Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(7): 753-758, 2022 Jul 15.
Article in Chinese | MEDLINE | ID: mdl-35894189

ABSTRACT

OBJECTIVES: To study the application value of metagenomic next-generation sequencing (mNGS) for pathogen detection in childhood agranulocytosis with fever. METHODS: A retrospective analysis was performed on the mNGS results of pathogen detection of 116 children with agranulocytosis with fever who were treated from January 2020 to December 2021. Among these children, 38 children with negative mNGS results were enrolled as the negative group, and 78 children with positive results were divided into a bacteria group (n=22), a fungal group (n=23), and a viral group (n=31). Clinical data were compared between groups. RESULTS: For the 116 children with agranulocytosis and fever, the median age was 8 years at diagnosis, the median turnaround time of mNGS results was 2 days, and the positive rate of mNGS testing was 67.2% (78/116). Compared with the negative group, the bacterial group had a higher procalcitonin level (P<0.05), the fungal group had higher level of C-reactive protein and positive rate of (1,3)-ß-D glucan test/galactomannan test (P<0.05), and the fungal group had a longer duration of fever (P<0.05). Among the 22 positive microbial culture specimens, 9 (41%) were consistent with the mNGS results. Among the 17 positive blood culture specimens, 8 (47%) were consistent with the mNGS results. Treatment was adjusted for 28 children (36%) with the mNGS results, among whom 26 were cured and discharged. CONCLUSIONS: The mNGS technique has a shorter turnaround time and a higher sensitivity for pathogen detection and can provide evidence for the pathogenic diagnosis of children with agranulocytosis and fever.


Subject(s)
Agranulocytosis , Metagenomics , Agranulocytosis/diagnosis , Bacteria , Child , Fever/diagnosis , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenomics/methods , Retrospective Studies , Sensitivity and Specificity
2.
Front Oncol ; 12: 824393, 2022.
Article in English | MEDLINE | ID: mdl-35600388

ABSTRACT

Background: T-cell large granular lymphocytic leukemia (T-LGLL) is a rare lymphoproliferative disorder that starts in T cells and is usually indolent. Long-term use of immunosuppressants, combined with agranulocytosis, is a double-edged sword, as both can lead to serious infections, especially in patients with combined hematologic malignancies and immune defects. Case Presentation: A 30-year-old female patient was admitted to the hospital because of agranulocytosis for five years, with chest tightness, fatigue, and fever for two days. Pathology and metagenomic next-generation sequencing (mNGS) detected Aspergillus. Although she received cyclosporine and methylprednisolone, the patient showed drug intolerance and progression with invasive pulmonary fungal infections. After a bone marrow aspiration biopsy and other related examinations, she was diagnosed with T-LGLL and invasive pulmonary aspergillosis (IPA). T-cell immunophenotype was CD45+CD3dim+CD5-CD4-CD8+CD7+CD57p+CD25-CD30-, TCRγδ+, transducer and activator of transcripton-3 (STAT3) Y640F mutation and fusion gene NPL-DHX9 rearrangement were confirmed, which has never been reported in hematological diseases. After voriconazole regimen adjustment during treatment based on therapeutic drug concentration monitoring (TDM) and improvement in lung infection, the patient finally treated with purine nucleoside analogues (PNA) cladribine as a single agent at 0.14 mg/kg/d for 5 days. Complete response was achieved after four-cycles cladribine treatment (WBC 2.1*109/L, HGB 117 g/L, PLT 196*109/L, ANC 1.6*109/L, and ALC 0.2*109/L). Conclusions: To our knowledge, this is the first case of T-LGLL with a rare γδ type and fusion gene NPL-DHX9 rearrangement. The patient was successfully treated with cladribine, suggesting that this regimen could be a promising therapeutic strategy for patients with aggressive T-LGLL.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-939658

ABSTRACT

OBJECTIVES@#To study the application value of metagenomic next-generation sequencing (mNGS) for pathogen detection in childhood agranulocytosis with fever.@*METHODS@#A retrospective analysis was performed on the mNGS results of pathogen detection of 116 children with agranulocytosis with fever who were treated from January 2020 to December 2021. Among these children, 38 children with negative mNGS results were enrolled as the negative group, and 78 children with positive results were divided into a bacteria group (n=22), a fungal group (n=23), and a viral group (n=31). Clinical data were compared between groups.@*RESULTS@#For the 116 children with agranulocytosis and fever, the median age was 8 years at diagnosis, the median turnaround time of mNGS results was 2 days, and the positive rate of mNGS testing was 67.2% (78/116). Compared with the negative group, the bacterial group had a higher procalcitonin level (P<0.05), the fungal group had higher level of C-reactive protein and positive rate of (1,3)-β-D glucan test/galactomannan test (P<0.05), and the fungal group had a longer duration of fever (P<0.05). Among the 22 positive microbial culture specimens, 9 (41%) were consistent with the mNGS results. Among the 17 positive blood culture specimens, 8 (47%) were consistent with the mNGS results. Treatment was adjusted for 28 children (36%) with the mNGS results, among whom 26 were cured and discharged.@*CONCLUSIONS@#The mNGS technique has a shorter turnaround time and a higher sensitivity for pathogen detection and can provide evidence for the pathogenic diagnosis of children with agranulocytosis and fever.


Subject(s)
Child , Humans , Agranulocytosis/diagnosis , Bacteria , Fever/diagnosis , High-Throughput Nucleotide Sequencing/methods , Metagenomics/methods , Retrospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...