Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
New Phytol ; 243(3): 846-850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849321

ABSTRACT

Agroinfiltration of Nicotiana benthamiana is routinely used in plant science and molecular pharming to transiently express proteins of interest. Here, we discuss four phenomena that should be avoided to improve transient expression. Immune responses can be avoided by depleting immune receptors and employing pathogen-derived effectors; transcript degradation by using silencing inhibitors or RNA interference machinery mutants; endoplasmic reticulum stress by co-expressing chaperones; and protein degradation can be avoided with subcellular targeting, protease mutants and co-expressing protease inhibitors. We summarise the reported increased yields for various recombinant proteins achieved with these approaches and highlight remaining challenges to further improve the efficiency of this versatile protein expression platform.


Subject(s)
Nicotiana , Nicotiana/genetics , Nicotiana/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Proteolysis , Gene Expression Regulation, Plant , Endoplasmic Reticulum Stress
2.
New Phytol ; 243(3): 1034-1049, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853453

ABSTRACT

Processing by proteases irreversibly regulates the fate of plant proteins and hampers the production of recombinant proteins in plants, yet only few processing events have been described in agroinfiltrated Nicotiana benthamiana, which has emerged as the main transient protein expression platform in plant science and molecular pharming. Here, we used in-gel digests and mass spectrometry to monitor the migration and topography of 5040 plant proteins within a protein gel. By plotting the peptides over the gel slices, we generated peptographs that reveal where which part of each protein was detected within the protein gel. These data uncovered that 60% of the detected proteins have proteoforms that migrate at lower than predicted molecular weights, implicating extensive proteolytic processing. This analysis confirms the proteolytic removal and degradation of autoinhibitory prodomains of most but not all proteases, and revealed differential processing within pectinemethylesterase and lipase families. This analysis also uncovered intricate processing of glycosidases and uncovered that ectodomain shedding might be common for a diverse range of receptor-like kinases. Transient expression of double-tagged candidate proteins confirmed processing events in vivo. This large proteomic dataset implicates an elaborate proteolytic machinery shaping the proteome of N. benthamiana.


Subject(s)
Nicotiana , Plant Proteins , Proteolysis , Proteome , Nicotiana/genetics , Nicotiana/metabolism , Proteome/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Proteomics , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Lipase/metabolism , Lipase/genetics , Peptide Hydrolases/metabolism , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics
3.
Front Plant Sci ; 15: 1379970, 2024.
Article in English | MEDLINE | ID: mdl-38855473

ABSTRACT

Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.

4.
Plant Cell Rep ; 43(6): 162, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837057

ABSTRACT

KEY MESSAGE: A robust agroinfiltration-mediated transient gene expression method for soybean leaves was developed. Plant genotype, developmental stage and leaf age, surfactant, and Agrobacterium culture conditions are important for successful agroinfiltration. Agroinfiltration of Nicotiana benthamiana has emerged as a workhorse transient assay for plant biotechnology and synthetic biology to test the performance of gene constructs in dicot leaves. While effective, it is nonetheless often desirable to assay transgene constructs directly in crop species. To that end, we innovated a substantially robust agroinfiltration method for Glycine max (soybean), the most widely grown dicot crop plant in the world. Several factors were found to be relevant to successful soybean leaf agroinfiltration, including genotype, surfactant, developmental stage, and Agrobacterium strain and culture medium. Our optimized protocol involved a multi-step Agrobacterium culturing process with appropriate expression vectors, Silwet L-77 as the surfactant, selection of fully expanded leaves in the VC or V1 stage of growth, and 5 min of vacuum at - 85 kPa followed by a dark incubation period before plants were returned to normal growth conditions. Using this method, young soybean leaves of two lines-V17-0799DT, and TN16-5004-were high expressors for GUS, two co-expressed fluorescent protein genes, and the RUBY reporter product, betalain. This work not only represents a new research tool for soybean biotechnology, but also indicates critical parameters for guiding agroinfiltration optimization for other crop species. We speculate that leaf developmental stage might be the most critical factor for successful agroinfiltration.


Subject(s)
Agrobacterium , Glycine max , Plant Leaves , Plants, Genetically Modified , Glycine max/genetics , Glycine max/microbiology , Glycine max/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Agrobacterium/genetics , Gene Expression Regulation, Plant , Nicotiana/genetics , Genetic Vectors/genetics
5.
Bio Protoc ; 14(10): e4987, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38798979

ABSTRACT

Agrobacterium-mediated transient gene expression in Nicotiana benthamiana is widely used to study gene function in plants. One dramatic phenotype that is frequently screened for is cell death. Here, we present a simplified protocol for Agrobacterium-mediated transient gene expression by infiltration. Compared with current methods, the novel protocol can be done without a centrifuge or spectrometer, thereby suitable for K-12 outreach programs as well as rapidly identifying genes that induce cell death. Key features • The protocol simplifies the widely used Agrobacterium-mediated transient gene expression assay [1] and can be completed within one week when plants are available. • Rice XB3 gene can induce a dramatic and easily identifiable cell death phenotype in Nicotiana benthamiana. • Allows identification of cell death-inducing genes and is suitable for teaching. • Compared to the currently used methods, our protocol omits the use of agroinfiltration buffer, pH meter, temperature-controlled growth chamber, centrifuge, and spectrophotometer. Graphical overview Agrobacterium infiltration (agroinfiltration) of Nicotiana benthamiana. The photo demonstrates the method of agroinfiltration into the abaxial side of leaves using a needleless syringe.

6.
Sci Rep ; 14(1): 10091, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698065

ABSTRACT

Eukaryotes produce a large number of cytochrome P450s that mediate the synthesis and degradation of diverse endogenous and exogenous metabolites. Yet, most of these P450s are uncharacterized and global tools to study these challenging, membrane-resident enzymes remain to be exploited. Here, we applied activity profiling of plant, mouse and fungal P450s with chemical probes that become reactive when oxidized by P450 enzymes. Identification by mass spectrometry revealed labeling of a wide range of active P450s, including six plant P450s, 40 mouse P450s and 13 P450s of the fungal wheat pathogen Zymoseptoria tritici. We next used transient expression of GFP-tagged P450s by agroinfiltration to show ER-targeting and NADPH-dependent, activity-based labeling of plant, mouse and fungal P450s. Both global profiling and transient expression can be used to detect a broad range of active P450s to study e.g. their regulation and discover selective inhibitors.


Subject(s)
Cytochrome P-450 Enzyme System , Fungal Proteins , Proteome , Animals , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Mice , Proteome/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Ascomycota/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
7.
Plant Mol Biol ; 114(3): 61, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764076

ABSTRACT

Transient expression and induction of RNA silencing by agroinfiltration is a fundamental method in plant RNA biology. Here, we introduce a new reporter assay using RUBY, which encodes three key enzymes of the betalain biosynthesis pathway, as a polycistronic mRNA. The red pigmentation conferred by betalains allows visual confirmation of gene expression or silencing levels without tissue disruption, and the silencing levels can be quantitatively measured by absorbance in as little as a few minutes. Infiltration of RUBY in combination with p19, a well-known RNA silencing suppressor, induced a fivefold higher accumulation of betalains at 7 days post infiltration compared to infiltration of RUBY alone. We demonstrated that co-infiltration of RUBY with two RNA silencing inducers, targeting either CYP76AD1 or glycosyltransferase within the RUBY construct, effectively reduces RUBY mRNA and betalain levels, indicating successful RNA silencing. Therefore, compared to conventional reporter assays for RNA silencing, the RUBY-based assay provides a simple and rapid method for quantitative analysis without the need for specialized equipment, making it useful for a wide range of RNA silencing studies.


Subject(s)
Betalains , Nicotiana , RNA Interference , Betalains/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism
8.
Int J Biol Macromol ; 269(Pt 2): 131924, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688335

ABSTRACT

The objectives of this study were to purify 42 kDa chitinase derived from Trichoderma asperellum SH16 produced in Nicotiana benthamiana by a polyethylene glycol (PEG)/salt aqueous two-phase system (ATPS). The specific activities of the crude chitinase and the partially purified chitinase from N. benthamiana were about 251 unit/mg and 386 unit/mg, respectively. The study found the 300 g/L PEG 6000 + 200 g/L potassium phosphate (PP) and 300 g/L PEG 6000 + 150 g/L sodium phosphate (SP) systems had the highest partitioning efficiency for each salt in primary extraction. However, among the two types of salt, PP displayed higher efficiency than SP, with a partitioning coefficient K of 4.85 vs. 3.89, a volume ratio V of 2.94 vs. 2.68, and a partitioning yield Y of approximately 95 % vs. 83 %. After back extraction, the enzymatic activity of purified chitinase was up to 834 unit/mg (PP) and 492 unit/mg (SP). The purification factors reached 3.32 (PP) and 1.96 (SP), with recovery yields of about 59 % and 61 %, respectively. SDS-PAGE and zymogram analysis showed that the recombinant chitinase was significantly purified by using ATPS. The purified enzyme exhibited high chitinolytic activity, with the hydrolysis zone's diameter being around 2.5 cm-3 cm. It also dramatically reduced the growth of Sclerotium rolfsii; the colony diameter after treatment with 60 unit of enzyme for 104 spores was only about 1 cm, compared to 3.5 cm in the control. The antifungal effect of chitinase suggests that this enzyme has great potential for applications in agricultural production as well as postharvest fruit and vegetable preservation.


Subject(s)
Chitinases , Nicotiana , Phosphates , Polyethylene Glycols , Recombinant Proteins , Chitinases/chemistry , Chitinases/isolation & purification , Chitinases/metabolism , Nicotiana/enzymology , Phosphates/chemistry , Recombinant Proteins/isolation & purification , Polyethylene Glycols/chemistry , Trichoderma/enzymology , Salts/chemistry , Salts/pharmacology , Water/chemistry
9.
Plants (Basel) ; 13(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38592852

ABSTRACT

Transient protein expression is a versatile tool with diverse applications and can be used in soybeans to study gene function, obtain mutants, and produce proteins for commercial use. However, soybeans are considered recalcitrant for agroinfiltration. Subsequent studies on soybeans have demonstrated a green fluorescent protein (GFP) expression in seedpods, but not in leaves, using syringe agroinfiltration. To evaluate agroinfiltration-based transient protein expression levels in plant cells, we used the transient expression vector pTKB3 harboring the GFP gene. Using Agrobacterium tumefaciens, vacuum agroinfiltration of the leaves and needle agroinfiltration of the seedlings of different soybean varieties were performed. GFP was transiently expressed in all of the samples. However, the Enrei and Williams 82 varieties presented better results than the other varieties in the leaf tissue, with results confirmed by immunoblot analysis, demonstrating that both varieties are good candidates for molecular biological studies. GFP expression in the seedlings was less extensive than that in the leaves, which may be due to the tissue characteristics, with Enrei showing the best results. Based on this observation, we conclude that the Tsukuba system is an effective tool that can be used for different tissues and soybean varieties.

10.
New Phytol ; 242(3): 903-908, 2024 May.
Article in English | MEDLINE | ID: mdl-38426415

ABSTRACT

Realizing the full potential of plant synthetic biology both to elucidate the relationship between genotype and phenotype and to apply these insights to engineer traits requires rapidly iterating through design-build-test cycles. However, the months-long process of transgenesis, the long generation times, and the size-based limitations on experimentation have stymied progress by limiting the speed and scale of these cycles. Herein, we review a representative sample of recent studies that demonstrate a variety of rapid prototyping technologies that overcome some of these bottlenecks and accelerate progress. However, each of them has caveats that limit their broad utility. Their complementary strengths and weaknesses point to the intriguing possibility that these strategies could be combined in the future to enable rapid and scalable deployment of synthetic biology in plants.


Subject(s)
Plants , Synthetic Biology , Plants/genetics
11.
Pathogens ; 12(11)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-38003779

ABSTRACT

Grapevine leafroll disease (GLRD) is the most globally prevalent and destructive disease complex responsible for significant reductions in grape yield and quality as well as wine production. GLRD is associated with several positive-strand RNA viruses of the family Closteroviridae, designated as grapevine leafroll-associated viruses (GLRaVs). However, the specific etiological role of any of these GLRaVs in GLRD has not been demonstrated. Even though GLRaV-3 is considered the chief GLRD agent, little is known about the molecular, cellular, and pathological properties of this virus. Such a knowledge gap is due to multiple factors, including the unavailability of biologically active virus cDNA clones and the lack of reliable experimental systems for launching grapevine infection using such clones. In this work, we tested four methods for inoculating tissue-cultured grapevine plantlets with cDNA clones of GLRaV-3: (i) vacuum agro-infiltration; (ii) agro-pricking; (iii) agro-drenching; and (iv) agro-injection. We showed that vacuum agro-infiltration was the most effective of these methods. Furthermore, we examined the impacts of different experimental conditions on the survival and infectivity rate of grapevines after infiltration. To verify the infectivity rate for different treatments, we used RT-PCR, RT-qPCR, and Western blotting. We found that humidity plays a critical role in the survival of plantlets after agro-infiltration and that the use of RNA silencing suppressor and dormancy treatment both had strong effects on the infection rates. To our knowledge, the experimental protocol reported herein is the most effective system for launching the infection of grapevine using cDNA clones of grapevine viruses featuring up to a 70% infection rate. This system has strong potential to facilitate grapevine virology research including the fulfillment of Koch's postulates for GLRD and other major virus diseases as well as identifying the molecular, cellular, and pathological properties of GLRaVs and, potentially, other important grapevine viruses.

12.
Planta ; 258(6): 107, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37897513

ABSTRACT

MAIN CONCLUSION: The present investigation profoundly asserted the catalytic potential of plant-based aldo-ketoreductase, postulating its role in polyketide biosynthesis and providing new insights for tailored biosynthesis of vital plant polyketides for therapeutics. Plants hold great potential as a future source of innovative biocatalysts, expanding the possibilities within chemical reactions and generating a variety of benefits. The aldo-keto reductase (AKR) superfamily includes a huge collection of NAD(P)H-dependent oxidoreductases that carry out a variety of redox reactions essential for biosynthesis, detoxification, and intermediary metabolism. The present study involved the isolation, cloning, and purification of a novel aldo-ketoreductase (AvAKR) from the leaves of Aloe vera (Aloe barbadensis Miller) by heterologous gene expression in Escherichia coli based on the unigene sequences of putative ketoreductase and cDNA library screening by oligonucleotide hybridization. The in-silico structural analysis, phylogenetic relationship, and molecular modeling were outranged to approach the novelty of the sequence. Additionally, agroinfiltration of the candidate gene tagged with a green fluorescent protein (GFP) was employed for transient expression in the Nicotiana benthamiana to evaluate the sub-cellular localization of the candidate gene. The AvAKR preferred cytoplasmic localization and shared similarities with the known plant AKRs, keeping the majority of the conserved active-site residues in the AKR superfamily enzymes. The enzyme facilitated the NADPH-dependent reduction of various carbonyl substrates, including benzaldehyde and sugars, proclaiming a broad spectrum range. Our study successfully isolated and characterized a novel aldo-ketoreductase (AvAKR) from Aloe vera, highlighting its versatile NADPH-dependent carbonyl reduction proficiency therewith showcasing its potential as a versatile biocatalyst in diverse redox reactions.


Subject(s)
Aldehyde Reductase , Aloe , Aldo-Keto Reductases/genetics , Aldehyde Reductase/genetics , Aldehyde Reductase/chemistry , Aldehyde Reductase/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Aloe/genetics , Aloe/metabolism , Phylogeny , NADP/genetics , Plants/metabolism
13.
Front Plant Sci ; 14: 1251046, 2023.
Article in English | MEDLINE | ID: mdl-37790785

ABSTRACT

Bovine respiratory disease (BRD) affects feedlot cattle across North America, resulting in economic losses due to animal treatment and reduced performance. In an effort to develop a vaccine candidate targeting a primary bacterial agent contributing to BRD, we produced a tripartite antigen consisting of segments of the virulence factor Leukotoxin A (LktA) and lipoprotein PlpE from Mannheimia haemolytica, fused to a cholera toxin mucosal adjuvant (CTB). This recombinant subunit vaccine candidate was expressed in the leaves of Nicotiana benthamiana plants, with accumulation tested in five subcellular compartments. The recombinant protein was found to accumulate highest in the endoplasmic reticulum, but targeting to the chloroplast was employed for scaling up production due the absence of post-translational modification while still producing feasible levels. Leaves were freeze dried, then orally administered to mice to determine its immunogenicity. Sera from mice immunized with leaf tissue expressing the recombinant antigen contained IgG antibodies, specifically recognizing both LktA and PlpE. These mice also had a mucosal immune response to the CTB+LktA+PlpE protein as measured by the presence of LktA- and PlpE-specific IgA antibodies in lung and fecal material. Moreover, the antigen remained stable at room temperature with limited deterioration for up to one year when stored as lyophilized plant material. This study demonstrated that a recombinant antigen expressed in plant tissue elicited both humoral and mucosal immune responses when fed to mice, and warrants evaluation in cattle.

14.
Front Plant Sci ; 14: 1233295, 2023.
Article in English | MEDLINE | ID: mdl-37636103

ABSTRACT

Begomoviruses are contagious and severely affect commercially important fiber and food crops. Cotton leaf curl Multan virus (CLCuMuV) is one of the most dominant specie of Begomovirus and a major constraint on cotton yield in Pakistan. Currently, the field of plant genome editing is being revolutionized by the CRISPR/Cas system applications such as base editing, prime editing and CRISPR based gene drives. CRISPR/Cas9 system has successfully been used against biotic and abiotic plant stresses with proof-of-concept studies in both model and crop plants. CRISPR/Cas12 and CRISPR/Cas13 have recently been applied in plant sciences for basic and applied research. In this study, we used a novel approach, multiplexed crRNA-based Cas12a toolbox to target the different ORFs of the CLCuMuV genome at multiple sites simultaneously. This method successfully eliminated the symptoms of CLCuMuV in Nicotiana benthamiana and Nicotiana tabacum. Three individual crRNAs were designed from the CLCuMuV genome, targeting the specific sites of four different ORFs (C1, V1 and overlapping region of C2 and C3). The Cas12a-based construct Cas12a-MV was designed through Golden Gate three-way cloning for precise editing of CLCuMuV genome. Cas12a-MV construct was confirmed through whole genome sequencing using the primers Ubi-intron-F1 and M13-R1. Transient assays were performed in 4 weeks old Nicotiana benthamiana plants, through the agroinfiltration method. Sanger sequencing indicated that the Cas12a-MV constructs made a considerable mutations at the target sites of the viral genome. In addition, TIDE analysis of Sanger sequencing results showed the editing efficiency of crRNA1 (21.7%), crRNA2 (24.9%) and crRNA3 (55.6%). Furthermore, the Cas12a-MV construct was stably transformed into Nicotiana tabacum through the leaf disc method to evaluate the potential of transgenic plants against CLCuMuV. For transgene analysis, the DNA of transgenic plants of Nicotiana tabacum was subjected to PCR to amplify Cas12a genes with specific primers. Infectious clones were agro-inoculated in transgenic and non-transgenic plants (control) for the infectivity assay. The transgenic plants containing Cas12a-MV showed rare symptoms and remained healthy compared to control plants with severe symptoms. The transgenic plants containing Cas12a-MV showed a significant reduction in virus accumulation (0.05) as compared to control plants (1.0). The results demonstrated the potential use of the multiplex LbCas12a system to develop virus resistance in model and crop plants against begomoviruses.

15.
Virology ; 587: 109854, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37556874

ABSTRACT

Over the past decades, several studies have examined the subcellular localization of the cauliflower mosaic virus (CaMV) P6 protein by tagging it with GFP (P6-GFP). These investigations have been essential in the development of models for inclusion body formation, nuclear transport, and microfilament-associated intracellular movement of P6 inclusion bodies for delivery of virions to plasmodesmata. Although it was shown early on that the translational transactivation function of P6-GFP was comparable to wild type P6, it has not been possible to incorporate a P6-GFP gene into an infectious clone of CaMV. Consequently, it has not been possible to formally prove that a P6-GFP fusion is comparable in function to the unmodified P6 protein. Here we show that transient expression of P6-GFP can complement a defective CaMV replicon through gene expression, replication and encapsidation, which validates the relevance of P6-GFP subcellular localization studies for understanding the development of CaMV infections.

16.
Front Plant Sci ; 14: 1191250, 2023.
Article in English | MEDLINE | ID: mdl-37332709

ABSTRACT

Amino acid conjugates of pesticides can promote the phloem translocation of parent ingredients, allowing for the reduction of usage, and decreased environmental pollution. Plant transporters play important roles in the uptake and phloem translocation of such amino acid-pesticide conjugates such as L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate). However, the effects of an amino acid permease, RcAAP1, on the uptake and phloem mobility of L-Val-PCA are still unclear. Here, the relative expression levels of RcAAP1 were found to be up-regulated 2.7-fold and 2.2-fold by the qRT-PCR after L-Val-PCA treatments of Ricinus cotyledons for 1 h and 3 h, respectively. Subsequently, expression of RcAAP1 in yeast cells increased the L-Val-PCA uptake (0.36 µmol/107 cells), which was 2.1-fold higher than the control (0.17 µmol/107 cells). Pfam analysis suggested RcAAP1 with its 11 transmembrane domains belongs to the amino acid transporter family. Phylogenetic analysis found RcAAP1 to be strongly similar to AAP3 in nine other species. Subcellular localization showed that fusion RcAAP1-eGFP proteins were observed in the plasma membrane of mesophyll cells and phloem cells. Furthermore, overexpression of RcAAP1 for 72 h significantly increased the phloem mobility of L-Val-PCA in Ricinus seedlings, and phloem sap concentration of the conjugate was 1.8-fold higher than the control. Our study suggested that RcAAP1 as carrier was involved in the uptake and phloem translocation of L-Val-PCA, which could lay foundation for the utilization of amino acids and further development of vectorized agrochemicals.

17.
Metabolites ; 13(6)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37367887

ABSTRACT

Crocins are glycosylated apocarotenoids with strong coloring power and anti-oxidant, anticancer, and neuro-protective properties. We previously dissected the saffron crocin biosynthesis pathway, and demonstrated that the CsCCD2 enzyme, catalyzing the carotenoid cleavage step, shows a strong preference for the xanthophyll zeaxanthin in vitro and in bacterio. In order to investigate substrate specificity in planta and to establish a plant-based bio-factory system for crocin production, we compared wild-type Nicotiana benthamiana plants, accumulating various xanthophylls together with α- and ß-carotene, with genome-edited lines, in which all the xanthophylls normally accumulated in leaves were replaced by a single xanthophyll, zeaxanthin. These plants were used as chassis for the production in leaves of saffron apocarotenoids (crocins, picrocrocin) using two transient expression methods to overexpress CsCCD2: agroinfiltration and inoculation with a viral vector derived from tobacco etch virus (TEV). The results indicated the superior performance of the zeaxanthin-accumulating line and of the use of the viral vector to express CsCCD2. The results also suggested a relaxed substrate specificity of CsCCD2 in planta, cleaving additional carotenoid substrates.

18.
Plant Cell Rep ; 42(7): 1203-1215, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269373

ABSTRACT

KEY MESSAGE: PAP-FcK and PSA-FcK prostate cancer antigenic proteins transiently co-expressed in plant induce their specific humoral immune responses in mice. Prostate-specific antigen (PSA) and prostatic acid phosphatase (PAP) have been considered as immunotherapeutic antigens for prostate cancer. The use of a single antigenic agent is unlikely to be effective in eliciting immunotherapeutic responses due to the heterogeneous and multifocal nature of prostate cancer. Thus, multiple antigens have been combined to enhance their anti-cancer effects. In the current study, PSA and PAP were fused to the crystallizable region (Fc region) of immunoglobulin G1 and tagged with KDEL, the endoplasmic reticulum (ER) retention signal motif, to generate PSA-FcK and PAP-FcK, respectively, and were transiently co-expressed in Nicotiana benthamiana. Western blot analysis confirmed the co-expression of PSA-FcK and PAP-FcK (PSA-FcK + PAP-FcK) with a 1:3 ratios in the co-infiltrated plants. PSA-FcK, PAP-FcK, and PSA-FcK + PAP-FcK proteins were successfully purified from N. benthamiana by protein A affinity chromatography. ELISA showed that anti-PAP and anti-PSA antibodies successfully detected PAP-FcK and PSA-FcK, respectively, and both detected PSA-FcK + PAP-FcK. Surface plasmon resonance (SPR) analysis confirmed the binding affinity of the plant-derived Fc fusion proteins to FcγRI/CD64. Furthermore, we also confirmed that mice injected with PSA-FcK + PAP-FcK produced both PSA- and PAP-specific IgGs, demonstrating their immunogenicity. This study suggested that the transient plant expression system can be applied to produce the dual-antigen Fc fusion protein (PSA-FcK + PAP-FcK) for prostate cancer immunotherapy.


Subject(s)
Cancer Vaccines , Prostatic Neoplasms , Animals , Humans , Male , Mice , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Cancer Vaccines/therapeutic use , Immunity , Prostate/metabolism , Prostate-Specific Antigen , Prostatic Neoplasms/therapy
19.
Front Plant Sci ; 14: 1130910, 2023.
Article in English | MEDLINE | ID: mdl-36875611

ABSTRACT

Newcastle disease (ND) is a highly contagious viral respiratory and neurological disease that has a severe impact on poultry production worldwide. In the present study, an expression platform was established for the transient production in N.bethamiana of ND virus-like particles (VLPs) for use as vaccines against ND. The expression of the ND Fusion (F) and/or Hemagglutinin-neuraminidase (HN) proteins of a genotype VII.2 strain formed ND VLPs in planta as visualized under the transmission electron microscope, and HN-containing VLPs agglutinated chicken erythrocytes with hemagglutination (HA) titres of up to 13 log2.The immunogenicity of the partially-purified ND VLPs was confirmed in specific-pathogen-free White leghorn chickens. Birds receiving a single intramuscular immunization with 1024 HA units (10 log2) of the F/HN ND VLPs administered with 20% [v/v] Emulsigen®-P adjuvant, seroconverted after 14 days with F- and HN-specific antibodies at ELISA titres of 5705.17 and HI geometric mean titres (GMTs) of 6.2 log2, respectively. Furthermore, these ND-specific antibodies successfully inhibited viral replication in vitro of two antigenically closely-related ND virus isolates, with virus-neutralization test GMTs of 3.47 and 3.4, respectively. Plant-produced ND VLPs have great potential as antigen-matched vaccines for poultry and other avian species that are highly immunogenic, cost-effective, and facilitate prompt updating to ensure improved protection against emerging ND field viruses.

20.
Plant Biotechnol J ; 21(6): 1103-1105, 2023 06.
Article in English | MEDLINE | ID: mdl-36917445

ABSTRACT

Nicotiana benthamiana is increasingly used for transient gene expression to produce antibodies, vaccines, and other pharmaceutical proteins but transient gene expression is low in fully developed, 6-8-week old plants. This low gene expression is thought to be caused by the perception of the cold shock protein (CSP) of Agrobacterium tumefaciens. The CSP receptor is contested because both NbCSPR and NbCORE have been claimed to perceive CSP. Here, we demonstrate that CSP perception is abolished in 6-week-old plants silenced for NbCORE but not NbCSPR. Importantly, older NbCORE-silenced plants support a highly increased level of GFP fluorescence and protein upon agroinfiltration. The drastic increase in transient protein production in NbCORE-depleted plants offers new opportunities for molecular farming, where older plants with larger biomass can now be used for efficient protein expression.


Subject(s)
Agrobacterium tumefaciens , Nicotiana , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Agrobacterium tumefaciens/genetics , Antibodies/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...