2.56 µg m-3) than that (1.70 ± 2.68 µg m-3) in Beijing due to the more frequent fog events, low particle acidity and high concentration of precursors. The HMS on average contributed 6.3% and 5.2% to organic aerosol (OA), and 16% and 12% to the total particulate sulfur, at the rural and urban sites, respectively. HMS was highly correlated with aqueous-phase secondary OA and sulfate, and its contribution to the total particulate sulfur increased significantly as a function of relative humidity demonstrating the effective HMS production from aqueous-phase processing. Single-particle analysis showed that HMS-containing particles were mainly mixed with amine-related compounds. In addition, we found that organosulfur compounds (OS) estimated from sulfur-containing fragments of AMS correlated well with HMS at both urban and rural sites. While OS at the rural site was dominated by HMS, other types of OS were also important in urban area. The high HMS also affected the estimation of particle acidity using the AMS measured and predicted ammonium, particularly during severe haze episodes. Overall, our results demonstrated the importance of HMS in winter in NCP, and it could be more important in total particulate sulfur budget as the continuous decrease in sulfate in the future.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Dust/analysis , Environmental Monitoring , Particulate Matter/analysis , Sulfates , Sulfur/analysis , Water/analysis
9.
Environ Sci Technol ; 56(6): 3645-3657, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35229595

ABSTRACT

Wildfire-influenced air masses under regional background conditions were characterized at the Mt. Bachelor Observatory (∼2800 m a.s.l.) in summer 2019 to provide a better understanding of the aging of biomass burning organic aerosols (BBOAs) and their impacts on the remote troposphere in the western United States. Submicron aerosol (PM1) concentrations were low (average ± 1σ = 2.2 ± 1.9 µg sm-3), but oxidized BBOAs (average O/C = 0.84) were constantly detected throughout the study. The BBOA correlated well with black carbon, furfural, and acetonitrile and comprised above 50% of PM1 during plume events when the peak PM1 concentration reached 18.0 µg sm-3. Wildfire plumes with estimated transport times varying from ∼10 h to >10 days were identified. The plumes showed ΔOA/ΔCO values ranging from 0.038 to 0.122 ppb ppb-1 with a significant negative relation to plume age, indicating BBOA loss relative to CO during long-range transport. Additionally, increases of average O/C and aerosol sizes were seen in more aged plumes. The mass-based size mode was approximately 700 nm (Dva) in the most oxidized plume that likely originated in Siberia, suggesting aqueous-phase processing during transport. This work highlights the widespread impacts that wildfire emissions have on aerosol concentration and properties, and thus climate, in the western United States.


Subject(s)
Air Pollutants , Wildfires , Aerosols/analysis , Air Pollutants/analysis , Biomass , Environmental Monitoring , Particulate Matter/analysis , United States
10.
Sci Total Environ ; 819: 153117, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35041959

ABSTRACT

The domestic emission control area (DECA) policy has been implemented in China since 2017. However, its impact on ship emissions and in turn urban air quality is still unclear. In this study, real-time single particle measurements were carried out at a site in urban Guangzhou, about 1 km downwind of Huangpu Port, the largest maritime transport hub in southern China, in the summer of 2020 using a single particle aerosol mass spectrometer (SPAMS). During the campaign, the hourly averaged number fraction of ship emitted particles, using vanadium as a chemical indicator, varied from 0 to 14% with an average of 2 ± 1%. Ship emitted single particles contain organic carbon (OC), elemental carbon (EC), metals, sulfate and nitrate. More than 95% of ship emitted particles were sulfate-containing particles and the relative peak areas (RPAs) of sulfate and vanadium in the hourly average mass spectra of ship emitted particles were highly correlated (R2 = 0.85), suggesting the potential contribution of ship emissions to sulfate production in coastal cities. The relative abundance of OC and EC-related components in ship emitted particles varied and it was likely attributed to the different blending fluids used in the production of low sulfur fuels. The results from this study provide evidence for evaluating the effectiveness of the current regulations and guidance for future policy-making regarding the low sulfur fuel quality regulation and multiple-component control strategies.


Subject(s)
Air Pollutants , Air Pollution , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Environmental Monitoring/methods , Particle Size , Particulate Matter/analysis , Ships , Vehicle Emissions/analysis
11.
Sci Total Environ ; 819: 153069, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35038503

ABSTRACT

The high-spatial-resolution distributions of the mass concentration and chemical composition of submicron particulate matter (PM1) across four different functional districts in Lanzhou, a typical northwestern city in China, were studied during the winter haze pollution period using an on-road real-time mobile monitoring system. The purpose of this study is to characterize the spatial variation in the sources and chemical formation of aerosols at the intra-urban scale. A higher PM1 mass concentration (63.0 µg m-3) was observed in an industrially influenced district (XG) with major contributions (70.4%) from three secondary inorganic species (sulfate, nitrate, and ammonium) and two oxygenated organic aerosol (OOA) components with different oxygenation levels. Compared with the densely populated district (CG), sulfate and more-oxidized OOA were the two most distinct contributors to the elevated PM1 mass in XG during the daytime (30.9% in XG vs. 17.5% in CG), whereas nitrate and less-oxidized OOA dominated (41.4% in XG vs. 30.6% in CG) during the nighttime. A lower PM1 mass (44.3 µg m-3) was observed in CG and was contributed predominantly by primary organic aerosols emitted from traffic, cooking, and heating activities. The chemical formation mechanisms of secondary PM1 species in the two different districts during the daytime and nighttime are further examined, which indicated the important photochemical formations of nitrate in CG but sulfate in XG during the daytime, whereas favorable aqueous-phase formations of nitrate and LO-OOA in both districts during the nighttime. The stronger atmospheric oxidation capability might be a key factor leading to the more significant formations of secondary species in XG than CG. These results illustrate city-scale aerosol loading and chemical processes and are useful for local policy makers to develop differentiated and efficient mitigation strategies for the improvement of air quality in Lanzhou.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Mass Spectrometry , Particulate Matter/analysis
12.
Huan Jing Ke Xue ; 43(1): 46-60, 2022 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-34989489

ABSTRACT

In order to investigate the chemical composition and source apportionment of aerosols during winter in the Beijing-Tianjin-Heibei region, the particular matter (PM) and aerosol chemical composition at Mt. Haituo were observed by using a GRIMM 180, a single-particle soot photometer (SP2), and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) from December 28, 2020 to February 3, 2021. Combining these observations with meteorological data and the HYSPLIT model, we calculated the potential source contribution factor (PSCF) and concentration weighted trajectory (CWT) and analyzed the temporal evolution and potential sources apportionment of PM and aerosol chemical composition under different pollution processes. The results showed that the dust storm process mainly affected PM10 and PM2.5 in Mt. Haituo during the winter and had a small impact on PM1; by contrast, haze pollution mainly affected PM1. Chemical components of aerosol accounted for 85.0% and 73.4% of PM1 on clean and haze days, respectively, but only 47.4% of PM1 in dust storm processes. NO3- was the chemical component with the largest mass concentration in haze, accounting for 25.2% of PM1; black carbon (BC) had the largest mass concentration on clean and dust storm days, accounting for 24.1% and 12.8% of PM1, respectively. The median diameters of BC were 209.7, 207.5, and 204.7 nm on clean, dust storm, and haze days, respectively. Dp/Dc was 2.15 in haze pollution, which was 1.38 and 1.39 times that on dust storm and clean days, respectively. Diurnal variations in PM and aerosol chemical components were different during the different processes. PM10 and PM2.5had high mass concentrations at night and low mass concentrations during the daytime on clean and dust storm days and had a unimodal distribution with a peak at 14:00 in haze. Diurnal variations in chemical composition had a unimodal distribution on clean days and a bimodal distribution on dust storm and haze days. The chemical compositions of the BC coating layer were different under different processes. The coating layers of BC were mainly NH4NO3, (NH4)2SO4, and organic matter on the clean, dust storm, and haze days, respectively. The distribution of potential sources of PM1 and its chemical components were different under different processes. The high-value area of the potential sources was mainly concentrated in the Beijing-Baoding-Shijiazhuang-Yangquan area in the southwestern portion of the site during dust storms and was mainly concentrated in Yanqing, Huailai, and Changping in the areas around the site during haze.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Beijing , China , Environmental Monitoring , Particulate Matter/analysis , Seasons
13.
Sci Total Environ ; 770: 145324, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736388

ABSTRACT

National Capital Region (NCR) encompassing New Delhi is one of the most polluted urban metropolitan areas in the world. Real-time chemical characterization of fine particulate matter (PM1 and PM2.5) was carried out using three aerosol mass spectrometers, two aethalometers, and one single particle soot photometer (SP2) at two sites in Delhi (urban) and one site located ~40 km downwind of Delhi, during January-March 2018. The campaign mean PM2.5 (NR-PM2.5 + BC) concentrations at the two urban sites were 153.8 ± 109.4 µg.m-3 and 127.8 ± 83.2 µg.m-3, respectively, whereas PM1 (NR-PM1 + BC) was 72.3 ± 44.0 µg.m-3 at the downwind site. PM2.5 particles were composed mostly of organics (43-44)% followed by chloride (14-17)%, ammonium (9-11)%, nitrate (9%), sulfate (8-10)%, and black carbon (11-16)%, whereas PM1 particles were composed of 47% organics, 13% sulfate as well as ammonium, 11% nitrate as well as chloride, and 5% black carbon. Organic aerosol (OA) source apportionment was done using positive matrix factorization (PMF), solved using an advanced multi-linear engine (ME-2) model. Highly mass-resolved OA mass spectra at one urban and downwind site were factorized into three primary organic aerosol (POA) factors including one traffic-related and two solid-fuel combustion (SFC), and three oxidized OA (OOA) factors. Whereas unit mass resolution OA at the other urban site was factorized into two POA factors related to traffic and SFC, and one OOA factor. OOA constituted a majority of the total OA mass (45-55)% with maximum contribution during afternoon hours ~(70-80)%. Significant differences in the absolute OOA concentration between the two urban sites indicated the influence of local emissions on the oxidized OA formation. Similar PM chemical composition, diurnal and temporal variations at the three sites suggest similar type of sources affecting the particulate pollution in Delhi and adjoining cities, but variability in mass concentration suggest more local influence than regional.

14.
Sci Total Environ ; 762: 143081, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33190904

ABSTRACT

The variations in physicochemical properties of airborne particles collected during a typical transition from haze to dust were investigated using single particle analysis with transmission and scanning electron microscopes combined with online measurement of chemical compositions of airborne particles in Beijing in February 2013. The transition was divided into three phases based on the weather condition. During haze pollution (Phase 1), gaseous and particle pollutants enhanced gradually. Results from single particle analysis showed that more coatings and more anthropogenic elements (e.g., S) appeared on the surface of fine and coarse particles, which was probably caused by efficient aqueous-phase reactions under high humidity (70%) condition. Phase 2 was dust intrusion episode. PM10 reached over 1000 µg m-3. Larger fractions of mineral particles and bare-like soot particles were observed in fine particles, while the fraction of secondary particles with coatings decreased. The proportion of black carbon in submicron particles also increased. Photochemical oxidation in gas phase likely dominated in secondary formation under high O3 concentration. After the dust episode (Phase 3), secondary formation enhanced obviously. Soot aged quickly and had a larger mode of 0.45 µm than the other phases. The size modes of airborne fine particles during Phases 1 and 3 were 0.35 µm, which were a bit larger than that during Phase 2 (0.24 µm). These results indicate that dust plumes accompanied with strong wind brought mineral particles in both fine and coarse modes and freshly emitted particles with smaller sizes, and swept away pre-presence air pollutants. This study could provide detailed information on the physicochemical properties of airborne particles during typical severe pollution processes in a short time. Such short-term change should be taken into account in order to more accurately assess the environmental, climatic and health-related effects of airborne particles.

15.
Environ Pollut ; 270: 116209, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33360069

ABSTRACT

In the present work, we propose a novel algorithm to determine the scattering coefficient of OA by evaluating the relationships of the MSEs for primary organic aerosol (POA) and secondary organic aerosol (SOA) with their mass concentrations at three distinct sites, i.e. an urban site, a rural site, and a background site in China. Our results showed that the MSEs for POA and SOA increased rapidly as a function of mass concentration in low mass loading. While the increasing rate declined after a threshold of mass loading of 50 µg/m3 for POA, and 15 µg/m3 for SOA, respectively. The dry scattering coefficients of submicron particles (PM1) were reconstructed based on the algorithm for POA and SOA scattering coefficient and further verified by using multi-site data. The calculated dry scattering coefficients using our reconstructing algorithm have good consistency with the measured ones, with the high correlation and small deviation in Shanghai (R2 = 0.98; deviations: 2.9%) and Dezhou (R2 = 0.90; deviations: 4.7%), indicating that our algorithms for OA and PM1 are applicable to predict the scattering coefficient of OA and Submicron particle (PM1) in China.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Algorithms , China , Particle Size
16.
J Environ Sci (China) ; 95: 99-110, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32653198

ABSTRACT

PM2.5 filter sampling and components measurement were conducted in autumn and winter from 2014 to 2015 at a suburban site (referred herein as "LLH site") located in the southwest of Beijing. The offline aerosol mass spectrometry (offline-AMS) analysis and positive matrix factorization (PMF) were applied for measurement and source apportionment of water-soluble organic aerosol (WSOA). Organic aerosol (OA) always dominated PM2.5 during the sampling period, especially in winter. WSOA pollution was serious during the polluted period both in autumn (31.1 µg/m3) and winter (31.9 µg/m3), while WSOA accounted for 54.4% of OA during the polluted period in autumn, much more than that (21.3%) in winter. The oxidation degree of WSOA at LLH site was at a high level (oxygen-to-carbon ratio, O/C=0.91) and secondary organic aerosol (SOA) contributed more mass ratio of WSOA than primary organic aerosol (POA) during the whole observation period. In winter, coal combustion OA (CCOA) was a stable source of OA and on average accounted for 25.1% of WSOA. In autumn, biomass burning OA (BBOA) from household combustion contributed 38.3% of WSOA during polluted period. In addition to oxygenated OA (OOA), aqueous-oxygenated OA (aq-OOA) was identified as an important factor of SOA. During heavy pollution period, the mass proportion of aq-OOA to WSOA increased significantly, implying the significant SOA formation through aqueous-phase process. The result of this study highlights the concentration on controlling the residential coal and biomass burning, as well as the research needs on aqueous chemistry in OA formation.


Subject(s)
Air Pollutants/analysis , Aerosols/analysis , Beijing , Environmental Monitoring , Particulate Matter/analysis , Water/analysis
17.
Huan Jing Ke Xue ; 41(2): 609-619, 2020 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-32608719

ABSTRACT

To investigate the chemical composition and pollution characteristics of spring fine particles (PM2.5) in Changzhou, a total of 84 PM2.5 samples were collected from March 1st to May 30th, 2017. We measured and analyzed conventional components, such as water-soluble ions (WSIIs) and carbonaceous components (OC and EC). The water-soluble organic aerosol (WSOA) was also analyzed by an aerodyne soot particle aerosol mass spectrometer (SP-AMS). During the sampling period, the average daily PM2.5 concentration was 101.97 µg·m-3, with more than 73.8% sampling days exceeding the Target-2 standard of the national ambient air quality standard of China. The air quality during the sampling period was dominated by light, moderate, and heavy pollution, accounting for 39.3%, 21.4%, and 13.1% of the total days, respectively. The total WSIIs accounted for 39.86% of PM2.5 mass, of which secondary ions (SO42-, NH4+, and NO3-) accounted for 81.85% of the total WSIIs. The slope of the linear fitted line of the anion and cation charge balance (AE/CE) was greater than 1 (1.09), which indicated that PM2.5 was weakly acidic. The average OC/EC ratio was 2.53, indicating that PM2.5 was influenced by the secondary conversion. WSOA included CxHy+(32.1%), CxHyO+(30.4%), CxHyO2+(25.4%), and HyO+(4.7%) identified by SP-AMS. The average oxygen-to-carbon (O/C), hydrogen-to-carbon (H/C), nitrogen-to-carbon (N/C), and organic matter-to-organic carbon (OM/OC) ratios of the WSOA were 0.72, 1.53, 0.04, and 2.15, respectively. Higher O/C indicated higher contributions from secondary photochemical reaction conversion in spring. Positive matrix factorization (PMF) analysis for AMS mass spectra of WSOA identified three sources, namely hydrocarbon-like (HOA), semi-volatile oxygenated OA (SVOOA)-biomass burning OA (BBOA), and low-volatility oxygenated OA (LVOOA), which on average accounted for 18.4%, 34.1%, and 47.4% of the total WSOA, respectively.

18.
Huan Jing Ke Xue ; 41(6): 2505-2518, 2020 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-32608764

ABSTRACT

Tianjin is located in the Beijing-Tianjin-Hebei region. Recently, particulate matter pollution has received wide attention; therefore, studying the chemical composition and sources of particulate matter in the atmospheric environment is of great significance. To clarify the mixed state and possible sources of particulate matter in the summer ambient air in Tianjin, this study used single particle aerosol mass spectrometer (SPAMS) to collect 209887 samples. Particle size and complete spectrometry information were collected in July 2017. A total of 369 particle classes were obtained with respect to clustering particles with similarities in mass spectrometry characteristics using ART-2a. Then, according to the similarity in the chemical composition (mass spectrometry) of the categories, 19 particulate matter categories were artificially merged: K-EC (0.20%), K-EC-Sec (0.18%), K-NO3-PO3(12.00%), K-NO3-SiO3(2.98%), K-Sec (0.16%), EC (39.60%), EC-Sec (3.46%), EC-HM-Sec (3.93%), HEC (1.49%), HEC-Sec (1.38%), OC-Amine-Sec (3.58%), OC-Sec (0.36%), OCEC-Sec (0.71%), Dust-HEC (21.35%), Dust-Sec (0.72%), Cl-EC-NO3(1.22%), Na-Cl-NO3(3.20%), HM-Sec (2.58%), and PAH-Sec (0.90%). The obtained particle classes can be attributed to different sources of aerosol particles and different transmission and reaction processes. According to comprehensive analysis, the collected particle contribution sources were found to mainly include motor vehicle emission sources, biomass combustion sources, process sources, dust sources, and secondary processes. Among them, K-EC, EC, HEC, and Dust-HEC particles were mainly from direct emissions of primary sources. K-Sec, OC-Amine-Sec, OC-Sec, OCEC-Sec, Na-Cl-NO3, and PAH-Sec particles mainly undergo different degrees of aging or mixed with secondary components.

19.
Chemosphere ; 242: 125184, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31677510

ABSTRACT

The cigarette smoke in public area could be harmful to the non-smokers. In this paper, laser-induced breakdown spectroscopy (LIBS) is applied to the in situ detection of the cigarette smoke in public area, and the single particles aerosol mass spectrometer (SPAMS) is utilized to aid the elemental analysis as well as realize the isotope detection. According to the obtained emission spectra, the smoke consists of Mg, Ca, Sr, Na, K elements which are absent in air, and the concentrations of H2O and CO2 in smoke increase obviously. Moreover, the cigarette ash after burning is taken as the sample for off-line detection and several heavy metal elements are detected. The comparison between the spectra of cigarette smoke and ash shows that these two kinds of detection are greatly different in terms of constituent and plasma status. In addition, the molecular emission of Carbon-Nitrogen was observed in smoke spectrum, and the molecular vibrational and rotational temperature of CN molecule was calculated. Finally, the LIBS and SPAMS were applied to the semi-quantitative detection and isotope analysis of Pb in the smoke.


Subject(s)
Metals, Heavy/analysis , Smoking , Spectrum Analysis/methods , Tobacco Smoke Pollution/analysis , Mass Spectrometry/methods , Smoke/analysis
20.
J Environ Sci (China) ; 83: 217-228, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31221385

ABSTRACT

The impact of air masses motion on marine aerosol properties was investigated using an on-board single particle mass spectrometer (SPAMS) deployed for the determination of single particle size resolved chemical composition over Southeast China Sea. Two aerosol blooms (E1 and E2) were observed during the cruise. High average particle number count occurred in E1 (7320), followed by E2 (5850), which was more than 100-150 times of the average particle number count during normal periods. Particles were classified as four major sources, including continental source, shipping source, marine source, and transport source based on the mass spectral similarity. Transport source was identified as those particles with high particle number count occurred only during aerosol bloom period. Three sub-types of EC-Ca, OC-Ca, and Al-rich were classified as transport source. EC-Ca was the dominant particles of the transport source, accounting for more than 70% of the total particles in aerosol bloom events. A uni-modal size distribution in the size range of 0.1-2.0 µm was observed during normal period, while a bimodal distribution with a tiny mode (<0.3 µm) and a coarse mode between 0.4 and 0.6 µm was present during aerosol bloom. The variation of aerosol source is consistent with air masses back trajectories, for the reason that most of the long-range air trajectories are from the ocean, while short air trajectories originate in the continental regions, which means that air masses have a significant impact on the aerosol physical-chemical properties along their tracks.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Air Movements , Air Pollution/statistics & numerical data , Atmosphere/chemistry , China , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL