Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Biogerontology ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970715

ABSTRACT

The intestinal barrier weakens and chronic gut inflammation occurs in old age, causing age-related illnesses. Recent research shows that low-molecular-weight heparin (LMWH), besides anticoagulation, also has anti-inflammatory and anti-apoptotic effects, protecting the intestinal barrier. This study aims to analyze the effect of LMWH on the intestinal barrier of old male rodents. This study assigned Sprague-Dawley male rats to four groups: young (3 months), young + LMWH, old (20 months), and old + LMWH. The LMWH groups received 1 mg/kg LMWH via subcutaneous injection for 7 days. Optical and transmission electron microscopy (TEM) were used to examine morphological changes in intestinal mucosa due to aging. Intestinal permeability was measured using fluorescein isothiocyanate (FITC)-dextran. ELISA kits were used to measure serum levels of IL-6 and IL-1ß, while Quantitative RT-PCR detected their mRNA levels in intestinal tissues. Western blotting and immunohistochemistry (IHC) evaluated the tight junction (TJ) protein levels such as occludin, zonula occludens-1 (ZO-1), and claudin-2. Western blotting assessed the expression of the apoptosis marker cleaved caspase 3, while IHC was used to detect LGR5+ intestinal stem cells. The intestinal permeability of aged rats was significantly higher than that of young rats, indicating significant differences. With age, the protein levels of occludin and ZO-1 decreased significantly, while the level of claudin-2 increased significantly. Meanwhile, our study found that the levels of IL-1ß and IL-6 increased significantly with age. LMWH intervention effectively alleviated age-related intestinal barrier dysfunction. In aged rats treated with LMWH, the expression of occludin and ZO-1 proteins in the intestine increased, while the expression of claudin-2 decreased. Furthermore, LMWH administration in aged rats resulted in a decrease in IL-1ß and IL-6 levels. LMWH also reduced age-related cleaved caspase3 expression, but IHC showed no difference in LGR5+ intestinal stem cells between groups. Research suggests that LMWH could potentially be a favorable therapeutic choice for age-related diseases associated with intestinal barrier dysfunction, by protecting TJ proteins, reducing inflammation, and apoptosis.

2.
Biomedicines ; 12(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38790953

ABSTRACT

(1) Background: We investigated the detrimental and protective effects of short-, medium, and long-term treatment with different doses of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) during the aging process. (2) Methods: Rats were treated for 15, 30, and 60 weeks with 1, 3, 10, and 30 J of PBMT-sMF or a placebo control. In addition, eight young rats were not subjected to any procedure or treatment and were euthanized at six weeks old. Skin, muscle, bone, kidney, liver, and blood samples were analyzed. (3) Results: No differences between the groups in the morphology of the skin, muscle, and bone was observed. Glutamic pyruvic transaminase levels were increased in the placebo group after 30 and 60 weeks. Glutamic oxaloacetic transaminase levels were also increased in the placebo group after 30 weeks. An increase in creatinine in the PBMT-sMF 3, 10, and 30 J groups compared with that in the young control group was observed. No significant difference in urea levels between the groups was noted. Vascular endothelial growth factor increased in the PBMT-sMF 10 and 30 J groups after 15 weeks of treatment and in the PBMT-sMF 3 J after 60 weeks. Finally, vascular endothelial growth factor decreased in the PBMT-sMF 30 J group after 30 weeks of treatment. (4) Conclusions: PBMT-sMF did not have detrimental effects on the skin, muscle, bone, kidney, or liver after short-, medium-, and long-term treatments in aging rats. In addition, PBMT-sMF may have protective effects on the muscle tissue in aging rats after short- and long-term treatment.

3.
Metab Brain Dis ; 39(5): 833-840, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38687459

ABSTRACT

Brain aging is a physiological event, and oxidative stress and apoptosis are involved in the natural aging process of the brain. Curcumin is a natural antioxidant with potent anti-aging and neuroprotective properties. Therefore, we investigated the protective effects of curcumin on brain apoptosis and oxidative stress, brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) in aged rats. Old female Wistar rats were randomly divided into three groups (n = 7); as follows: (1) control; (2); saline and (3) curcumin (received 30 mg/kg of curcumin, 5 days/week for 8 weeks, intraperitoneally). Our results indicated that treatment with curcumin in aged rats attenuates brain lipid peroxidation, which was accompanied by a significant increase in the BDNF, VEGF, superoxide dismutase (SOD) activity, and anti-apoptotic protein BCl-2. No significant change in brain anti-apoptotic Bax protein levels was observed after curcumin treatment. The study indicates that curcumin could alleviate brain aging which may be due to attenuating oxidative stress, inhibiting apoptosis, and up-regulating SOD activity, which in turn enhances VEGF and BDNF. Therefore, curcumin has potential therapeutic value in the treatment of neurological apoptosis, neurogenesis, and angiogenesis changes caused by brain aging.


Subject(s)
Aging , Apoptosis , Brain-Derived Neurotrophic Factor , Brain , Curcumin , Oxidative Stress , Rats, Wistar , Vascular Endothelial Growth Factor A , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Oxidative Stress/drug effects , Apoptosis/drug effects , Aging/drug effects , Aging/metabolism , Female , Brain/drug effects , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/drug effects , Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Superoxide Dismutase/metabolism , Lipid Peroxidation/drug effects
4.
Sci Rep ; 14(1): 9798, 2024 04 29.
Article in English | MEDLINE | ID: mdl-38684784

ABSTRACT

Aging-related sarcopenia is a degenerative loss of strength and skeletal muscle mass that impairs quality of life. Evaluating NUDT3 gene and myogenin expression as new diagnostic tools in sarcopenia. Also, comparing the concomitant treatment of resistance exercise (EX) and creatine monohydrate (CrM) versus single therapy by EX, coenzyme Q10 (CoQ10), and CrM using aged rats. Sixty male rats were equally divided into groups. The control group, aging group, EX-treated group, the CoQ10 group were administered (500 mg/kg) of CoQ10, the CrM group supplied (0.3 mg/kg of CrM), and a group of CrM concomitant with resistance exercise. Serum lipid profiles, certain antioxidant markers, electromyography (EMG), nudix hydrolase 3 (NUDT3) expression, creatine kinase (CK), and sarcopenic index markers were measured after 12 weeks. The gastrocnemius muscle was stained with hematoxylin-eosin (H&E) and myogenin. The EX-CrM combination showed significant improvement in serum lipid profile, antioxidant markers, EMG, NUDT3 gene, myogenin expression, CK, and sarcopenic index markers from other groups. The NUDT3 gene and myogenin expression have proven efficient as diagnostic tools for sarcopenia. Concomitant treatment of CrM and EX is preferable to individual therapy because it reduces inflammation, improves the lipid serum profile, promotes muscle regeneration, and thus has the potential to improve sarcopenia.


Subject(s)
Aging , Creatine , Muscle, Skeletal , Resistance Training , Sarcopenia , Ubiquinone/analogs & derivatives , Sarcopenia/drug therapy , Sarcopenia/metabolism , Animals , Male , Rats , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Physical Conditioning, Animal , Myogenin/metabolism , Myogenin/genetics , Ubiquinone/pharmacology , Ubiquinone/therapeutic use , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Antioxidants/metabolism , Creatine Kinase/blood , Rats, Wistar
5.
Mol Med ; 30(1): 39, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493090

ABSTRACT

OBJECTIVE: Anesthetics have been linked to cognitive alterations, particularly in the elderly. The current research delineates how Fibroblast Growth Factor 2 (Fgf2) modulates tau protein phosphorylation, contributing to cognitive impairments in aged rats upon sevoflurane administration. METHODS: Rats aged 3, 12, and 18 months were subjected to a 2.5% sevoflurane exposure to form a neurotoxicity model. Cognitive performance was gauged, and the GEO database was employed to identify differentially expressed genes (DEGs) in the 18-month-old cohort post sevoflurane exposure. Bioinformatics tools, inclusive of STRING and GeneCards, facilitated detailed analysis. Experimental validations, both in vivo and in vitro, examined Fgf2's effect on tau phosphorylation. RESULTS: Sevoflurane notably altered cognitive behavior in older rats. Out of 128 DEGs discerned, Fgf2 stood out as instrumental in regulating tau protein phosphorylation. Sevoflurane exposure spiked Fgf2 expression in cortical neurons, intensifying tau phosphorylation via the PI3K/AKT/Gsk3b trajectory. Diminishing Fgf2 expression correspondingly curtailed tau phosphorylation, neurofibrillary tangles, and enhanced cognitive capacities in aged rats. CONCLUSION: Sevoflurane elicits a surge in Fgf2 expression in aging rats, directing tau protein phosphorylation through the PI3K/AKT/Gsk3b route, instigating cognitive aberrations.


Subject(s)
Anesthetics, Inhalation , Cognitive Dysfunction , Methyl Ethers , Aged , Animals , Humans , Infant , Rats , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/metabolism , Cognition , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Methyl Ethers/pharmacology , Methyl Ethers/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Sevoflurane/metabolism , Sevoflurane/pharmacology , tau Proteins/metabolism , Fibroblast Growth Factor 2/metabolism
6.
Exp Gerontol ; 189: 112402, 2024 May.
Article in English | MEDLINE | ID: mdl-38484905

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of combined alpha-lipoic acid (ALA) and mitoquinone (Mito Q) supplementation on cardiac function and the underlying mechanisms in aged rats with myocardial infarction (MI). METHODS: The aged rats underwent left anterior descending artery (LADA) occlusion for 30 min, followed by reperfusion for 24 h. ALA (100 mg/kg, gavage) and Mito Q (10 mg/kg, IP) were administered daily for two weeks before ischemia. Cardiac function, inflammatory, and apoptotic markers were evaluated 24 h after ischemia. RESULTS: The results of this study indicated that the administration of the combination of ALA and Mito Q significantly improved cardiac function. This improvement was linked to a reduction in the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß (P < 0.001) and apoptotic markers (Bax, caspase-3, and Cyt-c), as well as a decrease in the percentage of TUNEL-positive cells (P < 0.001). CONCLUSION: The study revealed that combined intervention synergistically mitigated cardiac dysfunction by suppressing inflammatory and apoptotic pathways in aged rats with MI. Further research is needed to validate the potential of ALA and Mito Q as therapeutic options for elderly people at risk of heart attacks.


Subject(s)
Myocardial Infarction , Organophosphorus Compounds , Thioctic Acid , Ubiquinone/analogs & derivatives , Humans , Aged , Rats , Animals , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Rats, Sprague-Dawley , Myocardial Infarction/drug therapy , Dietary Supplements , Apoptosis
7.
Immun Inflamm Dis ; 11(9): e1023, 2023 09.
Article in English | MEDLINE | ID: mdl-37773699

ABSTRACT

INTRODUCTION: The heterocyclic compound 4-hydroxy-(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPOL) has a protective effect on neurological function in brain tissues damaged by ischemia and hypoxia. This study explored the effects of TEMPOL pretreatment on postoperative cognitive function in aged rats under sevoflurane anesthesia, focusing on inflammatory response and oxidative stress. METHODS: Sixty male rats were divided into normal control (C), sevoflurane anesthesia (S), TEMPOL pretreatment (T), and sevoflurane anesthesia + TEMPOL pretreatment (ST) groups (15 per group). Groups T and ST rats received continuous intraperitoneal TEMPOL (100 mg/kg) for 3 days, while groups C and S rats were injected with 0.9% saline. After pretreatment, groups S and ST received 3% sevoflurane anesthesia. RESULTS: Rats in group S exhibited a longer swimming distance, longer escape latency, lower frequency of platform crossing, and shorter dwell time in the targeted quadrant than those in groups C and T. Rats in group ST exhibited a shorter swimming distance, shorter escape latency, higher frequency of platform crossing, and longer dwell time in the targeted quadrant than those in group S. The expressions of interleukin-6, tumor necrosis factor-α, inducible nitric oxide synthase, and Ym1/2 messenger ribonucleic acid were higher in groups S and ST rats than in groups C and T rats and lower in group ST rats than in group S rat (p < .05). Superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and glutathione peroxidase (GSH-Px) were lower, while malondialdehyde (MDA) was higher in groups S and ST rats than in groups C and T rats (p < .05). Group ST showed higher SOD, T-AOC, and GSH-Px, and lower MDA than group S (p < .05). CONCLUSIONS: TEMPOL pretreatment attenuated postoperative cognitive impairment induced by sevoflurane anesthesia in aged rats. This may be attributed to the downregulation of NR2B-CREB-BDNF pathway, reducing the inflammatory response and oxidative stress damage in hippocampal tissue.


Subject(s)
Anesthesia , Oxidative Stress , Rats , Male , Animals , Sevoflurane/pharmacology , Cognition , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology
8.
Brain Sci ; 13(4)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37190563

ABSTRACT

Delayed neurocognitive recovery (dNCR) is a common complication that occurs post-surgery, especially in elderly individuals. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex plays an essential role in various membrane fusion events, such as synaptic vesicle exocytosis and autophagosome-lysosome fusion. Although SNARE complex dysfunction has been observed in several neurodegenerative disorders, the causal link between SNARE-mediated membrane fusion and dNCR remains unclear. We previously demonstrated that surgical stimuli caused cognitive impairment in aged rats by inducing α-synuclein accumulation, inhibiting autophagy, and disrupting neurotransmitter release in hippocampal synaptosomes. Here, we evaluated the effects of propofol anesthesia plus surgery on learning and memory and investigated levels of SNARE proteins and chaperones in hippocampal synaptosomes. Aged rats that received propofol anesthesia and surgery exhibited learning and memory impairments in a Morris water maze test and decreased levels of synaptosome-associated protein 25, synaptobrevin/vesicle-associated membrane protein 2, and syntaxin 1. Levels of SNARE chaperones, including mammalian uncoordinated-18, complexins 1 and 2, cysteine string protein-α, and N-ethylmaleimide-sensitive factor, were all significantly decreased following anesthesia with surgical stress. However, the synaptic vesicle marker synaptophysin was unaffected. The autophagy-enhancer rapamycin attenuated structural and functional disturbances of the SNARE complex and ameliorated disrupted neurotransmitter release. Our results indicate that perturbations of SNARE proteins in hippocampal synaptosomes may underlie the occurrence of dNCR. Moreover, the protective effect of rapamycin may partially occur through recovery of SNARE structural and functional abnormalities. Our findings provide insight into the molecular mechanisms underlying dNCR.

9.
CNS Neurosci Ther ; 29(11): 3322-3338, 2023 11.
Article in English | MEDLINE | ID: mdl-37208948

ABSTRACT

INTRODUCTION: Emerging evidence suggests that mitochondrial dysfunction plays a crucial role in the pathogenesis of postoperative delayed neurocognitive recovery (dNCR). Mitochondria exist in a dynamic equilibrium that involves fission and fusion to regulate morphology and maintains normal cell function via the removal of damaged mitochondria through mitophagy. Nonetheless, the relationship between mitochondrial morphology and mitophagy, and how they influence mitochondrial function in the development of postoperative dNCR, remains poorly understood. Here, we observed morphological alterations of mitochondria and mitophagy activity in hippocampal neurons and assessed the involvement of their interaction in dNCR following general anesthesia and surgical stress in aged rats. METHODS: Firstly, we evaluated the spatial learning and memory ability of the aged rats after anesthesia/surgery. Hippocampal mitochondrial function and mitochondrial morphology were detected. Afterwards, mitochondrial fission was inhibited by Mdivi-1 and siDrp1 in vivo and in vitro separately. We then detected mitophagy and mitochondrial function. Finally, we used rapamycin to activate mitophagy and observed mitochondrial morphology and mitochondrial function. RESULTS: Surgery impaired hippocampal-dependent spatial learning and memory ability and caused mitochondrial dysfunction. It also increased mitochondrial fission and inhibited mitophagy in hippocampal neurons. Mdivi-1 improved mitophagy and learning and memory ability of aged rats by inhibiting mitochondrial fission. Knocking down Drp1 by siDrp1 also improved mitophagy and mitochondrial function. Meanwhile, rapamycin inhibited excessive mitochondrial fission and improved mitochondrial function. CONCLUSION: Surgery simultaneously increases mitochondrial fission and inhibits mitophagy activity. Mechanistically, mitochondrial fission/fusion and mitophagy activity interact reciprocally with each other and are both involved in postoperative dNCR. These mitochondrial events after surgical stress may provide novel targets and modalities for therapeutic intervention in postoperative dNCR.


Subject(s)
Dynamins , Mitophagy , Rats , Animals , Mitophagy/physiology , Mitochondrial Dynamics , Sirolimus
10.
Front Cell Infect Microbiol ; 13: 1139436, 2023.
Article in English | MEDLINE | ID: mdl-36968119

ABSTRACT

Background: Recent studies reported the association between the changes in gut microbiota and sepsis, but there is unclear for the gut microbes on aged sepsis is associated acute lung injury (SALI), and metformin treatment for the change in gut microbiota. This study aimed to investigate the effect of metformin on gut microbiota and SALI in aged rats with sepsis. It also explored the therapeutic mechanism and the effect of metformin on aged rats with SALI. Methods: Aged 20-21 months SD rats were categorized into three groups: sham-operated rats (AgS group), rats with cecal ligation and puncture (CLP)-induced sepsis (AgCLP group), and rats treated with metformin (100 mg/kg) orally 1 h after CLP treatment (AgMET group). We collected feces from rats and analyzed them by 16S rRNA sequencing. Further, the lung samples were collected for histological analysis and quantitative real-time PCR (qPCR) assay and so on. Results: This study showed that some pathological changes occurring in the lungs of aged rats, such as hemorrhage, edema, and inflammation, improved after metformin treatment; the number of hepatocyte death increased in the AgCLP group, and decreased in the AgMET group. Moreover, metformin relieved SALI inflammation and damage. Importantly, the gut microbiota composition among the three groups in aged SALI rats was different. In particular, the proportion of E. coli and K. pneumoniae was higher in AgCLP group rats than AgS group rats and AgMET group rats; while metformin could increase the proportion of Firmicutes, Lactobacillus, Ruminococcus_1 and Lactobacillus_johnsonii in aged SALI rats. Moreover, Prevotella_9, Klebsiella and Escherichia_Shigella were correlated positively with the inflammatory factor IL-1 in the lung tissues; Firmicutes was correlated negatively with the inflammatory factor IL-1 and IL-6 in the lung tissues. Conclusions: Our findings suggested that metformin could improve SALI and gut microbiota in aged rats, which could provide a potential therapeutic treatment for SALI in aged sepsis.


Subject(s)
Acute Lung Injury , Gastrointestinal Microbiome , Metformin , Sepsis , Rats , Animals , Metformin/pharmacology , Metformin/therapeutic use , Rats, Sprague-Dawley , RNA, Ribosomal, 16S/genetics , Escherichia coli/genetics , Sepsis/complications , Sepsis/drug therapy , Sepsis/pathology , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Lung/pathology , Inflammation/pathology , Interleukin-1/pharmacology , Interleukin-1/therapeutic use
11.
eNeuro ; 10(3)2023 03.
Article in English | MEDLINE | ID: mdl-36894320

ABSTRACT

Persistent neuronal firing is often observed in working memory and temporal association tasks both in humans and animals, and is believed to retain necessary information in these tasks. We have reported that hippocampal CA1 pyramidal cells are able to support persistent firing through intrinsic mechanisms in the presence of cholinergic agonists. However, it still remains largely unknown how persistent firing is affected by the development of animals and aging. Using in vitro patch-clamp recordings from CA1 pyramidal cells in rat brain slices, we first show that the cellular excitability of these aged rats was significantly lower than that of the young rats, responding with fewer spikes to current injection. In addition, we found age-dependent modulations of input resistance, membrane capacitance, and spike width. However, persistent firing in aged (approximately two-year-old) rats was as strong as that in young animals, and the properties of persistent firing were very similar among different age groups. In addition, medium spike afterhyperpolarization potential (mAHP), was not increased by aging and did not correlate with the strength of persistent firing. Lastly, we estimated the depolarization current induced by the cholinergic activation. This current was proportional to the increased membrane capacitance of the aged group and was inversely correlated with their intrinsic excitability. These observations indicate that robust persistent firing can be maintained in aged rats despite reduced excitability, because of the increased amount of cholinergically induced positive current.


Subject(s)
Hippocampus , Pyramidal Cells , Humans , Rats , Animals , Child, Preschool , Pyramidal Cells/physiology , Hippocampus/physiology , Action Potentials/physiology , Neurons , Cholinergic Agents
12.
Neurobiol Aging ; 124: 52-59, 2023 04.
Article in English | MEDLINE | ID: mdl-36739621

ABSTRACT

5-HT1A serotonin receptors may play a role in cognitive function changes related to advanced age. Here, we investigated the effects of acute and repeated treatment with NLX-101 (F15599), a postsynaptic 5-HT1A receptor-biased agonist, and F13714, a presynaptic 5-HT1A receptor-biased agonist on spatial object pattern separation (OPS) in aged (22-24 months) rats. Neuroplasticity markers including brain-derived neurotrophic factor, PSD95, synaptophysin, and doublecortin were evaluated in the hippocampus. Unlike younger rats, aged rats were incapable of discriminating any new position of the objects in the arena, reflecting the detrimental effect of aging on pattern separation. However, aged animals treated with NLX-101 showed a significant cognitive improvement in the OPS test, accompanied by increases in hippocampal brain-derived neurotrophic factor and PSD95 protein levels. In contrast, no improvement in OPS performance was observed when aged rats received F13714. Both F13714 and NLX-101 increased the number of newborn neurons in the hippocampi of aged rats. These findings provide a rationale for targeting post-synaptic 5-HT1A as a treatment for cognitive deficits related to aging.


Subject(s)
Brain-Derived Neurotrophic Factor , Receptor, Serotonin, 5-HT1A , Rats , Animals , Serotonin/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin Receptor Agonists
13.
Nutr Health ; 29(3): 383-387, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36514304

ABSTRACT

Background: Possible health benefits of fish balls tsumire consumption on human health have been deduced based on the results of our earlier study investigating tsumire consumption by young (6-weeks-old) Sprague-Dawley rats. Aim: The objectives of this study were to evaluate the effect of tsumire intake on aged rats by feeding them a diet containing 5% dried tsumire. Methods: Biomarker levels and organ weight of 80-weeks-old Sprague-Dawley rats that were fed with tsumire were examined for potential health benefits. Results: Following 84 days of administering tsumire-containing diet, we found a decrease in some liver function parameters, such as the levels of AST, ALT, ALP and LAP, in the tsumire-fed rats compared to control rats provided with normal diet. In particular, significantly reduced LDH levels were observed in the experimental group. Conclusions: The results can be extrapolated to possible beneficial effects of consumption of tsumire on human health.


Subject(s)
Diet , Liver , Rats , Humans , Animals , Rats, Sprague-Dawley
14.
Psychopharmacology (Berl) ; 239(12): 3847-3857, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36278982

ABSTRACT

RATIONALE: We have discovered that rats at the age of 18 months begin to twitch their heads spontaneously (spontaneous head twitching, SHT). To date, no one has described this phenomenon. OBJECTIVES: The purpose of this study was to characterize SHT pharmacologically and to assess some possible mechanisms underlying SHT. METHODS: Wistar male rats were used in the study. Animals at the age of 18 months were qualified as HSHT (SHT ≥ 7/10 min observations) or LSHT (SHT < 7/10 min observations). Quantitative real-time PCR with TaqMan low-density array (TLDA) approach was adopted to assess the mRNA expression of selected genes in rat's hippocampus. RESULTS: HSHT rats did not differ from LSHT rats in terms of survival time, general health and behavior, water intake, and spontaneous locomotor activity. 2,5-dimethoxy-4-iodoamphetamine (DOI) at a dose of 2.5 mg/kg increased the SHT in HSHT and LSHT rats, while ketanserin dose-dependently abolished the SHT in the HSHT rats. The SHT was reduced or abolished by olanzapine, clozapine, risperidone, and pimavanserin. All these drugs have strong 5-HT2A receptor-inhibiting properties. Haloperidol and amisulpride, as antipsychotic drugs with a mostly dopaminergic mechanism of action, did not influence SHT. Similarly, escitalopram did not affect SHT. An in-depth gene expression analysis did not reveal significant differences between the HSHT and the LSHT rats. CONCLUSIONS: SHT appears in some aging rats (about 50%) and is permanent over time and specific to individuals. The 5-HT2A receptor strongly controls SHT. HSHT animals can be a useful animal model for studying 5-HT2A receptor ligands.


Subject(s)
Antipsychotic Agents , Clozapine , Rats , Animals , Male , Rats, Wistar , Receptor, Serotonin, 5-HT2A , Ketanserin/pharmacology , Antipsychotic Agents/pharmacology
15.
PeerJ ; 10: e13995, 2022.
Article in English | MEDLINE | ID: mdl-36196398

ABSTRACT

Background: ET-26 hydrochloride (ET-26HCl) is a novel analogue of etomidate approved for clinical trials. However, all results from recent studies were accomplished in young adult animals. The objective of this study was to evaluate the efficacy and safety of ET-26HCl in aged rats. Methods: Aged Sprague-Dawley rats were randomly divided into three groups (three males and three females in each group) were given dose of two-fold of median effective dose (ED50) of ET-26HCl, etomidate and propofol: the measurements of loss of the righting reflex (LORR) and cardiovascular and respiratory function after injection at the two-fold dose of the median effective dose were used for evaluation of effectiveness and safety, and the modified adrenocorticotropic hormone-stimulation experiment was used to evaluate the inhibition effect of the drugs on the synthesis of adrenal cortical hormones. Results: There was no significant difference in the onset time among propofol, etomidate and ET-26HCl. The duration of propofol (850.5 ± 77.4 s) was significantly longer than that caused by etomidate (489.8 ± 77.0 s, p = 0.007) and ET-26HCl (347.3 ± 49.0 s, p = 0.0004). No significant difference was observed in the time to stand and normal activity among drugs. A total of 66.7% of rats in the ET-26HCl group were evaluated to have mild hematuria. Then, etomidate and ET-26HCl had a milder blood pressure inhibition effect than propofol. Apnea was observed in all rats administered propofol and the duration for this side effect was 45.0 ± 9.0 s. For etomidate and ET-26HCl, no apnea was observed. No other clinical signs of side-effect were observed, and no rats died. No significant difference was observed in corticosterone concentrations between ET-26HCl and solvent group. However, rats administered etomidate had lower corticosterone concentrations than those administered ET-26HCl at 15, 30, and 60 min. Conclusions: Our results indicate ET-26HCl in aged rats is an effective sedative-hypnotic with stable myocardial and respiratory performance and also have mild adrenocortical suppression. Thus, these findings increase the potential for the clinical use of ET-26HCl in the elderly population.


Subject(s)
Etomidate , Propofol , Aged , Male , Animals , Female , Rats , Humans , Etomidate/pharmacology , Propofol/pharmacology , Corticosterone , Rats, Sprague-Dawley , Anesthetics, Intravenous/pharmacology
16.
Chem Biol Interact ; 367: 110114, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36027947

ABSTRACT

Dexmedetomidine (DEX) displays a neuroprotective role in aged rats with isoflurane (ISO)-induced cognitive impairment through antioxidant, and anti-inflammatory, and anti-apoptotic effects. Therefore, the present study was performed to define the molecular mechanism of DEX on ISO-induced neurological impairment in aged rats in relation to the MEK1/ERK1/Nrf2/HO-1 axis. The study enrolled elderly patients undergoing ISO anesthesia. Patient cognitive function following treatment with DEX was evaluated using mini-mental state examination (MMSE). The results revealed that DEX supplementation of anesthesia contributed to higher MMSE scores in patients one week post treatment. Rat model of neurological impairment was also induced in 18-month-age Wistar rats by ISO, followed by DEX treatment. Based on the results of Morris water maze experiment, ELISA, and TUNEL and hematoxylin-eosin staining, in vivo experiments confirmed that DEX could reduce the oxidative stress and neurological damage induced by ISO in rats. DEX activated the nuclear factor erythroid 2-related factor (Nrf2)/Heme Oxygenase 1 (HO-1) pathway. DEX upregulated the expression of Nrf2 and HO-1 by activating the MEK1/ERK1 pathway, whereby attenuating the ISO-caused oxidative stress and neurological damage in rats. Collectively, DEX suppresses the ISO-induced neurological impairment in the aged rats by promoting HO-1 through activation of the MEK1/ERK1/Nrf2 axis.


Subject(s)
Dexmedetomidine , Isoflurane , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Dexmedetomidine/pharmacology , Eosine Yellowish-(YS)/pharmacology , Hematoxylin/pharmacology , Heme Oxygenase-1/metabolism , Isoflurane/toxicity , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Rats, Wistar
17.
Nutrients ; 14(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35889824

ABSTRACT

Natural polyphenols are widely reported to have a large range of pharmacological properties, especially antioxidant activities and free radical scavenging capacities. In this study, we investigate the effects of naringin, chlorogenic acid, and quercetin mixtures (NCQ) on renal fibrosis in streptozotocin (STZ)-induced diabetic aged rats and its underlying mechanisms for ten consecutive weeks. The oxidative defense system in the kidneys of treated rats was found to be improved. Several biomarkers were investigated including the blood urea nitrogen, creatinine, and uric acid. Moreover, antioxidant parameters were evaluated and we found that superoxide dismutase, catalase, glutathione peroxidase, Na+-K+-ATPase activities, the nitric oxide production, the protein carbonyl, the advanced oxidation protein products, lipid peroxidation, and reduced glutathione levels were all significantly balanced and close to control values. In addition, NCQ restored renal injuries and fibrosis as assessed by histological method and molecular biology investigation of the matrix metalloproteinase, the transforming growth factor-beta TGF-ß, the tumor necrosis factor TNFα, and p53 expression. Our study proposes the NCQ combination as potential plant-derived bioactive compounds to prevent diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Antioxidants/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Kidney/metabolism , Oxidative Stress , Polyphenols/therapeutic use , Rats , Rats, Wistar , Streptozocin , Transforming Growth Factor beta/metabolism
18.
Article in English | MEDLINE | ID: mdl-35638539

ABSTRACT

BACKGROUND: Nigella is a plant widely used as a natural remedy, recent studies are being focused on the evaluation of its central effects. In this sense, the aim of this research is to explore the effects of the fixed oil of Nigella on cognitive decline in rats. METHODS: Behavioral evaluation was performed via a battery of tests, then quantification of Brain Derived Neurotrophic Factor and Cyclic AMP Response Element-Binding protein, mRNA in the hippocampus using RT PCR. RESULTS: The results indicated that the fixed oil of black cumin had no effect on spatial memory, whereas the treatment with black cumin induced an overexpression of BDNF, while the variability of CREB levels was not significant. CONCLUSION: This is the unique study conducted to so far, and we may conclude that Nigella fixed oil seems to have a therapeutic effect on cognitive decline.

19.
Front Microbiol ; 13: 841397, 2022.
Article in English | MEDLINE | ID: mdl-35308364

ABSTRACT

To explore the effect of Portulaca oleracea polysaccharides (POP) in regulating intestinal microflora in aged rats in vitro, its intestinal microbial composition was analyzed by 16 S rDNA high-throughput sequencing, and the level of short-chain fatty acids in fermentation broth was determined by LC-MS. POP significantly upregulated the relative abundance of Lactobacillus, Eggerthella, and Paraprevotella and significantly downregulated Escherichia_Shigella, Bacteroides, and Eubacterium nodatum groups. The pH value and ammonia nitrogen level decreased significantly in the POP-treated group, resulting in a more short-chain fatty acid consumption which changed the acid-base environment of the fermentation broth. In conclusion, POP is beneficial to aged rats because it can regulate intestinal flora, promote the growth of probiotics, and inhibit the reproduction of pathogenic bacteria.

20.
Emerg Microbes Infect ; 11(1): 815-828, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35191819

ABSTRACT

Increased evidence shows that gut microbiota acts as the primary regulator of the liver; however, its role in sepsis-related liver injury (SLI) in the elderly is unclear. This study assessed whether metformin could attenuate SLI by modulating gut microbiota in septic-aged rats. Cecal ligation and puncture (CLP) was used to induce SLI in aged rats. Fecal microbiota transplantation (FMT) was used to validate the roles of gut microbiota in these pathologies. The composition of gut microbiota was analysed by 16S rRNA sequencing. Moreover, the liver and colon tissues were analysed by histopathology, immunofluorescence, immunohistochemistry, and reverse transcription polymerase chain reaction (RT-PCR). Metformin improved liver damage, colon barrier dysfunction in aged SLI rats. Moreover, metformin improved sepsis-induced liver inflammation and damage under gut microbiota. Importantly, FMT assay showed that rats gavaged with faeces from metformin-treated SLI rats displayed less severe liver damage and colon barrier dysfunctions than those gavaged with faeces from SLI rats. The gut microbiota composition among the sham-operated, CLP-operated and metformin-treated SLI rats was different. In particular, the proportion of Klebsiella and Escherichia_Shigella was higher in SLI rats than sham-operated and metformin-treated SLI rats; while metformin could increase the proportion of Bifidobacterium, Muribaculaceae, Parabacteroides_distasonis and Alloprevitella in aged SLI rats. Additionally, Klebsiella and Escherichia_Shigella correlated positively with the inflammatory factors in the liver. Our findings suggest that metformin may improve liver injury by regulating the gut microbiota and alleviating colon barrier dysfunction in septic-aged rats, which may be an effective therapy for SLI.


Subject(s)
Gastrointestinal Microbiome , Metformin , Sepsis , Animals , Liver , Metformin/pharmacology , Metformin/therapeutic use , RNA, Ribosomal, 16S/genetics , Rats , Sepsis/complications , Sepsis/drug therapy , Sepsis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...