Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.041
Filter
1.
Toxicon ; 247: 107846, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964620

ABSTRACT

Microcystin (MC), a hepatotoxin that is harmful to human health, has frequently increased in freshwaters worldwide due to the increase in toxic cyanobacterial blooms. Despite many studies reported the human exposure to MC through drinking water, the potential transfer of this toxin to human via consumption of vegetables grown on farmlands that are naturally irrigated with contaminated water has not been largely investigated. Therefore, this study investigates the presence of MC in irrigation water and its potential accumulation in commonly consumed vegetables from Egyptian farmlands. The results of toxin analysis revealed that all irrigation water sites contained high MC concentrations (1.3-93.7 µg L-1) along the study period, in association with the abundance of dominant cyanobacteria in these sites. Meanwhile, MCs were detected in most vegetable plants surveyed, with highest levels in potato tubers (1100 µg kg-1 fresh weight, FW) followed by spinach (180 µg kg-1 FW), onion (170 µg g-1 FW), Swiss chard (160 µg kg-1 FW) and fava bean (46 µg kg-1 FW). These MC concentrations in vegetables led to estimated daily intake (EDI) values (0.08-1.13 µg kg bw-1 d-1 for adults and 0.11-1.5 µg kg bw-1 d-1 for children), through food consumption, exceeding the WHO recommended TDI (0.04 µg kg bw-1 d-1) for this toxin. As eutrophic water is widely used for irrigation in many parts of the world, our study suggests that cyanotoxins in irrigation waters and agricultural plants should be regularly monitored to safeguard the general public from inadvertent exposure to harmful toxins via food consumption.

2.
J Hazard Mater ; 476: 135064, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968823

ABSTRACT

Intricate agricultural ecosystems markedly influence the dynamics of organic micropollutants, posing substantial threats to aquatic organisms and human health. This study examined the occurrence and distribution of organic micropollutants across soils, ditch sediment, and water within highly intensified farming setups. Using a non-targeted screening method, we identified 405 micropollutants across 10 sampling sites, which mainly included pesticides, pharmaceuticals, industrial chemicals, and personal care products. This inventory comprised emerging contaminants, banned pesticides, and controlled pharmaceuticals that had eluded detection via conventional monitoring. Targeted analysis showed concentrations of 3.99-1021 ng/g in soils, 4.67-2488 ng/g in sediment, and 12.5-9373 ng/L in water, respectively, for Σ40pesticides, Σ8pharmaceuticals, and Σ3industrial chemicals, indicating notable spatial variability. Soil organic carbon content and wastewater discharge were likely responsible for their spatial distribution. Principal component analysis and correlation analysis revealed a potential transfer of micropollutants across the three media. Particularly, a heightened correlation was decerned between soil and sediment micropollutant levels, highlighting the role of sorption processes. Risk quotients surpassed the threshold of 1 for 13-23 micropollutants across the three media, indicating high environmental risks. This study highlights the importance of employing non-targeted and targeted screening in assessing and managing environmental risks associated with micropollutants.

3.
Chemosphere ; : 142763, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969216

ABSTRACT

The loss of carbon and nitrogen from broiler litter limits nutrient recycling and is damaging to the environment. This study investigated lignite, a low-rank brown coal, as an amendment to reduce the loss of carbon and nitrogen from broiler litter over 3 consecutive grow-out cycles, November 2021 to May 2022, at a commercially operated farm in Victoria, Australia. Lignite-treated litter contained significantly more carbon and nitrogen, with an increase of 70.1 g/bird and 12.6 g/bird for carbon and nitrogen, respectively. Lignite also reduced aerobic microbial respiration, with a 46.0% reduction in CO2 flux recorded in week 7 of the study, resulting in reduced mass loss. It is expected that this is a key mechanism responsible for nutrient retention in litter following treatment with lignite. Furthermore, lignite treatment lowered litter moisture content by 7, 6 and 3 percentage points for grow-out 1, 2 and 3, respectively. These findings present lignite as a beneficial litter amendment for increasing the nutrient value of waste and reducing carbon dioxide emissions. The study highlights the potential of lignite to reduce the environmental impact of poultry production and presents an alternative use for lignite as an existing resource.

4.
Data Brief ; 54: 110286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962187

ABSTRACT

This study provides sequence datasets of endophytic and rhizobacteria of jute using 16S rRNA gene sequencing. The plant samples were first surface sterilized and DNA of the bacteria from soil and jute roots and stem was extracted using Quick-DNA™ Fungal/Bacterial Miniprep Kit. The purified DNA was amplified and subjected to polymerase chain reaction using forward and reverse primers. The PCR products were sequenced on Applied Biosystems ABI 3500XL Genetic Analyser (Applied Biosystems, ThermoFisher Scientific). The sequences were analyzed using BioEdit version 7.2.5 and then BLAST on NCBI. The identifiable bacteria include the rhizobacteria, Citrobacter fruendii RZS23 (accession number: CP024673.1), endophytic bacteria, Bacillus cereus EDR23 (accession number: LN890242.1), and Morganella morganii EDS23 (accession number: KR094121.1). The plant growth-promoting traits exhibited by these bacteria suggest their future exploration as bioinoculants.

5.
Front Bioeng Biotechnol ; 12: 1426208, 2024.
Article in English | MEDLINE | ID: mdl-38962663

ABSTRACT

Phosphorus (P) is essential for biological systems, playing a pivotal role in energy metabolism and forming crucial structural components of DNA and RNA. Yet its bioavailable forms are scarce. Phytate, a major form of stored phosphorus in cereals and soils, is poorly bioavailable due to its complex structure. Phytases, enzymes that hydrolyze phytate to release useable phosphorus, are vital in overcoming this limitation and have significant biotechnological applications. This study employed novel method to isolate and characterize bacterial strains capable of metabolizing phytate as the sole carbon and phosphorus source from the Andes mountains soils. Ten strains from the genera Klebsiella and Chryseobacterium were isolated, with Chryseobacterium sp. CP-77 and Klebsiella pneumoniae CP-84 showing specific activities of 3.5 ± 0.4 nkat/mg and 40.8 ± 5 nkat/mg, respectively. Genomic sequencing revealed significant genetic diversity, suggesting CP-77 may represent a novel Chryseobacterium species. A fosmid library screening identified several phytase genes, including a 3-phytase in CP-77 and a glucose 1-phosphatase and 3-phytase in CP-84. Phylogenetic analysis confirmed the novelty of these enzymes. These findings highlight the potential of phytase-producing bacteria in sustainable agriculture by enhancing phosphorus bioavailability, reducing reliance on synthetic fertilizers, and contributing to environmental management. This study expands our biotechnological toolkit for microbial phosphorus management and underscores the importance of exploring poorly characterized environments for novel microbial functions. The integration of direct cultivation with metagenomic screening offers robust approaches for discovering microbial biocatalysts, promoting sustainable agricultural practices, and advancing environmental conservation.

6.
Environ Geochem Health ; 46(8): 281, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963650

ABSTRACT

The interaction between nanoscale copper oxides (nano-CuOs) and soil matrix significantly affects their fate and transport in soils. This study investigates the retention of nano-CuOs and Cu2+ ions in ten typical agricultural soils by employing the Freundlich adsorption model. Retention of nano-CuOs and Cu2+ in soils was well fitted by the Freundlich model. The retention parameters (KD, KF, and N) followed an order of CuO NTs > CuO NPs > Cu2+, highlighting significant impact of nano-CuOs morphology. The KF and N values of CuO NPs/Cu2+ were positively correlated with soil pH and electrical conductivity (EC), but exhibited a weaker correlation for CuO NTs. Soil pH and/or EC could be used to predict KF and N values of CuO NPs or CuO NTs, with additional clay content should be included for Cu2+.The different relationship between retention parameters and soil properties may suggest that CuO NTs retention mainly caused by agglomeration, whereas adsorption and agglomeration were of equal importance to CuO NPs. The amendment of Ca2+ at low and medium concentration promoted retention of nano-CuOs in alkaline soils, but reduced at high concentration. These findings provided critical insights into the fate of nano-CuOs in soil environments, with significant implications for environmental risk assessment and soil remediation strategies.


Subject(s)
Agriculture , Copper , Soil Pollutants , Soil , Copper/chemistry , Soil/chemistry , Soil Pollutants/chemistry , Hydrogen-Ion Concentration , Adsorption , Metal Nanoparticles/chemistry , Electric Conductivity , Particle Size
7.
PeerJ ; 12: e17461, 2024.
Article in English | MEDLINE | ID: mdl-38952992

ABSTRACT

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Subject(s)
Chromium , Edible Grain , Rhizosphere , Soil Microbiology , Soil Pollutants , Chromium/toxicity , Chromium/adverse effects , Chromium/metabolism , Soil Pollutants/toxicity , Soil Pollutants/adverse effects , Edible Grain/microbiology , Stress, Physiological/drug effects , Fungi/drug effects , Fungi/genetics , Microbiota/drug effects , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism
8.
Sci Total Environ ; : 174392, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955277

ABSTRACT

Neonicotinoid pollution has increased rapidly and globally in recent years, posing significant risks to agricultural areas. Quantifying use and emission, transport and fate of these contaminants, and risks is critical for proper management of neonicotinoids in river basin. This study elucidates use and emissions of neonicotinoid pesticides in a typical large-scale agriculture basin of China, the Pearl River Basin, as well as the resulting agricultural non-point source pollution and related ecological risks using market surveys, data analysis, and the Soil and Water Assessment Tool. Neonicotinoid use in the basin was estimated at 1361 t in 2019, of which 83.1 % was used in agriculture. After application, approximately 99.1 t neonicotinoids were transported to the Pearl River, accounting for 7.2 % of the total applied. Estimated aquatic concentrations of neonicotinoids showed three seasonal peaks. Several distinct groups of neonicotinoid chemicals can be observed in the Pearl River, as estimated by the model. An estimated 3.9 % of the neonicotinoids used were transported to the South China Sea. Based on the present risk assessment result, several neonicotinoids posed risks to aquatic organism. Therefore, the use of alternative products and/or reduced use is deemed necessary. This study provides novel insights into the fate and ecological risks of neonicotinoid insecticides in large-scale watersheds, and underscores the need for greater efficiency of use and extensive environmental monitoring.

9.
Heliyon ; 10(12): e32098, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975210

ABSTRACT

Agroecology is a sustainable farming method that has the potential to revolutionize the global agricultural sector by promoting cleaner and more environmentally friendly practices. However, the question of how to effectively transition to a sustainable agroecology system remains a topic of debate, particularly in developing economies. In many developing countries, subsistence farming plays a crucial role in supporting the livelihoods of countless households. Therefore, it is essential to explore the connection between food self-provisioning and the shift towards agroecology. Using primary data from rural Nigeria and by applying an ordered logistic regression, the study demonstrates that when farmers are primarily dependent on their own produce for sustenance, there is a natural inclination towards methods ensuring long-term soil health and ecological balance. We observed that self-provisioning leads to a 10.9 % increase in agroecology transition, and this result was statistically significant (P-value 0.001). This paradigm not only promotes sustainable agricultural practices but also underscores a holistic approach where agriculture coexists harmoniously with nature. As the global challenges of climate change and increasing food demand loom large, understanding and supporting these farmer-driven solutions become paramount. The results beckon policymakers and stakeholders to frame strategies grounded in farmers' intrinsic motivations, ensuring a sustainable agricultural future that is ecologically viable, culturally resonant, and economically beneficial.

10.
Heliyon ; 10(12): e32701, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975236

ABSTRACT

Food safety has emerged as a paramount concern for both Vietnamese consumers and the government. However, limited data are available on food safety management systems in Viet Nam. This study identified significant gaps in good agricultural and hygienic practices along the fresh produce chain (farmers and traditional wholesalers/market sellers) in the region of Da Nang, Viet Nam. This was achieved through a survey on good agricultural and hygienic practices for farmers (n = 100) and sellers (n = 100), which researchers further supplemented by microbiological analysis for E. coli, Salmonella spp., and Listeria monocytogenes on leafy greens, water in contact with produce and contact surfaces (hands). The results indicated that 86.0 % of farmers and 54.0 % of sellers received food safety training in the last 3 years; and women dominated both vegetable cultivation but also trading. Farm-level deficiencies included inadequate handwashing practices, lack of documentation for manure application schedules, improper washing and drying of harvest tools, failure to keep containers elevated off the ground, improper storage of vegetables, and inadequate covering of containers, with respectively 34.0 %, 30.3 %, 12.1 %, 41.7 % and 7.9 % of farmers executing the practice as prescribed by the WHO/FAO '5 keys of growing safer fruits and vegetables'. As for sellers, the most dominant gaps (<50.0 % compliance) were the way of handwashing and the practice of keeping containers elevated off the ground before, during, and after harvesting. The microbiological analysis confirmed that, in a total of 36 fresh produce samples including mustard greens, cucumber, lettuce, and crown daisy, the number of samples positive for E. coli, Salmonella spp., and L. monocytogenes were 12, 2, and 10 respectively. Samples of hands and the irrigation water showed high contamination with E. coli. Based on identified gaps, risk communication tools were developed and distributed amongst farmers, sellers, and Da Nang food safety management authority (governmental organisation performing inspections in the traditional food markets). As intervention, two farmers and two sellers were trained in safe agricultural practices for the cultivation of fresh vegetables (managerial intervention) and instructed to use tap water as irrigation water instead of uncontrolled surface water (technological intervention). A post-assessment was conducted, including redoing the survey on good practices and microbiological analysis. The outcome of these interventions showed positive results in terms of good agricultural and hygienic practices resulting in improved hygiene levels and safety of the fresh produce. The findings from this research have the potential to provide a model for the development of a science-based risk management strategy in alternative food chains or geographic areas in emerging countries.

11.
J Food Prot ; : 100326, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977079

ABSTRACT

Two U.S. outbreaks of salmonellosis in 2020 and 2021 were epidemiologically linked to red onions. The 2020 outbreak investigation implicated production agricultural water as a likely contamination source. Field trials were designed to investigate prevalence and survival of Escherichia coli (surrogate for Salmonella) on dry bulb onions after application of contaminated irrigation water at the end of the growing period. Irrigation water was inoculated at 3 log most probable number (MPN)/100 mL (2022 and 2023) or 5 log MPN/100 mL (2023, drip only) with a cocktail of rifampin-resistant E. coli and applied with the final irrigation (0.4 acre-inch/0.4 hectare-cm) to onions. Onion bulbs (40 or 80) were sampled immediately after irrigation and throughout field curing (4 weeks) and E. coli was enumerated using a MPN method. For drip irrigation, at 3 log MPN/100 mL E. coli was detected on 13% of onions at 24 h but not detected at 0 h; at 5 log MPN/100 mL for drip irrigation applied to saturated soil, E. coli was detected in 63% of onions at 0 h. Prevalence significantly (P<0.05), decreased after 7 d of curing with cell densities of 1-1,400 MPN/onion. At the end of field curing in 2023, 1/80 onions had detectable E. coli (2.04 MPN/onion). E. coli was detected in a significantly smaller percentage of onions (2022: 13%; 2023: 68%) after a contaminated drip irrigation event compared to overhead irrigation (98-100%; P<0.05). After overhead irrigation E. coli was detected in onions (1-1,000 MPN/onion) on day 0. Prevalence decreased significantly (P <0.05) after 7 d of field curing in both years (2022: 15%; 2023: 7%). E. coli was not detected on Calibra onions (80/year) at the end of field curing in either year but was detected at <12 MPN/onion in 2.5-3.75% of onions (n=80) for other cultivars. These data confirm limited contamination risk associated with drip irrigation water quality and begin to quantify contamination risks associated with overhead irrigation of dry bulb onions.

12.
Sci Total Environ ; 946: 174492, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969113

ABSTRACT

Certain agricultural plastics, i.e., mulching films, are generally considered as potent sources of micro- and nanoplastics (MNPs), due to their direct application on soil and waste mishandling. During the synthesis and fabrication of such agricultural plastics, it is necessary to use chemicals, the so-called plastic additives (PAs), improving the physicochemical properties of the final polymeric product. However, since PAs are loosely bound on the polymer matrix, they can potentially leach into the soil environment with unidentified effects. Clearly, to monitor the fate of PAs in the terrestrial ecosystem, it is necessary to develop accurate, sensitive and robust analytical methods. To this end, a comprehensive analytical strategy was developed for monitoring 16 PAs with diverse physicochemical properties (partition coefficient; -3 < logP<19) in soil samples using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). For this purpose, two different extraction procedures were developed, namely, a single step ultrasound-assisted extraction (UAE) using ethyl acetate or an aqueous solution of methanol and a binary extraction, combining Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) and UAE principles with n-hexane as the extractant. Interestingly, within the sample preparation investigation, we identified in-lab contamination sources of PAs, e.g., centrifuge tubes or microfilters. Such consumables are made of plastic contaminating the procedural blanks and omitting their use was necessary to acquire satisfactory analytical performance. In detail, method validation was performed for 16 compounds achieving recoveries mainly in the range 70-120 %, repeatability (expressed as relative standard deviation, RSD %) < 20 % and limits of quantification (LOQs) ranging between 0.2 and 20 ng/g dry weight (dw). Importantly, the presented strategies are added to the very limited available for PA determination in soil, a topical issue with a significant and rather understudied impact on agriculture.

13.
Sci Total Environ ; 946: 174491, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969118

ABSTRACT

The escalating use of plastics in agriculture, driven by global population growth and increasing food demand, has concurrently led to a rise in Agricultural Plastic Waste (APW) production. Effective waste management is imperative, prompting this study to address the initial step of management, that is the quantification and localization of waste generated from different production systems in diverse regions. Focused on four Southern European countries (Italy, Spain, Greece, and Portugal) at the regional level, the study uses Geographic Information System (GIS), land use maps, indices tailored to each specific agricultural application and each crop type for plastic waste mapping. Furthermore, after the data was employed, it was validated by relevant stakeholders of the mentioned countries. The study revealed Spain, particularly the Andalusia region, as the highest contributor to APW equal to 324,000 tons per year, while Portugal's Azores region had the lowest estimate equal to 428 tons per year. Significantly, this research stands out as one of the first to comprehensively consider various plastic applications and detailed crop cultivations within the production systems, representing a pioneering effort in addressing plastic waste management in Southern Europe. This can lead further on to the management of waste in this area and the transfer of the scientific proposition to other countries.

14.
Environ Int ; 190: 108859, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38970982

ABSTRACT

Metal nanoparticles offer promising prospects in agriculture, enhancing plant growth and ensuring food security. Silver, gold, copper, and zinc nanoparticles possess unique properties making them attractive for plant applications. Understanding molecular interactions between metal nanoparticles and plants is crucial for unlocking their potential to boost crop productivity and sustainability. This review explores metal nanoparticles in agriculture, emphasizing the need to understand these interactions. By elucidating mechanisms, it highlights the potential for enhancing crop productivity, stress tolerance, and nutrient-use efficiency, contributing to sustainable agriculture and food security. Quantifying benefits and risks reveal significant advantages. Metal nanoparticles enhance crop productivity by 20% on average and reduce disease incidence by up to 50% when used as antimicrobial agents. They also reduce nutrient leaching by 30% and enhance soil carbon sequestration by 15%, but concerns about toxicity, adverse effects on non-target organisms, and nanoparticle accumulation in the food chain must be addressed. Metal nanoparticles influence cellular processes including sensing, signaling, transcription, translation, and post-translational modifications. They act as signaling molecules, activate stress-responsive genes, enhance defense mechanisms, and improve nutrient uptake. The review explores their catalytic role in nutrient management, disease control, precision agriculture, nano-fertilizers, and nano-remediation. A bibliometric analysis offers insights into the current research landscape, highlighting trends, gaps, and future directions. In conclusion, metal nanoparticles hold potential for revolutionizing agriculture, enhancing productivity, mitigating environmental stressors, and promoting sustainability. Addressing risks and gaps is crucial for their safe integration into agricultural practices.

15.
Sci Total Environ ; : 174390, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971259

ABSTRACT

The removal of phosphate from agricultural runoff is of great importance to mitigate an overabundance of nutrients discharging into receiving water bodies, which are susceptible to eutrophication. In this study, a La-loaded geopolymer was produced by adding metakaolin within an alkaline medium, consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). The ratio of Na2SiO3:NaOH within the geopolymer slurry was manipulated to evaluate its effect on phosphate adsorption capacity. The 1.54 ratio yielded the highest adsorption capacity of 33.65 mg g-1. However, due to structural strength, safety, and economic considerations, the 2.0 ratio was used for the isotherm and kinetic adsorption testing. The La-loaded geopolymer exhibited higher phosphate removal in batch adsorption experiments at an acidic level (pH 4) and elevated temperature (40 °C). Moreover, ionic strength (3.5-20 mM) had a negligible impact on phosphate removal, indicating inner-sphere complexation as the main mechanism of adsorption. Additionally, bicarbonate and humic acid increased phosphate removal, whereas sulfate slightly decreased adsorption capacity. The La-loaded geopolymer was further evaluated using a synthetic agricultural solution, which yielded a Type III adsorption isotherm, demonstrating unrestricted multilayer phosphate adsorption. Results from this study verified the La-loaded geopolymer is a promising adsorbent for phosphate removal from agricultural runoff and underlined the importance of matrix effects on treatment performance.

16.
Chemosphere ; : 142772, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971445

ABSTRACT

Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.

17.
Data Brief ; 55: 110599, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38974005

ABSTRACT

Papaya, renowned for its nutritional benefits, represents a highly profitable crop. However, it is susceptible to various diseases that can significantly impede fruit productivity and quality. Among these, leaf diseases pose a substantial threat, severely impacting the growth of papaya plants. Consequently, papaya farmers frequently encounter numerous challenges and financial setbacks. To facilitate the easy and efficient identification of papaya leaf diseases, a comprehensive dataset has been assembled. This dataset, comprising approximately 1400 images of diseased, infected, and healthy leaves, aims to enhance the understanding of how these ailments affect papaya plants. The images, meticulously collected from diverse regions and under varying weather conditions, offer detailed insights into the disease patterns specific to papaya leaves. Stringent measures have been taken to ensure the dataset's quality and enhance its utility. The images, captured from multiple angles and boasting high resolution are designed to aid in the development of a highly accurate model. Additionally, RGB mode has been employed to meticulously capture each detail, ensuring a flawless representation of the leaves. The dataset meticulously identifies and categorizes five primary types of leaf diseases: Leaf Curl (inclusive of its initial stage), Papaya Mosaic, Ring Spot, Mites (specifically, those affected by Red Spider Mites), and Mealybug. These diseases are recognized for their detrimental effects on both the leaves and the overall fruit production of the papaya plant. By leveraging this curated dataset, it is possible to train a model for the real-time detection of leaf diseases, significantly aiding in the timely identification of such conditions.

18.
Environ Toxicol Chem ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980254

ABSTRACT

We examined the distribution characteristics of atmospheric microplastics in typical desert agricultural regions, with a focus on the agricultural areas surrounding the Taklamakan Desert, Xinjiang, China. We collected samples of total suspended particulate matter (TSP), atmospheric deposition, and atmospheric dust using both active and passive collection methods. The chemical composition, particle size, shape, and color of atmospheric microplastics were examined using a stereomicroscope and a Fourier-transform infrared spectrometer to analyze their characteristics. The results showed that the primary chemical compositions of microplastics included polypropylene (PP), polyethylene, polyethylene terephthalate, polymethylmethacrylate, and cellophane. Particle sizes were mainly within the range of 0 to 1000 µm. Fibrous microplastics constituted the majority of the TSP and atmospheric deposition, whereas film-like microplastics constituted the largest proportion of atmospheric dustfall. The deposition flux of atmospheric microplastics in the first quarter was measured at 103.21 ± 22.12 particles/m2/day, which was lower than that observed in conventional agricultural areas. The abundance of microplastics in atmospheric dustfall was found to be 1.36 particles/g. The proportion of PP microplastics in atmospheric dustfall can be as high as 35%. Through a comparison of microplastic content in TSP during dust storms and under normal weather conditions, it was found that dust storms can lead to an increase in the abundance of microplastics within the atmospheric TSP. The present study provides a scientific basis for understanding the distribution of atmospheric microplastics in typical desert agricultural regions. Environ Toxicol Chem 2024;00:1-14. © 2024 SETAC.

19.
Neotrop Entomol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980501

ABSTRACT

High Andean butterflies in northern South America are subject to landscape change processes. Our study used models to assess the habitat suitability of three Satyrinae species in the Upper Bogotá River Basin, Colombia. These three species include Pedaliodes polla (Thieme), Pedaliodes phaea (Hewitson), and Pedaliodes phaeina (Staudinger), the last two are endemic to Colombia. We used MaxEnt software to assess the habitat quality of these species, analyze the bioclimatic requirements that most influence them, and propose priority conservation areas. Our results indicated that, in most cases, the contribution of cover is more significant than 60%, so this variable determines the habitat capacity to support the species under study. We identified that the areas with suitable habitats are reduced with values less than or equal to 25% and are located in areas with a medium degree of intervention, which allows the species to occur. On the other hand, the climatic variables with the most significant contribution to the models were Temperature Seasonality and Precipitation of Driest Quarter (May-July). Conservation efforts must be focused on the most suitable areas, given the reduction in habitat for these species. Our research emphasizes the need to safeguard well-connected remnants of the high Andean forest and natural cover in agricultural matrices to counter the impact of agricultural expansion.

20.
Sci Rep ; 14(1): 14994, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951207

ABSTRACT

Artificially extracted agricultural phenotype information exhibits high subjectivity and low accuracy, while the utilization of image extraction information is susceptible to interference from haze. Furthermore, the effectiveness of the agricultural image dehazing method used for extracting such information is limited due to unclear texture details and color representation in the images. To address these limitations, we propose AgriGAN (unpaired image dehazing via a cycle-consistent generative adversarial network) for enhancing the dehazing performance in agricultural plant phenotyping. The algorithm incorporates an atmospheric scattering model to improve the discriminator model and employs a whole-detail consistent discrimination approach to enhance discriminator efficiency, thereby accelerating convergence towards Nash equilibrium state within the adversarial network. Finally, by training with network adversarial loss + cycle consistent loss, clear images are obtained after dehazing process. Experimental evaluations and comparative analysis were conducted to assess this algorithm's performance, demonstrating improved accuracy in dehazing agricultural images while preserving detailed texture information and mitigating color deviation issues.

SELECTION OF CITATIONS
SEARCH DETAIL
...