Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.833
Filter
1.
J Colloid Interface Sci ; 674: 766-777, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955008

ABSTRACT

Plasmon-mediated chemical reactions (PMCR) have garnered growing interest as a promising concept for photocatalysis. However, in electrochemical systems at solid-liquid interfaces, the photo-induced charge transfer on the surface of metal-semiconductor heterostructures involves complex processes and mechanisms, which are still poorly understood. We explore the plasmon-mediated carrier transfer mechanism and the synergistic effect of light and electric fields on Ag-TiO2 heterostructures, through a combination of electrochemical surface-enhanced Raman spectroscopy and photoelectrochemical methods, with para-aminothiophenol (PATP) serving as a probe molecule. The results show that photocurrent responses are dependent on not only excitation wavelengths and applied potentials, but also the irreversibility of redox. The relationship between photocurrent responses and the chemical transformation between PATP and 4,4'-dimercaptoazobenzene is established, reflecting the photo-induced charge transfer of the heterostructures. The collaboration of spectroscopic and photoelectrochemical methods provide valuable insights into the chemical transformation and kinetic information of adsorbed molecules on the heterostructure during PMCR, offering opportunities for modulating of photocatalytic activities of hot carriers.

2.
Chemosphere ; 362: 142736, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950752

ABSTRACT

Developing high-performance and durable catalysts presents a significant challenge for oxidizing toxic inorganic and pharmaceutical compounds in wastewater. Recently, there has been a surge in the development of new heterogeneous catalysts for degrading pharmaceutical compounds, driven by advancements in electrocatalysts and photoelectrocatalysts. In this study, a plasmonic Ag nanoparticles decorated CoFe2O4@TiO2 heteronanostructures have been successfully designed to fabricate a high-performing photoelectrode for the oxidation of pharmaceutical compounds. The developed Ag-CoFe2O4@TiO2 possessed a higher electrochemical stability and effectively harvested the UV to visible and NIR radiation in sunlight which generates the enormous photochemical reactive species that involved in the oxidation of ibuprofen in wastewater. Under direct sunlight irradiation, Ag-CoFe2O4@TiO2 achieved complete oxidation of ibuprofen in wastewater at 0.8 V vs RHE. This indicates that metallic Ag nanoparticles are involved in the charge separation and transport of charge carriers from the photoactive sites of CoFe2O4@TiO2, promoting the generation of abundant hydroxy, oxy, and superoxide radicals that actively break the bonds of ibuprofen. Additionally, oxidation agents such as urea and H2O2 were utilized to enhance the formation of superoxide ions and hydroxyl radicals, which rapidly participate in the oxidation of ibuprofen. Significantly, testing for recyclability confirmed the stability of the Ag-CoFe2O4@TiO2 photoanode, ensuring its suitability for prolonged use in photoelectrochemical advanced oxidation processes. Integrating Ag-CoFe2O4@TiO2 photoanodes into water purification systems could enhance economic feasibility, reduce energy consumption, and improve efficiency.

3.
Virol J ; 21(1): 148, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951814

ABSTRACT

The magnitude of the HIV-1 epidemic in Nigeria is second only to the subtype C epidemic in South Africa, yet the subtypes prevalent in Nigeria require further characterization. A panel of 50 subtype G and 18 CRF02_AG Nigerian HIV-1 pseudoviruses (PSV) was developed and envelope coreceptor usage, neutralization sensitivity and cross-clade reactivity were characterized. These PSV were neutralized by some antibodies targeting major neutralizing determinants, but potentially important differences were observed in specific sensitivities (eg. to sCD4, MPER and V2/V3 monoclonal antibodies), as well as in properties such as variable loop lengths, number of potential N-linked glycans and charge, demonstrating distinct antigenic characteristics of CRF02_AG and subtype G. There was preferential neutralization of the matched CRF/subtype when PSV from subtype G or CRF02_AG were tested using pooled plasma. These novel Nigerian PSV will be useful to study HIV-1 CRF- or subtype-specific humoral immune responses for subtype G and CRF02_AG.


Subject(s)
Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Neutralization Tests , HIV-1/immunology , HIV-1/genetics , HIV-1/classification , Nigeria , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Humans , HIV Antibodies/immunology , HIV Antibodies/blood , HIV Infections/immunology , HIV Infections/virology , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , Cross Reactions/immunology
4.
Clin Nephrol Case Stud ; 12: 42-47, 2024.
Article in English | MEDLINE | ID: mdl-38957708

ABSTRACT

We investigated the pathogenesis of a perihilar variant of focal segmental glomerulosclerosis detected by kidney biopsy in a 16-year-old male. The disease was refractory to steroid therapy, and at the second kidney biopsy, abnormal mitochondrial proliferation was newly observed in the podocytes. The patient also developed late-onset hearing loss and had a family history of diabetes, and genetic testing confirmed the mitochondrial DNA mutation 3243A>G (48%). Eight months after hemodialysis was started, encephalopathy occurred presumably due to rapid dehydration. After changing dialysis into continuous ambulatory peritoneal dialysis, encephalopathy was resolved, but the patient developed myocardial hypertrophy, probably because of the myocardial overreaction to congestion. A myocardial biopsy showed mitochondrial proliferation in the myocardium. After renal transplantation from his mother with a heteroplasmy of 4%, the cardiomyopathy improved, and the renal function has remained stable for 4 years. We speculated that the abnormal mitochondrial morphology in the kidney and heart may be characteristic of mitochondrial genetic disease, and renal transplantation from the mother with a low heteroplasmy was considered desirable for mitochondrial nephropathy with poor prognosis.

5.
Pancreatology ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38960778

ABSTRACT

BACKGROUND: The pathophysiology of Acute Pancreatitis (AP) may be complicated by endothelial activation. von Willebrand Factor (vWF)- ADAMTS13 axis is a marker of endothelial activation. The study aimed to investigate the axis in AP, comparing it in patients with and without persistent organ failure (OF), with and without pancreatic necrosis, and correlating it with the standard severity scores (CRP, APACHE II, BISAP, SOFA, and qSOFA) METHODS: vWF-Antigen (vWF:Ag), vWF-Collagen-Binding-Assay (vWF:CBA), and ADAMTS13 activity (ADAMTS13:act) levels were measured within 5 days of symptom onset in consecutive patients (n = 98), who were admitted with a first episode of AP (Dec 2021-May 2023). RESULTS: Of the 98 patients admitted with AP, 78(79.6 %) had no or transient OF; 20(20.4 %) had persistent OF. Age was comparable (43.73 ± 15.36 vs 38.65 ± 13.69) [mean ± SD](years), and males were predominant in both groups (70.5 % vs 80 %). Patientswith persistent OF had higher vWF:CBA(%)[323(279-486.5) vs 199.5(159.1-295.75)] and lower ADAMTS13:act(%)[35.4(23.8-56.85) vs 56.35(44.1-71.9)][median (25th - 75th percentile)](P = 0.001) than those with no or transient OF. Patients with pancreatic necrosis (n = 19) had lower ADAMTS13:act(%)[42.79 ± 18.69] than those without pancreatic necrosis (n = 18) [62.49 ± 22.64] (P < 0.01). ADAMTS13:act had a negative correlation(r = -0.2), whereas vWF:Ag and vWF:CBA had a positive correlation (r = 0.2) with the standard severity scores (P < 0.05). ADAMTS13:act could predict pancreatic necrosis [AUROC-0.737, P < 0.05] and persistent OF [AUROC-0.746, P < 0.001], while vWF:CBA could predict persistent OF [AUROC- 0.73, P < 0.001]. CONCLUSION: vWF-ADAMTS13 axis helps to predict severe disease and is associated with poor outcomes in acute pancreatitis.

6.
Sci Rep ; 14(1): 15227, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956146

ABSTRACT

Methylene blue dye, being toxic, carcinogenic and non-biodegradable, poses a serious threat for human health and environmental safety. The effective and time-saving removal of such industrial dye necessitates the use of innovative technologies such as silver nanoparticle-based catalysis. Utilizing a pulsed Nd:YAG laser operating at the second harmonic generation of 532 nm with 2.6 J energy per pulse and 10 ns pulse duration, Ag nanoparticles were synthesized via an eco-friendly method with sodium dodecyl sulphate (SDS) as a capping agent. Different exposure times (15, 30, and 45 min) resulted in varying nanoparticle sizes. Characterization was achieved through UV-Vis absorption spectroscopy, scanning electron microscopy (SEM) imaging, and energy dispersive X-ray (EDX). Lorentzian fitting was used to model nanoparticle size, aligning well with SEM results. Mie's theory was applied to evaluate the absorption, scattering, and extinction cross-sectional area spectra. EDX revealed increasing Ag and carbon content with exposure time. The SDS-caped AgNPs nanoparticles were tested as catalyst for methylene blue degradation, achieving up to 92.5% removal in just 12 min with a rate constant of 0.2626 min-1, suggesting efficient and time-saving catalyst compared to previously reported Ag-based nanocatalysts.

7.
Heliyon ; 10(11): e32419, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961897

ABSTRACT

Silver nanoparticles (Ag NPs) play a pivotal role in the current research landscape due to their extensive applications in engineering, biotechnology, and industry. The aim is to use fig (Ficus hispida Linn. f.) extract (FE) for eco-friendly Ag NPs synthesis, followed by detailed characterization, antibacterial testing, and investigation of bioelectricity generation. This study focuses on the crystallographic features and nanostructures of Ag NPs synthesized from FE. Locally sourced fig was boiled in deionized water, cooled, and doubly filtered. A color change in 45 mL 0.005 M AgNO3 and 5 mL FE after 40 min confirmed the bio-reduction of silver ions to Ag NPs. Acting as a reducing and capping agent, the fig extract ensures a green and sustainable process. Various analyses, including UV-vis absorption spectrophotometry (UV), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and Transmission electron microscopy (TEM) were employed to characterize the synthesized nanoparticles, and Gas chromatography-mass spectrometry (GC-MS) analysis of the fig extract revealed the presence of eleven chemicals. Notably, the Ag NPs exhibited a surface plasmon resonance (SPR) band at 418 nm, confirmed by UV analysis, while FTIR and XRD results highlighted the presence of active functional groups in FE and the crystalline nature of Ag NPs respectively. With an average particle size of 44.57 nm determined by FESEM and a crystalline size of 35.87 nm determined by XRD, the nanoparticles showed strong antibacterial activities against Staphylococcus epidermidis and Escherichia coli. Most importantly, fig fruit extract has been used as the bio-electrolyte solution to generate electricity for the first time in this report. The findings of this report can be the headway of nano-biotechnology in medicinal and device applications.

8.
J Colloid Interface Sci ; 674: 993-1003, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964003

ABSTRACT

The Sabatier principle in heterogeneous catalysis provides guidance for designing optimal catalysts with the highest activity. We report a new Sabatier phenomenon induced by nanoclusters on different atomic scales in gas-sensitive reactions. We prepared a series of Ag nanocluster catalysts with coordination structures ranging from Ag0 to Ag13 through a surface coordination strategy. When used as catalysts for gas-sensitive reactions, a volcano-type relationship between the coordination number of Ag nanoclusters and gas-sensitive activity emerges, with a summit at a moderate coordination of Ag5. Mechanistic studies show that the efficient adsorption of activated *C2H6O on electron-rich Ag5 clusters is a key factor for the Sabatier phenomenon (adsorption energy from -0.322 eV to -0.663 eV), which leads to highly selective sensing. We found that the catalyst electron-rich surface layer induced by Ag5 clusters serves as a descriptor to explain the structure-activity relationship. Furthermore, due to the well-defined geometric and electronic structures in the Ag5 clusters, the optimized catalyst achieves both maximum activity and selectivity in chemoselective sensing reactions. This study reveals the Sabatier principle and provides insightful guidance for the rational design of more efficient and practical nanocluster catalysts for heterogeneous catalysis.

9.
Colloids Surf B Biointerfaces ; 241: 114060, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38964275

ABSTRACT

The conventional silver nanoparticles (Ag NPs) are characterized with high loading rate and stacking phenomenon, leading to shedding caused biotoxicity and low catalytic efficiency. This seriously hinders their application in biomedicine. Here, we modified the highly dispersible Ag NPs and Ag single-atoms (SAs) synthesis by combining the halloysite clay nanotubes (HNTs) and dodecahydro-dodecaborate (closo-[B12H12]2-) to increase the biocompatible properties and decrease the loading rate. This novel Ag single-atom nanoenzyme alongside Ag NPs nanoenzyme avoid the elevated-temperature calcination while maintaining the exceptionally high-level efficiency of Ag utilization via the reducibility and coordination stabilization of closo-[B12H12]2- and HNTs. With theoretical calculation and electron paramagnetic resonance, we confirmed that both Ag SAzymes and Ag NPs in HNT@B12H12@Ag nanoenzyme are capable decompose the H2O2 into hydroxyl radical (·OH). For the application, we investigated the catalytic activity in the tumor cells and antitumor effects of HNT@B12H12@Ag nanoenzyme both in vitro and in vivo, and confirmed that it effectively suppressed melanoma growth through ·OH generation, with limited biotoxicity. This study provides a novel Ag nanoenzyme synthesis approach to increase the possibility of its clinical application.

10.
Anal Chim Acta ; 1316: 342826, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969424

ABSTRACT

BACKGROUND: In the fields of environmental monitoring and nuclear emergency, in order to obtain the relevant information of uranyl-induced environmental pollution and nuclear accident, it is necessary to establish a rapid quantitative analytical technique for uranyl ions. As a new promising technique, surface-enhanced Raman scattering (SERS) is hopeful to achieve this goal. However, uranyl ions are easily desorbed from SERS substrates under acidic conditions, and the structures of SERS substrates will be destroyed in the strong acidic aqueous solutions. Besides, the quantitative detection ability of SERS for uranyl ions needs to be promoted. Hence, it is necessary to develop new SERS substrates for accurate quantitative detection of trace uranyl in environmental water samples, especially in acidic solutions. RESULTS: In this work, we prepared silver ions/sodium alginate supramolecular hydrogel membrane (Ag+/SA SMH membrane), and the Ag+ ions from the membrane were transformed into Ag/Ag2O complex nanoparticles under laser irradiation. The Raman signal of uranyl was strongly enhanced under the synergistic interaction of electromagnetic enhancement derived from the Ag nanoparticles and charge transfer enhancement between uranyl and Ag2O. Utilizing the peak of SA (550 cm-1) as an internal standard, a quantitative detection with a LOD of 6.7 × 10-9 mol L-1 was achieved due to a good linear relation of uranyl concentrations from 1.0 × 10-8 mol L-1 to 2 × 10-6 mol L-1. Furthermore, foreign metal ions hardly affected the SERS detection of uranyl, and the substrate could determine trace uranyl in natural water samples. Particularly, the acidity had no obvious effect on SERS signals of uranyl ions. Therefore, in addition to the detection of uranyl ions in natural water samples, the proposed strategy could also detect uranyl ions in strong acidic solutions. SIGNIFICANCE AND NOVELTY: A simple one-step method was used to prepare an Ag+/SA SMH membrane for rapid quantitative detection of uranyl ions for the first time. The proposed substrate successfully detected uranyl ions under acidic conditions by immobilizing uranyl ion in hydrogel structure. In comparison with the previous studies, a more accurate quantitative analysis for uranyl ions was achieved by using an internal standard, and the proposed strategy could determine trace uranyl in either natural water samples or strong acidic solutions.

11.
J Environ Manage ; 366: 121686, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971057

ABSTRACT

In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated •O2-, •OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.

12.
Int J Clin Oncol ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972023

ABSTRACT

BACKGROUND: Few studies have compared endoscopic ultrasound (EUS)-guided hepaticogastrostomy (HGS) with EUS-guided antegrade metal stent placement (AGMS). The purpose of this study was to compare times to recurrent biliary obstruction (TRBO) in patients who underwent HGS using metal stents (MS) and those who underwent AGMS keeping access routes with plastic stents (AGMS-AR). METHODS: This study retrospectively evaluated consecutive patients who underwent HGS or AGMS between September 2016 and December 2022. TRBO, overall survival (OS), and adverse event (AE) rates were compared in the two groups. The risk factors for RBO were determined using a multivariable Cox proportional hazards model. RESULTS: This study included 32 patients in the HGS group and 30 in the AGMS-AR group. Technical success rate was significantly higher in the HGS than in the AGMS-AR group (100 vs. 80%; P = 0.009). The technical success rate without tract dilation was significantly higher in the AGMS-AR than in the HGS group (83 vs. 38%; P < 0.001). RBO rates were significantly higher in the HGS than in the AGMS-AR group (53 vs. 17%; P = 0.024), whereas AE rates did not differ significantly. TRBO differed significantly in the HGS and AGMS-AR groups (159 days vs. not reached, P = 0.011), whereas OS did not differ significantly. Multivariable analysis revealed that HGS was an independent risk factor for RBO (hazard ratio, 6.48, P = 0.014). CONCLUSION: TRBO was significantly longer in patients who underwent AGMS with PS than HGS. AGMS with PS may be effective after the failure of ERCP in patients with malignant biliary obstruction.

13.
Small ; : e2403176, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949041

ABSTRACT

Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.

14.
Article in English | MEDLINE | ID: mdl-38986045

ABSTRACT

Both the catalyst and electrolyte deeply impact the performance of the carbon dioxide reduction reaction (CO2RR). It remains a challenge to design the electrolyte compositions for promoting the CO2RR. Here, typical anionic surfactants, dodecylphosphonic acid (DDPA) and its analogues, are employed as electrolyte additives to tune the catalysis interface where the CO2RR occurs. Surprisingly, the anionic surfactant-tailored interfacial microenvironment enables a set of typical commercial catalysts for the CO2RR to deliver a significantly enhanced selectivity of carbon products in both neutral and acidic electrolytes. Mechanistic studies disclose that the DDPA addition restructures the interfacial hydrogen-bond environment via increasing the weak H-bonded water, thus promoting the CO2 protonation to CO. Specifically, in an H-type cell, the Faradaic efficiency of CO increases from 70 to 98% at -1.0 V versus the reversible hydrogen electrode. Furthermore, in a flow cell, the DDPA-containing electrolyte maintains over 90% FECO from 50-400 mA cm-2. Additionally, this electrolyte modulation strategy can be extended to acidic CO2RR with a pH of 1.5-3.5.

15.
Rev Med Virol ; 34(4): e2569, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38986606

ABSTRACT

We aimed to assess the performance of Ag-RDT and RT-qPCR with regard to detecting infectious SARS-CoV-2 in cell cultures, as their diagnostic test accuracy (DTA) compared to virus isolation remains largely unknown. We searched three databases up to 15 December 2021 for DTA studies. The bivariate model was used to synthesise the estimates. Risk of bias was assessed using QUADAS-2/C. Twenty studies (2605 respiratory samples) using cell culture and at least one molecular test were identified. All studies were at high or unclear risk of bias in at least one domain. Three comparative DTA studies reported results on Ag-RDT and RT-qPCR against cell culture. Two studies evaluated RT-qPCR against cell culture only. Fifteen studies evaluated Ag-RDT against cell culture as reference standard in RT-qPCR-positive samples. For Ag-RDT, summary sensitivity was 93% (95% CI 78; 98%) and specificity 87% (95% CI 70; 95%). For RT-qPCR, summary sensitivity (continuity-corrected) was 98% (95% CI 95; 99%) and specificity 45% (95% CI 28; 63%). In studies relying on RT-qPCR-positive subsamples (n = 15), the summary sensitivity of Ag-RDT was 93% (95% CI 92; 93%) and specificity 63% (95% CI 63; 63%). Ag-RDT show moderately high sensitivity, detecting most but not all samples demonstrated to be infectious based on virus isolation. Although RT-qPCR exhibits high sensitivity across studies, its low specificity to indicate infectivity raises the question of its general superiority in all clinical settings. Study findings should be interpreted with caution due to the risk of bias, heterogeneity and the imperfect reference standard for infectivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Sensitivity and Specificity , Humans , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , COVID-19/diagnosis , COVID-19/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/standards , Cell Culture Techniques/methods , COVID-19 Testing/methods , COVID-19 Nucleic Acid Testing/methods , Rapid Diagnostic Tests
16.
J Environ Manage ; 365: 121715, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968898

ABSTRACT

Treating hazardous landfill leachate poses significant environmental challenges due to its complex nature. In this study, we propose a novel approach for enhancing the anaerobic digestion of landfill leachate using silver nanoparticles (Ag NPs) conjugated with eco-friendly green silica nanoparticles (Si NPs). The synthesized Si NPs and Ag@Si NPs were characterized using various analytical techniques, including transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The anaerobic digestion performance of Si NPs and Ag@Si NPs was tested by treating landfill leachate samples with 50 mg/L of each NP. The results demonstrated an enhancement in the biogas production rate compared to the control phase without the nanocomposite, as the biogas production increased by 14% and 37% using Si NPs and Ag@Si NPs. Ag@Si NPs effectively promoted the degradation of organic pollutants in the leachate, regarding chemical oxygen demand (COD) and volatile solids (VS) by 58% and 65%. Furthermore, microbial analysis revealed that Ag@Si NPs enhanced the activity of microbial species responsible for the methanogenic process. Overall, incorporating AgNPs conjugated with eco-friendly green Si NPs represents a sustainable and efficient approach for enhancing the anaerobic digestion of landfill leachate.


Subject(s)
Biofuels , Metal Nanoparticles , Oryza , Silicon Dioxide , Silver , Water Pollutants, Chemical , Silver/chemistry , Silicon Dioxide/chemistry , Metal Nanoparticles/chemistry , Anaerobiosis , Water Pollutants, Chemical/chemistry , Nanoparticles/chemistry
17.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000519

ABSTRACT

The aim of the present study was to investigate the impact of CCR5 Δ32 and CTLA-4 polymorphisms on the response to IFN-ß treatment in our cohort of MS patients from Croatia and Slovenia. Genomic DNA was obtained from 295 MS patients (230 female; 65 male) classified as responders (n = 173) and non-responders (n = 122) based on clinical criteria for treatment efficacy. Genotyping was performed via PCR/PCR-RFLP. No significant differences in the genotype/allele frequencies of CCR5Δ32 and CTLA-4 +49 A/G were detected between male responders and non-responders. A significantly higher prevalence (p = 0.039) of the CTLA-4 +49 AA genotype was found in female responders (42.1%) compared to non-responders (28.9%). Using multiple forward regression analysis, the CTLA-4 +49 AA genotype significantly predicted a positive response to IFN-ß therapy in females (p = 0.011) and contributed to 4.5% of response variability. Furthermore, the combined presence of the CCR5Δ32 wtwt/CTLA-4 +49 AA genotype significantly predicted a positive response to treatment in females (p = 0.025). The age at disease onset, pretreatment relapse rate, and baseline EDSS score were not reliable predictors of treatment response in MS patients. Our results indicate that the presence of the CCR5Δ32 polymorphism was not associated with the response to IFN-ß treatment, whereas the CTLA-4 +49 polymorphism showed a positive correlation with an optimal response in female patients.


Subject(s)
CTLA-4 Antigen , Gene Frequency , Interferon-beta , Multiple Sclerosis , Polymorphism, Single Nucleotide , Receptors, CCR5 , Humans , Female , Male , CTLA-4 Antigen/genetics , Receptors, CCR5/genetics , Interferon-beta/therapeutic use , Slovenia , Adult , Croatia , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Middle Aged , Genotype , Treatment Outcome
18.
Sensors (Basel) ; 24(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39001101

ABSTRACT

With the development of technology, people's demand for pressure sensors with high sensitivity and a wide working range is increasing. An effective way to achieve this goal is simulating human skin. Herein, we propose a facile, low-cost, and reproducible method for preparing a skin-like multi-layer flexible pressure sensor (MFPS) device with high sensitivity (5.51 kPa-1 from 0 to 30 kPa) and wide working pressure range (0-200 kPa) by assembling carbonized fabrics and micro-wrinkle-structured Ag@rGO electrodes layer by layer. In addition, the highly imitated skin structure also provides the device with an extremely short response time (60/90 ms) and stable durability (over 3000 cycles). Importantly, we integrated multiple sensor devices into gloves to monitor finger movements and behaviors. In summary, the skin-like MFPS device has significant potential for real-time monitoring of human activities in the field of flexible wearable electronics and human-machine interaction.


Subject(s)
Cotton Fiber , Pressure , Wearable Electronic Devices , Humans , Cotton Fiber/analysis , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Electrodes , Skin , Textiles , Human Activities
19.
Article in English | MEDLINE | ID: mdl-39014936

ABSTRACT

Herein, we develop a facile wet chemical method for the synthesis of Ag2Te powders at room temperature and flexible Ag2Te/nylon thermoelectric (TE) films are prepared by vacuum-assisted filtration of the synthesized Ag2Te powders and then hot pressing. Because of the good crystallinity of Ag2Te grains and continuous grain boundaries, an optimized film exhibits a power factor of 513 µW m-1 K-2 at 300 K, which stands among the highest values reported for Ag2Te-based films to date. In addition, the film also has good flexibility. A four-leg flexible TE device assembled with the film generates a power density of 5.46 W m-2 at a temperature gradient of 31.8 K. This work provides a facile and environmentally friendly method for preparing flexible Ag2Te films.

20.
Small ; : e2403517, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045902

ABSTRACT

The cyclization of 3-hydroxy alkynes and the carboxylation of terminal alkynes both with CO2 are two attractive strategies to simultaneously reduce CO2 emission and produce value-added chemicals. Herein, the differential activation of alkynes over atomically precise Ag nanoclusters (NCs) supported on Metal-organic framework-derived highly-open mesoporous CeO2 (HM-CeO2) by reserving or removing their surface captopril ligands is reported. The ligand-capped Ag NCs possess electron-rich Ag atoms as efficient π-activation catalytic sites in cyclization reactions, while the naked Ag NCs possess partial positive-charged Ag atoms as perfect σ-activation catalytic sites in carboxylation reactions. Impressively, via coupling with HM-CeO2 featuring abundant basic sites and quick mass transfer, the ligand-capped Ag NCs afford 97.9% yield of 4,4-dimethyl-5-methylidene-1,3-dioxolan-2-one for the cyclization of 2-methyl-3-butyn-2-ol with CO2, which is 4.5 times that of the naked Ag NCs (21.7%), while the naked Ag NCs achieve 98.5% yield of n-butyl 2-alkynoate for the carboxylation of phenylacetylene with CO2, which is 15.6 times that of ligand-capped Ag NCs (6.3%). Density functional theory calculations reveal the ligand-capped Ag NCs can effectively activate alkynyl carbonate ions for the intramolecular ring closing in cyclization reaction, while the naked Ag NCs are highly affiliative in stabilizing terminal alkynyl anions for the insertion of CO2 in carboxylation reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...