Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64.567
Filter
1.
Rev. enferm. UERJ ; 32: e82186, jan. -dez. 2024.
Article in English, Spanish, Portuguese | LILACS-Express | LILACS | ID: biblio-1556466

ABSTRACT

Objetivo: identificar quais os instrumentos disponíveis para avaliação multidimensional da fragilidade em idosos com doença cardiovascular, potencialmente aplicáveis durante a realização do Processo de Enfermagem. Método: revisão sistemática conduzida em oito bases de dados/portais, para identificação de estudos que apresentassem instrumentos multidimensionais de avaliação de fragilidade em idosos com doença cardiovascular e que fossem aplicáveis ao processo de enfermagem. Resultados: foram incluídos 19 instrumentos multidimensionais. O Brief Frailty Index for Coronary Artery Disease foi desenvolvido para uso no cuidado cardiovascular de idosos. O Frailty Index for Adults e o Maastricht Frailty Screening Tool for Hospitalized Patients foram desenvolvidos para uso no Processo de Enfermagem. Conclusão: apesar de apenas um instrumento ter sido desenvolvido para o idosos com doença cardiovascular e apenas dois serem aplicáveis ao processo de enfermagem, a maioria deles tem potencial de adaptação e validação para uso nesta população durante a avaliação de enfermagem.


Objective: to identify which tools are available for multidimensional frailty assessment of older adult with cardiovascular disease and which are potentially applicable during the Nursing Process. Method: a systematic review conducted in eight databases/portals to identify studies that presented multidimensional frailty assessment tools for older adult with cardiovascular disease and that were applicable to the nursing process. Results: a total of 19 multidimensional tools were included. The Brief Frailty Index for Coronary Artery Disease was developed for use in the cardiovascular care of older adult. The Frailty Index for Adults and the Maastricht Frailty Screening Tool for Hospitalized Patients were developed for use in the Nursing Process. Conclusion: although only one tool was developed for older adults with cardiovascular disease and only two are applicable to the nursing process, most of them have the potential to be adapted and validated for use in this population during nursing assessment.


Objetivo: identificar qué instrumentos están disponibles para la evaluación multidimensional de la fragilidad en personas mayores con enfermedad cardiovascular, que se puedan aplicar en el Proceso de Enfermería. Método: revisión sistemática realizada en ocho bases de datos/portales, para identificar estudios que presentaran instrumentos multidimensionales para la evaluación de la fragilidad en adultos mayores con enfermedad cardiovascular y que fueran aplicables al proceso de enfermería. Resultados: se incluyeron 19 instrumentos multidimensionales. El Brief Frailty Index for Coronary Artery Disease se desarrolló para usarlo en el cuidado cardiovascular de las personas mayores. El Frailty Index for Adults y la Maastricht Frailty Screening Tool for Hospitalized Patients se elaboraron para ser usados en el Proceso de Enfermería. Conclusión: aunque sólo se elaboró un instrumento para adultos mayores con enfermedad cardiovascular y sólo dos son aplicables al proceso de enfermería, la mayoría de ellos tienen el potencial para ser adaptados y validados para ser usados en esa población en la evaluación de enfermería.

2.
Geroscience ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980632

ABSTRACT

As individuals age, there is a gradual decline in cardiopulmonary function, often accompanied by cardiac pump dysfunction leading to increased pulmonary vascular resistance (PVR). Our study aims to investigate the changes in cardiac and pulmonary vascular function associated with aging. Additionally, we aim to explore the impact of phosphodiesterase 9A (PDE9A) inhibition, which has shown promise in treating cardiometabolic diseases, on addressing left ventricle (LV) dysfunction and elevated PVR in aging individuals. Young (3 months old) and aged (32 months old) male C57BL/6 mice were used. Aged mice were treated with the selective PDE9A inhibitor PF04447943 (1 mg/kg/day) through intraperitoneal injections for 10 days. LV function was evaluated using cardiac ultrasound, and PVR was assessed in isolated, ventilated lungs perfused under a constant flow condition. Additionally, changes in PVR were measured in response to perfusion of the endothelium-dependent agonist bradykinin or to nitric oxide (NO) donor sodium nitroprusside (SNP). PDE9A protein expression was measured by Western blots. Our results demonstrate the development of LV diastolic dysfunction and increased PVR in aged mice. The aged mice exhibited diminished decreases in PVR in response to both bradykinin and SNP compared to the young mice. Moreover, the lungs of aged mice showed an increase in PDE9A protein expression. Treatment of aged mice with PF04447943 had no significant effect on LV systolic or diastolic function. However, PF04447943 treatment normalized PVR and SNP-induced responses, though it did not affect the bradykinin response. These data demonstrate a development of LV diastolic dysfunction and increase in PVR in aged mice. We propose that inhibitors of PDE9A could represent a novel therapeutic approach to specifically prevent aging-related pulmonary dysfunction.

3.
Geroscience ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976131

ABSTRACT

Aging is a non-modifiable understudied risk factor for hypertension. We hypothesized that sympathetically mediated activation of renal sodium reabsorption drives age-dependent hypertension and the salt sensitivity of blood pressure (BP). Using 3-, 8-, and 16-month-old male and female Sprague-Dawley rats as a model of normal aging, we assessed BP, indices of sympathetic tone, and the physiological responses to acute and chronic sodium challenge including sodium chloride cotransporter (NCC) regulation. The effects of renal nerve ablation and NCC antagonism were assessed in hypertensive male rats. We observed sex-dependent impaired renal sodium handling (24 h sodium balance (meq), male 3-month 0.36 ± 0.1 vs. 16-month 0.84 ± 0.2; sodium load excreted during 5% bodyweight isotonic saline volume expansion (%) male 3-month 77 ± 5 vs. 16-month 22 ± 8), hypertension (MAP (mmHg) male 3-month 123 ± 4 vs. 16-month 148 ± 6), and the salt sensitivity of BP in aged male, but not female, rats. Attenuated sympathoinhibitory afferent renal nerve (ARN) responses contributed to increased sympathetic tone and hypertension in male rats. Increased sympathetic tone contributes to renal sodium retention, in part through increased NCC activity via a dysfunctional with-no-lysine kinase-(WNK) STE20/SPS1-related proline/alanine-rich kinase signaling pathway, to drive hypertension and the salt sensitivity of BP in aged male rats. NCC antagonism and renal nerve ablation, which reduced WNK dysfunction and decreased NCC activity, attenuated age-dependent hypertension in male Sprague-Dawley rats. The contribution of an impaired sympathoinhibitory ARN reflex to sex- and age-dependent hypertension in an NCC-dependent manner, via an impaired WNK1/WNK4 dynamic, suggests this pathway as a mechanism-based target for the treatment of age-dependent hypertension.

4.
Geroscience ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976132

ABSTRACT

Aging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology. Our findings show that klotho deficiency accentuated cardiac hypertrophy, diastolic dysfunction, and exercise intolerance, while sKL treatment ameliorates these abnormalities and improves cardiac capillary densities. Downstream of klotho, we focused on the Sirtuin1 (Sirt1) signaling pathway to elucidate the potential underlying mechanism by which Klotho improves diastolic function. We found that decreased Klotho levels were linked with Sirt1 deficiency, whereas sKL treatment restored Sirt1 expression in aged hearts and mitigated the DNA damage response pathway activation. Through tandem mass tag proteomics and unbiased acetylomics analysis, we identified 220 significantly hyperacetylated lysine sites in critical cardiac proteins of aged hearts. We found that sKL supplementation attenuated age-dependent DNA damage and cardiac diastolic dysfunction. In contrast, Klotho deficiency significantly increased hyperacetylation of several crucial cardiac contractile proteins, potentially impairing ventricular relaxation and diastolic function, thus predisposing to HFpEF. These results suggest the potential benefit of sKL supplementation as a promising therapeutic strategy for combating HFpEF in aging.

5.
Stem Cell Rev Rep ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976142

ABSTRACT

Haematopoiesis within the bone marrow (BM) represents a complex and dynamic process intricately regulated by neural signaling pathways. This delicate orchestration is susceptible to disruption by factors such as aging, diabetes, and obesity, which can impair the BM niche and consequently affect haematopoiesis. Genetic mutations in Tet2, Dnmt3a, Asxl1, and Jak2 are known to give rise to clonal haematopoiesis of intermediate potential (CHIP), a condition linked to age-related haematological malignancies. Despite these insights, the exact roles of circadian rhythms, sphingosine-1-phosphate (S1P), stromal cell-derived factor-1 (SDF-1), sterile inflammation, and the complement cascade on various BM niche cells remain inadequately understood. Further research is needed to elucidate how BM niche cells contribute to these malignancies through neural regulation and their potential in the development of gene-corrected stem cells. This literature review describes the updated functional aspects of BM niche cells in haematopoiesis within the context of haematological malignancies, with a particular focus on neural signaling and the potential of radiomitigators in acute radiation syndrome. Additionally, it underscores the pressing need for technological advancements in stem cell-based therapies to alleviate the impacts of immunological stressors. Recent studies have illuminated the microheterogeneity and temporal stochasticity of niche cells within the BM during haematopoiesis, emphasizing the updated roles of neural signaling and immunosurveillance. The development of gene-corrected stem cells capable of producing blood, immune cells, and tissue-resident progeny is essential for combating age-related haematological malignancies and overcoming immunological challenges. This review aims to provide a comprehensive overview of these evolving insights and their implications for future therapeutic strategies.

6.
J Comp Neurol ; 532(7): e25649, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967410

ABSTRACT

The physiological aging process is well known for functional decline in visual abilities. Among the components of the visual system, the dorsal lateral geniculate nucleus (DLG) and superior colliculus (SC) provide a good model for aging investigations, as these structures constitute the main visual pathways for retinal inputs reaching the visual cortex. However, there are limited data available on quantitative morphological and neurochemical aspects in DLG and SC across lifespan. Here, we used optical density to determine immunoexpression of glial fibrillary acidic protein (GFAP) and design-based stereological probes to estimate the neuronal number, total volume, and layer volume of the DLG and SC in marmosets (Callithrix jacchus), ranging from 36 to 143 months of age. Our results revealed an age-related increase in total volume and layer volume of the DLG, with an overall stability in SC volume. Furthermore, a stable neuronal number was demonstrated in DLG and superficial layers of SC (SCv). A decrease in GFAP immunoexpression was observed in both visual centers. The results indicate region-specific variability in volumetric parameter, possibly attributed to structural plastic events in response to inflammation and compensatory mechanisms at the cellular and subcellular level. Additionally, the DLG and SCv seem to be less vulnerable to aging effects in terms of neuronal number. The neuropeptidergic data suggest that reduced GFAP expression may reflect morphological atrophy in the astroglial cells. This study contributes to updating the current understanding of aging effects in the visual system and stablishes a crucial foundation for future research on visual perception throughout the aging process.


Subject(s)
Aging , Callithrix , Geniculate Bodies , Glial Fibrillary Acidic Protein , Neurons , Animals , Aging/physiology , Aging/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/biosynthesis , Neurons/metabolism , Male , Geniculate Bodies/metabolism , Female , Superior Colliculi/metabolism , Visual Pathways/metabolism
7.
Clinics (Sao Paulo) ; 79: 100405, 2024.
Article in English | MEDLINE | ID: mdl-38968666

ABSTRACT

CONTEXT: Vehicle driving depends on the integration of motor, visual, and cognitive skills to respond appropriately to different situations that occur in traffic. OBJECTIVES: To analyze a model of performance predictor for braking time in the driving simulator, using a battery of tests divided by gender. METHODS: Selected were 100 male drivers with a mean age of 72.6 ± 5.7 years. Sociodemographic variables, braking time in the driving simulator, and motor, visual, and cognitive skills were evaluated. RESULTS: Comparing genders, men were older than women (p = 0.002) and had longer driving times (p = 0.001). Men had more strength in hand grip (p ≤ 0.001). In the linear regression analysis, the model explained 68 % of the braking time in men and 50.8 % in women. In the stepwise multiple linear regression analysis, the variable that remained in the model was the strength of the right plantar flexors, which explained 13 % of the braking time in women and men, and the cognitive variables explained 38.9 %. CONCLUSION: Sociodemographic, motor, visual, and cognitive variables, explained a substantial portion of the variability in braking time for both older women and men, the specific variables driving this performance differed between the sexes. For older women, factors such as muscle strength emerged as critical determinants of braking ability, highlighting the importance of physical health in maintaining driving skills. On the other hand, cognitive conditions emerged as the primary predictor of braking performance in older men, underscoring the role of mental acuity and decision-making processes in safe driving.


Subject(s)
Automobile Driving , Humans , Male , Aged , Automobile Driving/psychology , Female , Sex Factors , Time Factors , Age Factors , Cognition/physiology , Hand Strength/physiology , Socioeconomic Factors , Aged, 80 and over , Psychomotor Performance/physiology , Linear Models , Computer Simulation , Reaction Time/physiology , Motor Skills/physiology , Cross-Sectional Studies
8.
Sci Rep ; 14(1): 15860, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982114

ABSTRACT

Osteoporosis, vertebral fractures, and spinal degenerative diseases are common conditions that often coexist in older adults. This study aimed to determine the factors influencing low back pain and its impact on activities of daily living (ADL) and physical performance in older individuals with multiple comorbidities. This cross-sectional study was part of a large-scale population-based cohort study in Japan, involving 1009 participants who underwent spinal magnetic resonance imaging (MRI) to assess cervical cord compression, radiographic lumbar spinal stenosis, and lumbar disc degeneration. Vertebral fractures in the thoracolumbar spine were evaluated using sagittal MRI with a semi-quantitative method. Bone mineral density was measured using dual-energy X-ray absorptiometry. Low back pain, Oswestry Disability Index (ODI), and physical performance tests, such as one-leg standing time, five times chair-stand time, maximum walking speed, and maximum step length, were assessed. Using clinical conditions as objective variables and image evaluation parameters as explanatory variables, multiple regression analysis showed that vertebral fractures were significantly associated with low back pain and ODI. Vertebral fractures and osteoporosis significantly impacted physical performance, whereas osteoporosis alone did not affect low back pain or ODI. Our findings contribute to new insights into low back pain and its impact on ADL and physical performance.


Subject(s)
Activities of Daily Living , Low Back Pain , Osteoporosis , Physical Functional Performance , Humans , Male , Female , Low Back Pain/physiopathology , Aged , Cross-Sectional Studies , Osteoporosis/physiopathology , Osteoporosis/complications , Osteoporosis/diagnostic imaging , Spinal Fractures/physiopathology , Spinal Fractures/diagnostic imaging , Middle Aged , Japan/epidemiology , Magnetic Resonance Imaging , Aged, 80 and over , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc Degeneration/complications , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiopathology , Bone Density
9.
Sci Rep ; 14(1): 15784, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982219

ABSTRACT

This study investigates the effects of metronome walking on gait dynamics in older adults, focusing on long-range correlation structures and long-range attractor divergence (assessed by maximum Lyapunov exponents). Sixty older adults participated in indoor walking tests with and without metronome cues. Gait parameters were recorded using two triaxial accelerometers attached to the lumbar region and to the foot. We analyzed logarithmic divergence of lumbar acceleration using Rosenstein's algorithm and scaling exponents for stride intervals from foot accelerometers using detrended fluctuation analysis (DFA). Results indicated a concomitant reduction in long-term divergence exponents and scaling exponents during metronome walking, while short-term divergence remained largely unchanged. Furthermore, long-term divergence exponents and scaling exponents were significantly correlated. Reliability analysis revealed moderate intrasession consistency for long-term divergence exponents, but poor reliability for scaling exponents. Our results suggest that long-term divergence exponents could effectively replace scaling exponents for unsupervised gait quality assessment in older adults. This approach may improve the assessment of attentional involvement in gait control and enhance fall risk assessment.


Subject(s)
Gait , Walking , Humans , Aged , Female , Male , Gait/physiology , Walking/physiology , Accelerometry/methods , Aged, 80 and over , Algorithms , Accidental Falls/prevention & control , Reproducibility of Results
10.
J Cell Physiol ; : e31363, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982866

ABSTRACT

Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.

11.
Conserv Physiol ; 12(1): coae046, 2024.
Article in English | MEDLINE | ID: mdl-38983122

ABSTRACT

Storage temperature is one of the most important factors determining seed longevity in the genebank. This study aimed to investigate the effect of storage temperature on the seed viability and physiological integrity after a 20-year storage period of Pinus densiflora, a tree species of ecological and economic significance in South Korea. To this end, seeds were collected and stored dry for 20 years at -18°C, 4°C and 25°C. Germination tests were conducted to assess seed viability and vigour, electrolyte leakage analysis was performed to assess cell membrane integrity, and carbohydrate analysis was conducted to assess metabolic integrity during germination. The results revealed that over 20 years, seeds stored at -18°C maintained a high germination percentage (GP; 89%), comparable to initial GP (91%), whilst those stored at 4°C exhibited a decline in GP (44%) along with a decrease in vigour. Seeds stored at 25°C lost their viability entirely. Electrical conductivity of the leachate and leakage of inorganic compounds and soluble sugars were higher with elevated storage temperature, indicating increased imbibition damage. Additionally, changes in carbohydrate content during germination revealed that the loss of viability according to storage temperature is associated with reduced storage reserve utilization and altered carbohydrate metabolism during germination. These results enhance our understanding of the effect of seed storage temperature on longevity and physiological changes of aging in the genebank, serving as a reference for establishing conservation strategies for Pinus densiflora.

12.
World J Clin Cases ; 12(18): 3539-3547, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983400

ABSTRACT

BACKGROUND: Few studies have reported an association between an increased risk of acquiring cancers and survival in patients with 4q deletion syndrome. This study presents a rare association between chromosome 4q abnormalities and fallopian tube high-grade serous carcinoma (HGSC) in a young woman. CASE SUMMARY: A 35-year-old woman presented with acute dull abdominal pain and a known chromosomal abnormality involving 4q13.3 duplication and 4q23q24 deletion. Upon arrival at the emergency room, her abdomen appeared ovoid and distended with palpable shifting dullness. Ascites were identified through abdominal ultrasound, and computed tomography revealed an omentum cake and an enlarged bilateral adnexa. Blood tests showed elevated CA-125 levels. Paracentesis was conducted, and immunohistochemistry indicated that the cancer cells favored an ovarian origin, making us suspect ovarian cancer. The patient underwent debulking surgery, which led to a diagnosis of stage IIIC HGSC of the fallopian tube. Subsequently, the patient received adjuvant chemotherapy with carboplatin and paclitaxel, resulting in stable current condition. CONCLUSION: This study demonstrates a rare correlation between a chromosome 4q abnormality and HGSC. UBE2D3 may affect crucial cancer-related pathways, including P53, BRCA, cyclin D, and tyrosine kinase receptors, thereby possibly contributing to cancer development. In addition, ADH1 and DDIT4 may be potential influencers of both carcinogenic and therapeutic responses.

13.
Cureus ; 16(7): e64121, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38983672

ABSTRACT

The global demographic landscape is experiencing a monumental shift as populations age, driven by advances in healthcare and declining birth rates. This transition underscores the need to prepare the younger generation to navigate and contribute effectively to an aging society. This manuscript comprehensively reviews strategies to equip younger generations with the requisite knowledge, skills, and empathy to support an aging population. This study identifies critical challenges and opportunities in fostering intergenerational solidarity and understanding through an extensive analysis of existing literature and innovative educational programs. The review highlights the importance of early education, community engagement, and policy interventions in bridging the generational divide. Additionally, it explores the role of technology and digital media in facilitating awareness and empathy among young people. Key findings suggest that incorporating aging-related content into educational curricula, promoting volunteerism, and implementing supportive policies can significantly enhance the younger generation's readiness to support an aging society. The manuscript concludes with recommendations for future research and practical steps for educators, policymakers, and community leaders to foster a more inclusive and age-friendly environment. By preparing the younger generation today, we can build a more cohesive and supportive society for tomorrow.

16.
JACC Basic Transl Sci ; 9(5): 577-590, 2024 May.
Article in English | MEDLINE | ID: mdl-38984046

ABSTRACT

Although epigenetic age acceleration (EAA) might serve as a molecular signature of childhood cardiovascular disease (CVD) risk factors and further promote midlife subclinical CVD, few studies have comprehensively examined these life course associations. This study sought to test whether childhood CVD risk factors predict EAA in adulthood and whether EAA mediates the association between childhood CVD risks and midlife subclinical disease. Among 1,580 Bogalusa Heart Study participants, we estimated extrinsic EAA, intrinsic EAA, PhenoAge acceleration (PhenoAgeAccel), and GrimAge acceleration (GrimAgeAccel) during adulthood. We tested prospective associations of longitudinal childhood body mass index (BMI), blood pressure, lipids, and glucose with EAAs using linear mixed effects models. After confirming EAAs with midlife carotid intima-media thickness and carotid plaque, structural equation models examined mediating effects of EAAs on associations of childhood CVD risk factors with subclinical CVD measures. After stringent multiple testing corrections, each SD increase in childhood BMI was significantly associated with 0.6-, 0.9-, and 0.5-year increases in extrinsic EAA, PhenoAgeAccel, and GrimAgeAccel, respectively (P < 0.001 for all 3 associations). Likewise, each SD increase in childhood log-triglycerides was associated with 0.5- and 0.4-year increases in PhenoAgeAccel and GrimAgeAccel (P < 0.001 for both), respectively, whereas each SD increase in childhood high-density lipoprotein cholesterol was associated with a 0.3-year decrease in GrimAgeAccel (P = 0.002). Our findings indicate that PhenoAgeAccel mediates an estimated 27.4% of the association between childhood log-triglycerides and midlife carotid intima-media thickness (P = 0.022). Our data demonstrate that early life CVD risk factors may accelerate biological aging and promote subclinical atherosclerosis.

17.
Heliyon ; 10(12): e32831, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984298

ABSTRACT

The gut microbiome has come to prominence across research disciplines, due to its influence on major biological systems within humans. Recently, a relationship between the gut microbiome and hematopoietic system has been identified and coined the gut-bone marrow axis. It is well established that the hematopoietic system and gut microbiome separately alter with age; however, the relationship between these changes and how these systems influence each other demands investigation. Since the hematopoietic system produces immune cells that help govern commensal bacteria, it is important to identify how the microbiome interacts with hematopoietic stem cells (HSCs). The gut microbiota has been shown to influence the development and outcomes of hematologic disorders, suggesting dysbiosis may influence the maintenance of HSCs with age. Short chain fatty acids (SCFAs), lactate, iron availability, tryptophan metabolites, bacterial extracellular vesicles, microbe associated molecular patterns (MAMPs), and toll-like receptor (TLR) signalling have been proposed as key mediators of communication across the gut-bone marrow axis and will be reviewed in this article within the context of aging.

18.
Front Cardiovasc Med ; 11: 1388025, 2024.
Article in English | MEDLINE | ID: mdl-38984353

ABSTRACT

Among the leading causes of natural death are cardiovascular diseases, cancer, and respiratory diseases. Factors causing illness include genetic predisposition, aging, stress, chronic inflammation, environmental factors, declining autophagy, and endocrine abnormalities including insufficient vitamin D levels. Inconclusive clinical outcomes of vitamin D supplements in cardiovascular diseases demonstrate the need to identify cause-effect relationships without bias. We employed a spectral clustering methodology capable of analyzing large diverse datasets for examining the role of vitamin D's genomic and non-genomic signaling in disease in this study. The results of this investigation showed the following: (1) vitamin D regulates multiple reciprocal feedback loops including p53, macrophage autophagy, nitric oxide, and redox-signaling; (2) these regulatory schemes are involved in over 2,000 diseases. Furthermore, the balance between genomic and non-genomic signaling by vitamin D affects autophagy regulation of macrophage polarization in tissue homeostasis. These findings provide a deeper understanding of how interactions between genomic and non-genomic signaling affect vitamin D pharmacology and offer opportunities for increasing the efficacy of vitamin D-centered treatment of cardiovascular disease and healthy lifespans.

19.
Res Sq ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38947070

ABSTRACT

Background: Epigenetic Age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional - using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (i) their choice of model; (ii) the primary outcome (EA vs. EAA); and (iii) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA. Results: Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered an accelerated EA rate in males and an advanced EA that decelerates over time in children with higher birthweight. Conclusion: Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.

20.
bioRxiv ; 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38948718

ABSTRACT

Premature aging is a hallmark of Down syndrome, caused by trisomy of human chromosome 21, but the reason is unclear and difficult to study in humans. We used an aneuploid model in wild yeast to show that chromosome amplification disrupts nutrient-induced cell-cycle arrest, quiescence entry, and healthy aging, across genetic backgrounds and amplified chromosomes. We discovered that these defects are due in part to aneuploidy-induced dysfunction in Ribosome Quality Control (RQC). Compared to euploids, aneuploids entering quiescence display aberrant ribosome profiles, accumulate RQC intermediates, and harbor an increased load of protein aggregates. Although they have normal proteasome capacity, aneuploids show signs of ubiquitin dysregulation, which impacts cyclin abundance to disrupt arrest. Remarkably, inducing ribosome stalling in euploids produces similar aberrations, while up-regulating limiting RQC subunits or proteins in ubiquitin metabolism alleviates many of the aneuploid defects. Our results provide implications for other aneuploidy disorders including Down syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...