Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.781
Filter
1.
Sci Total Environ ; : 174966, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39069181

ABSTRACT

In the ongoing Anthropocene era, air quality monitoring constitutes a primary axis of European and international policies for all sectors, including Waste Water Treatment Plants (WWTPs). Unmanned Aerial Systems (UASs) with proper sensing equipment provide an edge technology for air quality and odor monitoring. In addition, Unmanned Aerial Vehicle (UAV) photogrammetry has been used in civil engineering, environmental (water) quality assessment and lately for industrial facilities monitoring. This study constitutes a systematic review of the late advances and limitations of germane equipment and implementations. Despite their unassailable flexibility and efficiency, the employment of the aforementioned technologies in WWTP remote monitoring is yet sparse, partial, and concerns only particular aspects. The main finding of the review was the lack of a tailored UAS for WWTP monitoring in the literature. Therefore, to fill in this gap, we propose a fit-for-purpose remote monitoring system consisting of a UAS with a platform that would integrate all the required sensors for air quality (i.e., emissions of H2S, NH3, NOx, SO2, CH4, CO, CO2, VOCs, and PM) and odor monitoring, multispectral and thermal cameras for photogrammetric structural health monitoring (SHM) and wastewater/effluent properties (e.g., color, temperature, etc.) of a WWTP. It constitutes a novel, supreme and integrated approach to improve the sustainable management of WWTPs. Specifically, the developments that a fit-for-purpose WWTP UAS would launch, are fostering the decision-making of managers, administrations, and policymakers, both in operational conditions and in case of failures, accidents or natural disasters. Furthermore, it would significantly reduce the operational expenditure of a WWTP, ensuring personnel and population health standards, and local area sustainability.

2.
Clin Chest Med ; 45(3): 531-541, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39069319

ABSTRACT

Outdoor air pollution is ubiquitous, and no safe level of exposure has been identified for the most common air pollutants such as ozone and particle pollution. Children are uniquely more susceptible to the harms of outdoor air pollution, which can cause and exacerbate respiratory disease. Although challenging to identify the effects of outdoor air pollution on individual patients, understanding the basics of outdoor air pollution is essential for pediatric respiratory health care providers. This review covers basic information regarding outdoor air pollution, unique considerations for children, mechanisms for increased susceptibility, and association with incident and exacerbation of respiratory disease in children.


Subject(s)
Air Pollutants , Air Pollution , Respiratory Tract Diseases , Humans , Air Pollution/adverse effects , Child , Respiratory Tract Diseases/etiology , Respiratory Tract Diseases/epidemiology , Air Pollutants/adverse effects , Environmental Exposure/adverse effects , Particulate Matter/adverse effects , Ozone/adverse effects
3.
Biomedicines ; 12(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39061993

ABSTRACT

BACKGROUND: Volatile organic compounds (VOC) are major indoor air pollutants. Previous studies reported an association between VOC exposure and allergic diseases. Here, we aimed to explore the relationship between VOC exposure and atopic dermatitis (AD) in adults. METHODS: We prospectively enrolled 31 adult AD patients and 11 healthy subjects as controls. Urine metabolite levels of VOCs, including 1.3-butadiene, acrylamide, benzene, toluene, and xylene, were all determined with liquid chromatography-mass spectrometry. The relationship between AD and log-transformed urine levels of VOC metabolites were examined using a multivariate linear regression model adjusted for age and sex. We also treated mouse bone marrow-derived cells (BMMCs) with 1,3-butadiene and toluene and measured the release of ß-hexosaminidase. RESULTS: Our results demonstrated that creatinine-corrected urine levels of N-Acetyl-S- (3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA), and N-Acetyl-S-(benzyl)-L-cysteine (BMA) were all elevated in AD patients compared with controls. In a multivariate linear regression model, creatinine-corrected urine levels of BMA (a toluene metabolite) and DHBMA (a 1,3-butadiene metabolite) appeared elevated in AD patients, although statistical significance was not reached after correction for multiple comparisons. In addition, 1,3-butadiene and toluene could stimulate BMMCs to degranulate as much as compound 48/80. CONCLUSIONS: Some VOCs, such as 1,3-butadiene and toluene, might be associated with AD pathogenesis in adults.

4.
Biomedicines ; 12(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062135

ABSTRACT

(1) Background: Haemorrhagic strokes (HS), including intracerebral (ICH) and subarachnoid haemorrhages (SAH), account for approximately 10-15% of strokes worldwide but are associated with worse functional outcomes and higher rates of mortality, and financial burden than ischemic stroke. There is evidence that confirmed poor air quality may increase the incidence of haemorrhagic strokes. The aim of our study was to evaluate the association between individual ambient air pollutants and the risk of haemorrhagic stroke in an urban environment without high levels of air pollution. (2) Methods: A time-series cross-sectional study design was used. A daily air pollution concentration (Agency of Regional Air Quality Monitoring in the Gdansk Metropolitan Area) and incidence of haemorrhagic strokes (National Health Fund) were obtained and covered the time period from 1 January 2014 to 31 December 2018. A generalised additive model with Poisson regression was used to estimate the associations between 24-h mean concentrations of SO2, NO, NO2, NOx, CO, PM10, PM2.5, and O3 and a daily number of haemorrhagic strokes. (3) Results: The single-day lag model results showed that NO2, NO and NOx exposure was associated with increased risk of ICH (88% events) with RR of 1.059 (95% CI: 1.015-1.105 for lag0), 1.033 (95% CI: 1.007-1.060 for lag0) and 1.031 (95% CI: 1.005-1.056 for lag0), but not for SAH (12% events). Exposure to CO was related to a substantial and statistically significant increase in incidence for 1.031 (95% CI: 1.002-1.061 for lag0) but not for SAH. Higher SO2, PM10, PM2.5, and O3 exposures were not significantly related to both ISC and SAH. (4) Conclusions: In this time-series cross-sectional study, we found strong evidence that supports the hypothesis that transient elevations in ambient NO2, NO and CO are associated with a higher relative risk of intracerebral but not subarachnoid haemorrhage.

5.
Clin Exp Dermatol ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39067059

ABSTRACT

BACKGROUND: Air pollution is associated with several inflammatory skin disorders. However, the association between air quality and rosacea remains unclear. OBJECTIVE: To investigate the association between air quality index and incidence of rosacea. METHODS: Overall, 21,709,479 participants without rosacea before 2008 were recruited from the Taiwan National Health Insurance Research Database. The long-term average air quality index (AQI) value for each participant was acquired from the Taiwan Air Quality Monitoring System Network and calculated from 2008/1/1 until the diagnosis of rosacea, withdrawal from the National Health Insurance, or December 31, 2018. RESULTS: We observed a significant association between AQI and the incidence of rosacea, with each unit elevation in AQI increasing the risk of rosacea by 5 %. Compared with the Q1 group, the Q2, Q3, and Q4 cohorts exhibited 1.82-fold, 4.48-fold and 7.22-fold increased risk of rosacea, respectively. Additionally, exposure to PM2.5, SO2 and CO increased the risk of rosacea, whereas exposure to PM10 was associated with a lower risk. CONCLUSION: This study supported a significant dose-response relationship between AQI and the incidence of rosacea.

6.
Bull Environ Contam Toxicol ; 113(2): 15, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068353

ABSTRACT

The increasing ground-level ozone (O3) is threatening food security, especially in Asian areas, where rice is one of the most important staple crops. O3 impacts on rice could be exacerbated by its spatiotemporal heterogeneity. To improve evaluation accuracy and develop effective adaptations, direct data is urgently needed. Studies on the short-term effects of O3 on rice grain, however, are lacking. Which may lead to an underestimation of the O3 impacts. Through a field experiment, we studied the responses of grain nitrogen, grain carbon, and grain protein in rice cultivars to elevated concentrations of O3 (40 ppb plus that in background air, eO3), especially examining the effects of short-term eO3 during different plant growth stages. We found that long-term eO3 increased grain nitrogen by 29.29% in a sensitive rice cultivar, and short-term eO3 at the tillering and jointing stages increased grain nitrogen by 19.31%, and the grain carbon to nitrogen ratio was decreased by 14.70%, and 21.14% by short-term and long-term eO3. Here we demonstrate that short-term eO3 may significantly affect the chemical composition of rice grains. Previous evaluations of the effects of eO3 may be underestimated. Moreover, changes in the grain nitrogen and grain protein were greater when the short-term eO3 was added to rice plants during the tillering and jointing stage, compared to heading and ripening stage. These results suggest that to improve the tolerance of rice to eO3 to achieve food security, studies on cultivar screening, as well as developing growth-stage-specific adaptations are needed in future.


Subject(s)
Air Pollutants , Nitrogen , Oryza , Ozone , Oryza/growth & development , Air Pollutants/analysis , Air Pollutants/toxicity , Nitrogen/analysis , Edible Grain/chemistry , Carbon/analysis , Environmental Monitoring
7.
Hum Exp Toxicol ; 43: 9603271241263569, 2024.
Article in English | MEDLINE | ID: mdl-39073095

ABSTRACT

OBJECTIVE OF THE RESEARCH: Air pollution is a universal issue and has significant deleterious effects on both human health and also environment. The important indicators of air pollution include ozone (O3), particulate matter (PM), nitrogen dioxide (NO2), and sulfur dioxide (SO2). This research aims to investigate the impacts of ambient air pollution (AAP), SO2, and O3 on oxidative stress parameters, liver tissue histopathology, and expression of some carcinogenesis-related genes in the hepatic tissue of rats. MATERIALS AND METHODS: 32 Wistar rats were randomly allocated to four groups: the control group, the AAP group, the SO2 group (10 ppm), and the ozone group (0.6 ppm). Over a period of five consecutive weeks, the rats were exposed to the specified pollutants for 3 h daily; liver tissues were harvested and instantly fixed with formalin. Pathological changes were assessed in the tissue samples. Additionally, the RT-qPCR technique was utilized to investigate Expression alterations of BAX, p-53, BCL2, caspase-3, caspase-8 and caspase-9. Furthermore, 30 milligrams of hepatic tissues were extracted to assess the activities of oxidative stress enzymes. RESULTS: The liver catalase and MDA activity were elevated in the air pollution (p < .05). Also, liver GPx activity in air pollution and ozone groups was significant in comparison to the control group (p < .05). The SO2 group exhibited severe lesions in histopathology examinations. CONCLUSIONS: The findings revealed an alteration in liver histopathology, an induction of oxidative stress, and the expression of some apoptosis-related genes in hepatic tissues after exposure to AAP, SO2, and O3.


Subject(s)
Air Pollutants , Liver , Oxidative Stress , Ozone , Rats, Wistar , Sulfur Dioxide , Animals , Ozone/toxicity , Sulfur Dioxide/toxicity , Oxidative Stress/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Air Pollutants/toxicity , Male , Rats , Carcinogenesis/drug effects , Carcinogenesis/genetics , Air Pollution/adverse effects , Gene Expression/drug effects
8.
Environ Monit Assess ; 196(8): 767, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073498

ABSTRACT

In near-road neighborhoods, residents are more frequently exposed to traffic-related air pollution (TRAP), and they are increasingly aware of pollution levels. Given this consideration, this study adopted portable air pollutant sensors to conduct a mobile monitoring campaign in two near-road neighborhoods, one in an urban area and one in a suburban area of Shanghai, China. The campaign characterized spatiotemporal distributions of fine particulate matter (PM2.5) and black carbon (BC) to help identify appropriate mitigation measures in these near-road micro-environments. The study identified higher mean TRAP concentrations (up to 4.7-fold and 1.7-fold higher for PM2.5 and BC, respectively), lower spatial variability, and a stronger inter-pollutant correlation in winter compared to summer. The temporal variations of TRAP between peak hour and off-peak hour were also investigated. It was identified that district-level PM2.5 increments occurred from off-peak to peak hours, with BC concentrations attributed more to traffic emissions. In addition, the spatiotemporal distribution of TRAP inside neighborhoods revealed that PM2.5 concentrations presented great temporal variability but almost remained invariant in space, while the BC concentrations showed notable spatiotemporal variability. These findings provide valuable insights into the unique spatiotemporal distributions of TRAP in different near-road neighborhoods, highlighting the important role of hyperlocal monitoring in urban micro-environments to support tailored designing and implementing appropriate mitigation measures.


Subject(s)
Air Pollutants , Environmental Monitoring , Particulate Matter , Vehicle Emissions , Air Pollutants/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , China , Air Pollution/statistics & numerical data , Traffic-Related Pollution/analysis , Soot/analysis
9.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063092

ABSTRACT

Obesity, a global pandemic, poses a major threat to healthcare systems worldwide. Adipose tissue, the energy-storing organ during excessive energy intake, functions as a thermoregulator, interacting with other tissues to regulate systemic metabolism. Specifically, brown adipose tissue (BAT) is positively associated with an increased resistance to obesity, due to its thermogenic function in the presence of uncoupled protein 1 (UCP1). Recently, studies on climate change and the influence of environmental pollutants on energy homeostasis and obesity have drawn increasing attention. The reciprocal relationship between increasing adiposity and increasing temperatures results in reduced adaptive thermogenesis, decreased physical activity, and increased carbon footprint production. In addition, the impact of climate change makes obese individuals more prone to developing type 2 diabetes mellitus (T2DM). An impaired response to heat stress, compromised vasodilation, and sweating increase the risk of diabetes-related comorbidities. This comprehensive review provides information about the effects of climate change on obesity and adipose tissue, the risk of T2DM development, and insights into the environmental pollutants causing adipose tissue dysfunction and obesity. The effects of altered dietary patterns on adiposity and adaptation strategies to mitigate the detrimental effects of climate change are also discussed.


Subject(s)
Adipose Tissue , Air Pollution , Climate Change , Diabetes Mellitus, Type 2 , Obesity , Humans , Air Pollution/adverse effects , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/epidemiology , Obesity/metabolism , Obesity/etiology , Obesity/epidemiology , Animals , Adipose Tissue/metabolism , Thermogenesis , Adipose Tissue, Brown/metabolism , Energy Metabolism , Adiposity
10.
Article in English | MEDLINE | ID: mdl-39063427

ABSTRACT

The emission of sulphur dioxide (SO 2) from mining activities presents significant health hazards, particularly to communities near industrial zones. This mixed-methods study investigates the nexus between (SO 2) exposure and respiratory health in Kankoyo Township, Zambia. Employing community engagement, expert interviews, spatial analysis, and a retrospective examination of 15 years of health and (SO 2) data, the research identified a troubling correlation between (SO 2) exposure and adverse respiratory health effects among the local population. Expert interviews highlighted that respiratory issues constituted approximately 75% of health complications, with a notable reduction in asthma cases following the installation of a monitoring station and upgrades to smelter operations. Spatial analysis demonstrated that (SO 2) levels in Kankoyo exceeded the Zambian Environmental Management Agency (ZEMA) limits by 1713% identifying it as a significant pollution hotspot. Additionally, wind profile analysis indicated frequent low-speed winds from the east-northeast (ENE), contributing to pollutant accumulation. Based on these insights, the study recommends implementing real-time pollution data sharing, affordable air quality sensors, addressing medication shortages, establishing specialized respiratory clinics, launching IT-driven awareness campaigns, and further research into additional pollutants and confounding factors.


Subject(s)
Air Pollutants , Environmental Exposure , Mining , Sulfur Dioxide , Humans , Sulfur Dioxide/analysis , Zambia/epidemiology , Air Pollutants/analysis , Adult , Female , Male , Middle Aged , Environmental Exposure/adverse effects , Adolescent , Young Adult , Child , Retrospective Studies , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/chemically induced , Child, Preschool , Aged , Environmental Monitoring
11.
Article in English | MEDLINE | ID: mdl-39063472

ABSTRACT

BACKGROUND: People living with asthma are disproportionately affected by air pollution, with increased symptoms, medication usage, hospital admissions, and the risk of death. To date, there has been a focus on exhaust emissions, but traffic-related air pollution (TRAP) can also arise from the mechanical abrasion of tyres, brakes, and road surfaces. We therefore created a study with the aim of investigating the acute impacts of non-exhaust emissions (NEEs) on the lung function and airway immune status of asthmatic adults. METHODS: A randomised three-condition crossover panel design will expose adults with asthma using a 2.5 h intermittent cycling protocol in a random order at three locations in London, selected to provide the greatest contrast in the NEE components within TRAP. Lung function will be monitored using oscillometry, fractional exhaled nitric oxide, and spirometry (the primary outcome is the forced expiratory volume in one second). Biomarkers of inflammation and airborne metal exposure will be measured in the upper airway using nasal lavage. Symptom responses will be monitored using questionnaires. Sources of exhaust and non-exhaust concentrations will be established using source apportionment via the positive matrix factorisation of high-time resolution chemical measures conducted at the exposure sites. DISCUSSION: Collectively, this study will provide us with valuable information on the health effects of NEE components within ambient PM2.5 and PM10, whilst establishing a biological mechanism to help contextualise current epidemiological observations.


Subject(s)
Air Pollutants , Asthma , Cross-Over Studies , Humans , Air Pollutants/analysis , Air Pollutants/adverse effects , Adult , London , Vehicle Emissions/analysis , Male , Female , Air Pollution/analysis , Air Pollution/adverse effects , Respiratory Function Tests
12.
Article in English | MEDLINE | ID: mdl-39063493

ABSTRACT

Up to 1.6 million tons of waste is produced annually by each of more than 21,000 concentrated animal feeding operations (CAFOs) located in the United States (USA). These operations give rise to externalities, including adverse local and global health impacts from CAFO waste emissions, which can potentially outweigh their economic viability. However, a shortage of evidence synthesis research exclusively on the impacts of USA-based CAFO waste emissions may hinder effective policy development. This scoping review (ScR) study, adhering to the guidelines from the Joanna Briggs Institute, conducted a search in databases including Scopus, Web of Science, PubMed, and Embase in May 2020, resulting in ten publications that met the inclusion criteria. The results suggest possible exposure of CAFO workers to multidrug-resistant Staphylococcus aureus (MDRSA), campylobacteriosis, and cryptosporidiosis. Communities near CAFOs experienced higher rates of adverse health impacts compared to those in non-CAFO areas, with patterns suggesting that proximity may correlate with increased odds of detrimental health effects. Implicit global health threats include methicillin-resistant Staphylococcus aureus (MRSA), MDRSA, campylobacteriosis, tuberculosis, and cryptosporidiosis. These studies provide foundational insights into CAFO proximity, density patterns, and adverse public health effects, indicating a need for evidence-informed environmental health policies to minimize local and global risks.


Subject(s)
Public Health , United States , Humans , Animals , Animal Husbandry , Global Health
13.
Article in English | MEDLINE | ID: mdl-39063530

ABSTRACT

BACKGROUND: Urothelial bladder carcinoma (UBC) is the most frequent histologic form of bladder cancer, constituting 90% of the cases. It is important to know the risk factors of UBC to avoid them and to decrease its recurrence after treatment. The aim of this review was to provide an overview of the risk factors associated with UBC incidence. METHODS: A comprehensive literature search from 2012 to 2024 was carried out in databases such as PubMed, Google Scholar, and Medline with potential keywords such as "bladder cancer", "urothelial bladder cancer", "incidence of urothelial bladder cancer worldwide", "mortality rate of bladder cancer", "incidence according to gender", "treatment for bladder cancer", and "risk factors of bladder cancer". Smoking tobacco was comprehended to be the major risk factor for UBC. Smoke from tobacco products contains polycyclic aromatic hydrocarbons (PAHs) and aromatic amines such as 4-aminobiphenyl, which are known to cause UBC. Smoking-related bladder cancer mortality ranks just second to smoking-related lung cancer mortality. For non-smokers, pollution became a major risk factor associated with UBC. Polycyclic aromatic hydrocarbons (PAHs) are linked to many cancers, especially to UBC. Indoor and outdoor pollution generates VOCs (volatile organic compounds) and PAHs. Small-particle matter < 2.5 is linked to UBC and lung cancers. Drinking chlorinated water is linked to UBC. Also, swimming in chlorinated pools that produce trihalomethanes increases the risk of many cancers, and especially of bladder cancer. Occupational exposure to carcinogens, specifically aromatic amines, is a significant UBC risk factor. It has been estimated that approximately 20% of all UBCs may be linked to this type of exposure, primarily in industrial settings that treat dye, paint, petroleum chemicals, and metal. The other risk factors included genetics, diet, and medical conditions. Alcohol, consumption of processed meat and whole milk, and higher intakes of selenium and vitamins A and E also contribute to the development of UBC. Further, chemotherapeutic agents, oral hypoglycemic drugs, and radiation therapy are positively associated with UBC. CONCLUSIONS: The significance of the initial prevention of UBC must be emphasized, and especially programs for quitting cigarettes should be encouraged and supported. However, smoking is not the only risk factor for UBC. For non-smokers, other risk factors should be investigated. Air and water pollution are linked to UBC. Indoor and outdoor pollution should be more controlled. Patients and people should be informed of the risk of drinking chlorinated water and swimming in chlorinated pools.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/etiology , Humans , Risk Factors , Environmental Exposure/adverse effects , Smoking/adverse effects , Incidence , Polycyclic Aromatic Hydrocarbons/toxicity
14.
Dent J (Basel) ; 12(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39057002

ABSTRACT

This systematic review assessed to evaluate the potential correlation between oral health and air pollution. To the best of the authors' knowledge, this is the first systematic review endeavoring to compare air pollution and oral health. A systematic search was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement and employed the PICO(S) approach (Patient or Population, Intervention, Control or Comparison, Outcome, and Study types). The search was limited to English-language articles, and publications within a 15-year timeframe were included in the electronic search. A comprehensive search was conducted across PubMed, Scopus, Embase, and Web of Science databases, spanning the years 2008 to 2023, resulting in a total of 4983 scientific articles. A final selection of 11 scientific papers was made based on their study type and the specific air pollutants examined. The selected papers analyzed various air pollutants associated with health-related diseases, including Ozone, Nitrogen Dioxide, Nitrogen Monoxide, Carbon Monoxide, sulfur dioxide, and particulate matter. Three out of eleven of the reviewed studies assert a strong correlation between air pollutants and oral diseases, specifically periodontitis. However, the exact biological mechanisms underlying this correlation do not seem to be fully understood, indicating the need for further comprehensive investigation in this regard. Dentists can contribute to the collective effort by educating their patients about the oral health implications of air pollution, thereby supporting initiatives aimed at promoting environmental and health sustainability.

15.
Toxics ; 12(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39058098

ABSTRACT

Exposure to PM2.5 while pregnant is associated with negative effects on low birth weight (LBW). This study employed a systematic review and meta-analysis to investigate the impact of PM2.5 exposure during pregnancy on LBW. A search of databases such as Scopus, ScienceDirect, and PubMed identified thirteen appropriate studies. This study used a random-effects model to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs) for each trimester. The findings revealed a significant relationship between PM2.5 exposure and LBW in both the first and second trimesters (OR 1.05, 95% CI 1.00-1.09, p < 0.001). There was no significant difference between trimesters (p = 0.704). The results emphasize the persistent influence of PM2.5 on fetal development throughout all stages of pregnancy. Reducing air pollution is critical for improving pregnancy outcomes and decreasing the incidence of LBW. Further study is needed to improve exposure assessments and investigate the underlying biological pathways.

16.
Toxics ; 12(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39058106

ABSTRACT

Air pollution is one of the greatest environmental risks to health, with 99% of the world's population living where the World Health Organization's air quality guidelines were not met. In addition to the respiratory and cardiovascular systems, the brain is another potential target of air pollution. Population- and experiment-based studies have shown that air pollution may affect mental health through direct or indirect biological pathways. The evidence for mental hazards associated with air pollution has been well documented. However, previous reviews mainly focused on epidemiological associations of air pollution with some specific mental disorders or possible biological mechanisms. A systematic review is absent for early effect biomarkers for characterizing mental health hazards associated with ambient air pollution, which can be used for early warning of related mental disorders and identifying susceptible populations at high risk. This review summarizes possible biomarkers involved in oxidative stress, inflammation, and epigenetic changes linking air pollution and mental disorders, as well as genetic susceptibility biomarkers. These biomarkers may provide a better understanding of air pollution's adverse effects on mental disorders and provide future research direction in this arena.

17.
Toxics ; 12(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39058114

ABSTRACT

Air pollution, particularly PM2.5, poses a significant environmental and public health concern, particularly in northern Thailand, where elevated PM2.5 levels are prevalent during the dry season (January-May). This study examines the influx and patterns of transboundary biomass burning PM2.5 (TB PM2.5) in this region during the 2019 dry season using the WRF-Chem model. The model's reliability was confirmed through substantial correlations between model outputs and observations from the Pollution Control Department (PCD) of Thailand at 10 monitoring stations. The findings indicate that TB PM2.5 significantly influences local PM2.5 levels, often surpassing contributions from local sources. The influx of TB PM2.5 began in January from southern directions, intensifying and shifting northward, peaking in March with the highest TB PM2.5 proportions. Elevated levels persisted through April and declined in May. Border provinces consistently exhibited higher TB PM2.5 concentrations, with Chiang Rai province showing the highest average proportion, reaching up to 45%. On days when PM2.5 levels were classified as 'Unhealthy for Sensitive Groups' or 'Unhealthy', TB PM2.5 contributed at least 50% to the total PM2.5 at all stations. Notably, stations in Chiang Rai and Nan showed detectable TB PM2.5 even at 'Very Unhealthy' levels, underscoring the significant impact of TB PM2.5 in the northern border areas. Effective mitigation of PM2.5-related health risks requires addressing PM2.5 sources both within and beyond Thailand's borders.

18.
Sci Rep ; 14(1): 15664, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977757

ABSTRACT

In low- and middle-income countries, indoor air pollution (IAP) is a serious public health concern, especially for women and children who cook with solid fuels. IAP exposure has been linked to a number of medical conditions, including pneumonia, ischemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lung cancer, and anaemia. Around 500 million women of reproductive age (WRA) suffer from anaemia globally, with an estimated 190 million cases in sub-Saharan Africa (SSA). This study, which is based on prior research, investigates the relationship between IAP exposure and anaemia among WRA in Ghana. A diverse sample of 2,406 WRA living in Ghana were interviewed, of which 58.06% were anaemic and used high-pollutant fuels for cooking. Age, place of residence, region, education level, religion, ethnicity, wealth index, type of drinking water, type of toilet facility, and type of cooking fuels were all found to be significantly linked with anaemic state by bivariate analysis. Type of cooking fuels utilized, age, region of residence, and the type of residence were shown to be significant predictors of anaemia status using sequential binary logit regression models. The results emphasise the critical need for efforts to promote the usage of clean cooking fuel in an attempt to lower anaemia prevalence in Ghana. To reduce dependency on solid fuels for cooking, initiatives should promote the use of cleaner cooking fuels and enhance the socioeconomic status of households. These interventions could have significant public health effects by reducing the burden of anaemia and improving maternal and child health outcomes due to the prevalence of anaemia among WRA. Overall, this study sheds light on the relationship between IAP exposure and anaemia in Ghana and highlights the demand for focused public health initiatives to address this serious health problem.


Subject(s)
Air Pollution, Indoor , Anemia , Cooking , Smoke , Humans , Ghana/epidemiology , Female , Anemia/epidemiology , Anemia/etiology , Adult , Air Pollution, Indoor/adverse effects , Young Adult , Adolescent , Smoke/adverse effects , Middle Aged , Prevalence
19.
Preprint in English | SciELO Preprints | ID: pps-9284

ABSTRACT

Introduction: Atmospheric contamination is closely linked to negative impacts on public health. Understanding the unique aspects of the Brazilian context is crucial for the implementation of public policies and health promotion. Objective: To assess the negative impacts of air pollution on public health in Brazil. Method: This review was developed through a search in the Latin American and Caribbean Health Sciences Information Literature (LILACS), Scientific Electronic Library Online (SciELO), and PubMed/Medline databases, using the keywords "Air Pollution" AND (Health OR "Public Health") AND "Adverse Effects" AND Brazil. Articles written in English and Portuguese, published from 2013 to 2024, were selected. Additionally, two articles were manually included. After applying the inclusion criteria and removing duplicates, 19 references were used for this review. Results and Discussion: There is a significant correlation between respiratory diseases and the emission of atmospheric pollutants, particularly the release of fine suspended particles (PM10), highlighting an increase in hospitalizations due to respiratory illnesses. The lack of studies addressing the effects of pollutants on other systems of the human body beyond the respiratory and cardiovascular systems, as well as the scarcity of information on various atmospheric pollutants, underscores the need for further research to fill these gaps. Conclusion: Even at levels considered acceptable, atmospheric pollutants still pose risks to public health. Therefore, specific public policies aimed at reducing emissions of these gasses and improving air quality are necessary.

20.
Article in English | MEDLINE | ID: mdl-38956275

ABSTRACT

BACKGROUND & OBJECTIVE: Disposable face masks are a primary protective measure against the adverse health effects of exposure to infectious and toxic aerosols such as airborne viruses and particulate air pollutants. While the fit of high efficiency respirators is regulated in occupational settings, relatively little is known about the fitted filtration efficiencies of ear loop style face masks worn by the public. METHODS: We measured the variation in fitted filtration efficiency (FFE) of four commonly worn disposable face masks, in a cohort of healthy adult participants (N = 100, 50% female, 50% male, average age = 32.3 ± 9.2 years, average BMI = 25.5 ± 3.4) using the U.S. Occupational Safety and Health Administration Quantitative Fit Test, for an N95 (respirator), KN95, surgical, and KF94 masks. The latter three ear loop style masks were additionally tested in a clip-modified condition, tightened using a plastic clip to centrally fasten loops in the back of the head. RESULTS: The findings show that sex is a major determinant of the FFE of KN95, surgical, and KF94 masks. On average, males had an 11% higher FFE relative to females, at baseline testing. We show that a simple modification using an ear loop clip, results in improvements in the average FFE for females but provides comparatively minor changes for males. On average, females had a 20% increased FFE when a clip was worn behind the head, relative to a 6% increase for males. IMPACT: The efficacy of a disposable face mask as protection against air contaminants depends on the efficiency of the mask materials and how well it fits the wearer. We report that the sex of the wearer is a major determinant of the baseline fitted filtration efficiency (FFE) of commonly available ear loop style face masks. In addition, we show that a simple fit modifier, an ear loop clip fastened behind the head, substantially improves baseline FFE for females but produces only minor changes for males. These findings have significant public health implications for the use of face masks as a protective intervention against inhalational exposure to airborne contaminants.

SELECTION OF CITATIONS
SEARCH DETAIL
...