Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters










Publication year range
1.
Biol Pharm Bull ; 47(7): 1255-1264, 2024.
Article in English | MEDLINE | ID: mdl-38972750

ABSTRACT

Traditional Chinese Medicine, known for its minimal side effects and significant clinical efficacy, has attracted considerable interest for its potential in cancer therapy. In particular, Inula helenium L. has demonstrated effectiveness in inhibiting a variety of cancers. This study focuses on alantolactone (ALT), a prominent compound from Inula helenium L., recognized for its anti-cancer capabilities across multiple cancer types. The primary objective of this study is to examine the influence of ALT on the proliferation, apoptosis, cell cycle, and tumor growth of cervical cancer (CC) cells, along with its associated signaling pathways. To determine protein expression alterations, Western blot analysis was conducted. Furthermore, an in vivo model was created by subcutaneously injecting HeLa cells into nude mice to assess the impact of ALT on cervical cancer. Our research thoroughly investigates the anti-tumor potential of ALT in the context of CC. ALT was found to inhibit cell proliferation and induce apoptosis in SiHa and HeLa cell lines, particularly targeting ataxia-telangiectasia mutated (ATM) proteins associated with DNA damage. The suppression of DNA damage and apoptosis induction when ATM was inhibited underscores the crucial role of the ATM/cell cycle checkpoint kinase 2 (CHK2) axis in ALT's anti-tumor effects. In vivo studies with a xenograft mouse model further validated ALT's effectiveness in reducing CC tumor growth and promoting apoptosis. This study offers new insights into how ALT combats CC, highlighting its promise as an effective anti-cervical cancer agent and providing hope for improved treatment outcomes for CC patients.


Subject(s)
Apoptosis , Ataxia Telangiectasia Mutated Proteins , Checkpoint Kinase 2 , DNA Damage , Lactones , Mice, Nude , Sesquiterpenes, Eudesmane , Signal Transduction , Uterine Cervical Neoplasms , Humans , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Apoptosis/drug effects , Female , Checkpoint Kinase 2/metabolism , DNA Damage/drug effects , Signal Transduction/drug effects , Sesquiterpenes, Eudesmane/pharmacology , Sesquiterpenes, Eudesmane/therapeutic use , Lactones/pharmacology , Lactones/therapeutic use , HeLa Cells , Cell Proliferation/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Mice , Inula/chemistry
2.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930831

ABSTRACT

In recent years, researchers have often encountered the significance of the aberrant metabolism of tumor cells in the pathogenesis of malignant neoplasms. This phenomenon, known as the Warburg effect, provides a number of advantages in the survival of neoplastic cells, and its application is considered a potential strategy in the search for antitumor agents. With the aim of developing a promising platform for designing antitumor therapeutics, we synthesized a library of conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones. To gain insight into the determinants of the biological activity of the prepared compounds, we showed that the conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones, which are cytotoxic agents, demonstrate selective activity toward a number of tumor cell lines with glycolysis-inhibiting ability. Moreover, the results of molecular and in silico screening allowed us to identify these compounds as potential inhibitors of the pyruvate kinase M2 oncoprotein, which is the rate-determining enzyme of glycolysis. Thus, the results of our work indicate that the synthesized conjugates of 3,5-bis(arylidene)-4-piperidone and sesquiterpene lactones can be considered a promising platform for designing selective cytotoxic agents against the glycolysis process, which opens new possibilities for researchers involved in the search for antitumor therapeutics among compounds containing piperidone platforms.


Subject(s)
Antineoplastic Agents , Lactones , Piperidones , Sesquiterpenes , Humans , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/chemistry , Lactones/pharmacology , Lactones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Piperidones/pharmacology , Piperidones/chemistry , Glycolysis/drug effects , Cell Proliferation/drug effects , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Drug Screening Assays, Antitumor
3.
Cancer Cell Int ; 24(1): 191, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822350

ABSTRACT

Mitogen-activated protein kinase inhibitors (MAPKi) were the first line drugs for advanced melanoma patients with BRAF mutation. Targeted therapies have significant therapeutic effects; however, drug resistance hinders their long-term efficacy. Therefore, the development of new therapeutic strategies against MAPKi resistance is critical. Our previous results showed that MAPKi promote feedback activation of STAT3 signaling in BRAF-mutated cancer cells. Studies have shown that alantolactone inhibited the activation of STAT3 in a variety of tumor cells. Our results confirmed that alantolactone suppressed cell proliferation and promoted apoptosis by inhibiting STAT3 feedback activation induced by MAPKi and downregulating the expression of downstream Oct4 and Sox2. The inhibitory effect of alantolactone combined with a MAPKi on melanoma cells was significantly stronger than that on normal cells. In vivo and in vitro experiments showed that combination treatment was effective against drug-resistant melanomas. Our research indicates a potential novel combination therapy (alantolactone and MAPKi) for patients with BRAF-mutated melanoma.

5.
Molecules ; 29(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675685

ABSTRACT

Alantolactone is a eudesmane-type sesquiterpene lactone containing an α-methylene-γ-lactone moiety. Previous studies showed that alantolactone inhibits the nuclear factor κB (NF-κB) signaling pathway by targeting the inhibitor of NF-κB (IκB) kinase. However, in the present study, we demonstrated that alantolactone selectively down-regulated the expression of tumor necrosis factor (TNF) receptor 1 (TNF-R1) in human lung adenocarcinoma A549 cells. Alantolactone did not affect the expression of three adaptor proteins recruited to TNF-R1. The down-regulation of TNF-R1 expression by alantolactone was suppressed by an inhibitor of TNF-α-converting enzyme. Alantolactone increased the soluble forms of TNF-R1 that were released into the culture medium as an ectodomain. The structure-activity relationship of eight eudesmane derivatives revealed that an α-methylene-γ-lactone moiety was needed to promote TNF-R1 ectodomain shedding. In addition, parthenolide and costunolide, two sesquiterpene lactones with an α-methylene-γ-lactone moiety, increased the amount of soluble TNF-R1. Therefore, the present results demonstrate that sesquiterpene lactones with an α-methylene-γ-lactone moiety can down-regulate the expression of TNF-R1 by promoting its ectodomain shedding in A549 cells.


Subject(s)
Down-Regulation , Lactones , Receptors, Tumor Necrosis Factor, Type I , Sesquiterpenes , Humans , A549 Cells , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Lactones/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , NF-kappa B/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes, Eudesmane/pharmacology , Sesquiterpenes, Eudesmane/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship
6.
Eur J Pharmacol ; 969: 176458, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38395373

ABSTRACT

Alantolactone is a eudesmane-type sesquiterpene lactone that exerts various biological effects, including anti-inflammatory activity. In the present study, screening using the RIKEN Natural Products Depository chemical library identified alantolactone derivatives that inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells stimulated with proinflammatory cytokines and Toll-like receptor ligands. In human lung adenocarcinoma A549 cells stimulated with tumor necrosis factor-α (TNF-α), six alantolactone derivatives inhibited ICAM-1 expression in a dose-dependent manner and at IC50 values of 13-21 µM, whereas that of alantolactone was 5 µM. Alantolactone possesses an α-methylene-γ-lactone moiety, whereas alantolactone derivatives do not. In the nuclear factor κB (NF-κB) signaling pathway, alantolactone prevented the TNF-α-induced phosphorylation and degradation of the inhibitor of NF-κB α (IκBα) protein, and its downstream signaling pathway. In contrast, alantolactone derivatives neither reduced TNF-α-induced IκBα degradation nor the nuclear translocation of the NF-κB subunit RelA, but inhibited the binding of RelA to the ICAM-1 promoter. The inhibitory activities of alantolactone and alantolactone derivatives were attenuated by glutathione. These results indicate that alantolactone derivatives inhibit the TNF-α-induced NF-κB pathway by a different mechanism from alantolactone.


Subject(s)
Lung Neoplasms , Sesquiterpenes, Eudesmane , Humans , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/pharmacology , NF-KappaB Inhibitor alpha , Intercellular Adhesion Molecule-1/metabolism , Lactones/pharmacology , Sesquiterpenes, Eudesmane/pharmacology , Human Umbilical Vein Endothelial Cells , Lung Neoplasms/metabolism
7.
Int Immunopharmacol ; 128: 111560, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246003

ABSTRACT

The anti-inflammatory and immunosuppressive drugs which are used in the treatment of Graft-versus-Host Disease (GVHD) have limited effects in controlling the severity of the disease. In this study, we aimed to investigate the prophylactic effect of Alantolactone (ALT) in a murine model of experimental GVHD. The study included 4 BALB/c groups as hosts: Naïve (n = 7), Control GVHD (n = 16), ALT-GVHD (n = 16), and Syngeneic transplantation (n = 10). Busulfan (20 mg/kg/day) for 4 days followed by cyclophosphamide (100 mg/kg/day) were administered for conditioning. Allogeneic transplantation was performed with cells collected from mismatched female C57BL/6, and GVHD development was monitored by histological and flow cytometric assays. Additionally, liver biopsies were taken from GVHD patient volunteers between ages 2-18 (n = 4) and non-GVHD patients between ages 2-50 (n = 5) and cultured ex vivo with ALT, and the supernatants were used for ELISA. ALT significantly ameliorated histopathological scores of the GVHD and improved GVHD clinical scores. CD8+ T cells were shown to be reduced after ALT treatment. More importantly, ALT treatment skewed T cells to a more naïve phenotype (CD62L+ CD44-). ALT did not alter Treg cell number or frequency. ALT treatment appears to suppress myeloid cell lineage (CD11c+). Consistent with reduced myeloid lineage, liver and small intestine levels of GM-CSF were reduced in ALT-treated mice. IL-6 gene expression was significantly reduced in the intestinal tissue. Ex vivo ALT-treated liver biopsy samples from GVHD patients showed a trend of decrease in pro-inflammatory cytokines but there was no statistical significance. Collectively, the data indicated that ALT may have immunomodulatory actions in a preclinical murine GVHD model.


Subject(s)
CD8-Positive T-Lymphocytes , Graft vs Host Disease , Lactones , Sesquiterpenes, Eudesmane , Humans , Mice , Female , Animals , Mice, Inbred C57BL , Graft vs Host Disease/prevention & control , Transplantation, Homologous , Bone Marrow Transplantation
8.
Biochem Biophys Rep ; 35: 101537, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37712005

ABSTRACT

Introduction: A growing body of evidence indicated that Alantolactone (ALT) promotes Reactive Oxygen Species (ROS) generation exclusively in cancer cells. Therefore, the aim of this study was to investigate the effect of ALT on the molecular mechanism of oxeiptosis, as a novel cell death pathway due to the high levels of intracellular ROS in ovarian cancer. Methods: MTT assay was used to evaluate the effect of ALT on SKOV3 cell viability. mRNA and protein expression levels of Nrf2 (nuclear factor erythroid 2-related factor 2), KEAP1 (Kelch-like ECH-associated protein 1), PGAM5 (phosphoglycerate mutase family member 5), AIFM1 (Mitochondrial Apoptosis-Inducing Factor), Glutathione synthetase (GSS) and glutathione peroxidase (GPX) were analyzed by real time PCR and western blotting methods respectively. Results: Our findings showed that ALT inhibits the proliferation of skov3 cells in a time and dose dependent manner and IC50 was 32 µM at 24h.A significant down-regulation of Nrf2, GSH and GPX mRNA levels was seen in skov3 cells incubated with 32 and 64 µM of ALT in comparison with control group, while, mRNA expression levels of PGAM5 and KEAP1 were increased.Western blot analysis showed that ALT significantly decreases protein levels of Nrf2 and increases PGAM5 and KEAP1.ALT dephosphorylated PS116-AIFM1 and total AIFM1 protein level was elevated. Conclusion: Our results provided evidence that ALT could be a potential option for ovarian cancer treatment by ROS-mediated oxeiptosis.

9.
Eur J Pharmacol ; 955: 175917, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37473982

ABSTRACT

Secretory diarrhea caused by bacteria and viruses is usually accompanied by activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated Cl- channels (CaCCs) in the intestinal epithelium. Inhibition of CFTR and CaCCs activities significantly reduces fluid losses and intestinal motility in diarrheal diseases. For this reason, CFTR and CaCCs are potential targets of therapeutic drug screening. Here, we reported that the sesquiterpene lactones, alantolactone (AL) and isoalantolactone (iAL), significantly inhibited ATP and Eact-induced short-circuit currents in T84, HT-29 and Fischer rat thyroid (FRT) cells expressing transmembrane protein 16A (TMEM16A) in a concentration-dependent manner. AL and iAL also inhibited the CaCC-mediated short-circuit currents induced by carbachol in the mouse colons. Both compounds inhibited forskolin-induced currents in T84 cells but did not significantly affect mouse colons. In vivo studies indicated that AL and iAL attenuated gastrointestinal motility and decreased watery diarrhea in rotavirus-infected neonatal mice. Preliminary mechanism studies showed that AL and iAL inhibited CaCCs at least partially by inhibiting Ca2+ release and basolateral membrane K+ channels activity. These findings suggest a new pharmacological activity of sesquiterpene lactone compounds that might lead to the development of treatments for rotaviral secretory diarrhea.


Subject(s)
Rotavirus , Sesquiterpenes , Rats , Mice , Animals , Cystic Fibrosis Transmembrane Conductance Regulator , Diarrhea/drug therapy , Diarrhea/metabolism , Chloride Channels/metabolism , Intestinal Mucosa/metabolism , Rats, Inbred F344 , Lactones/pharmacology , Lactones/therapeutic use , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Sesquiterpenes/metabolism , Chlorides/metabolism
10.
J Transl Med ; 21(1): 328, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37198593

ABSTRACT

BACKGROUND: Oral squamous cell carcinoma (OSCC) is one of the most prevalent and fatal oral cancers. Mitochondria-targeting therapies represent promising strategies against various cancers, but their applications in treating OSCC are limited. Alantolactone (ALT) possesses anticancer properties and also regulates mitochondrial events. In this study, we explored the effects of ALT on OSCC and the related mechanisms. METHODS: The OSCC cells were treated with varying concentrations and duration of ALT and N-Acetyl-L-cysteine (NAC). The cell viability and colony formation were assessed. The apoptotic rate was evaluated by flow cytometry with Annexin V-FITC/PI double staining. We used DCFH-DA and flow cytometry to detect reactive oxygen species (ROS) production and DAF-FM DA to investigate reactive nitrogen species (RNS) level. Mitochondrial function was reflected by mitochondrial reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP levels. KEGG enrichment analyses determined the mitochondrial-related hub genes involved in OSCC progression. Dynamin-related protein 1 (Drp1) overexpression plasmids were further transfected into the cells to analyze the role of Drp1 in OSCC progression. Immunohistochemistry staining and western blot verified the expression of the protein. RESULTS: ALT exerted anti-proliferative and pro-apoptosis effects on OSCC cells. Mechanistically, ALT elicited cell injury by promoting ROS production, mitochondrial membrane depolarization, and ATP depletion, which were reversed by NAC. Bioinformatics analysis showed that Drp1 played a crucial role in OSCC progression. OSCC patients with low Drp1 expression had a higher survival rate. The OSCC cancer tissues presented higher phosphorylated-Drp1 and Drp1 levels than the normal tissues. The results further showed that ALT suppressed Drp1 phosphorylation in OSCC cells. Moreover, Drp1 overexpression abolished the reduced Drp1 phosphorylation by ALT and promoted the cell viability of ALT-treated cells. Drp1 overexpression also reversed the mitochondrial dysfunction induced by ALT, with decreased ROS production, and increased mitochondrial membrane potential and ATP level. CONCLUSIONS: ALT inhibited proliferation and promoted apoptosis of oral squamous cell carcinoma cells via impairment of mitochondrial homeostasis and regulation of Drp1. The results provide a solid basis for ALT as a therapeutic candidate for treating OSCC, with Drp1 being a novel therapeutic target in treating OSCC.


Subject(s)
Dynamins , Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Adenosine Triphosphate/metabolism , Apoptosis , Cell Line, Tumor , Down-Regulation , Dynamins/metabolism , Dynamins/pharmacology , Dynamins/therapeutic use , Mitochondria/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/pathology , Phosphorylation , Reactive Oxygen Species/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology
11.
Platelets ; 34(1): 2173505, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36813739

ABSTRACT

Alantolactone (ALT), a sesquiterpene lactone compound isolated from Inula helenium L., has recently attracted much attention for its anti-tumor properties. ALT reportedly functions by regulating the Akt pathway, which has been shown to be involved in programmed platelet death (apoptosis) and platelet activation. However, the precise effect of ALT on platelets remains unclear. In this study, washed platelets were treated with ALT in vitro, and apoptotic events and platelet activation were detected. In vivo, platelet transfusion experiments were employed to detect the effect of ALT on platelet clearance. Platelet counts were examined after intravenous injection of ALT. We found that ALT treatment induced Akt activation and Akt-mediated apoptosis in platelets. ALT-activated Akt elicited platelet apoptosis by activating phosphodiesterase (PDE3A) and PDE3A-mediated protein kinase A (PKA) inhibition. Pharmacological inhibition of the PI3K/Akt/PDE3A signaling pathway or PKA activation was found to protect platelets from apoptosis induced by ALT. Moreover, ALT-induced apoptotic platelets were removed faster in vivo, and ALT injection resulted in the platelet count decline. Either PI3K/Akt/PDE3A inhibitors or a PKA activator could protect platelets from clearance, ultimately ameliorating the ALT-induced decline in platelet count in the animal model. These results reveal the effects of ALT on platelets and their related mechanisms, suggesting potential therapeutic targets for the prevention and alleviation of possible side effects resulting from ALT treatments.


What is the context? In the past several decades, natural products, including traditional Chinese medicine (TCM), have been developed for the treatment of a variety of diseases.Alantolactone (ALT), a natural herb compound mainly extracted from the root of Inula helenium L., is the essential active component in many TCM formulas. ALT has attracted extensive attention because of its anti-cancer capacity recently.However, adverse events (AEs) induced by drugs are common in chemotherapy, and the side effects of ALT treatment remain unclear.What is new? In this study, experiments were conducted to clarify the precise effect of ALT on platelets. We demonstrated for the first time that ALT induces platelet apoptosis and platelet count decline, suggesting possible side effects of ALT treatment.ALT-activated Akt elicited platelet apoptosis by activating phosphodiesterase (PDE3A) and PDE3A-mediated protein kinase A (PKA) inhibition.Our work provides experimental evidence supporting the hypothesis that the effects of ALT on Akt may vary depending on cell types. Therefore. More research is needed to explore the side effects of ALT on other cells before clinical application.What is the impact? This study reveals possible side effects of ALT treatment, providing the reference for clinic drug administrate and estimation of medicine safety. Significantly, our findings demonstrated relevant molecular mechanisms, providing strategies for controlling or alleviating these side effects in the future.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Proto-Oncogene Proteins c-akt/metabolism , Apoptosis , Lactones/pharmacology
12.
Br J Pharmacol ; 180(12): 1634-1647, 2023 06.
Article in English | MEDLINE | ID: mdl-36668704

ABSTRACT

BACKGROUND AND PURPOSE: The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is activated in many inflammatory conditions. So far, no low MW compounds inhibiting NLRP3 have entered clinical use. Identification of naturally occurring NLRP3 inhibitors may be beneficial to the design and development of compounds targeting NLRP3. Alantolactone is a phytochemical from a traditional Chinese medicinal plant with anti-inflammatory activity, but its precise target remains unclear. EXPERIMENTAL APPROACH: A bank of phytochemicals was screened for inhibitors of NLRP3-driven production of IL-1ß in cultures of bone-marrow-derived macrophages from female C57BL/6 mice. Models of gouty arthritis and acute lung injury in male C57BL/6J mice were used to determine the in vivo effects of the most potent compound. KEY RESULTS: Among the 150 compounds screened in vitro, alantolactone exhibited the highest inhibitory activity against LPS + ATP-induced production of IL-1ß in macrophages, suppressing IL-1ß secretion, caspase-1 activation and pyroptosis. Alantolactone directly bound to the NACHT domain of NLRP3 to inhibit activation and assembly of NLRP3 inflammasomes. Molecular simulation analysis suggested that Arg335 in NLRP3 was a critical residue for alantolactone binding, leading to suppression of NLRP3-NEK7 interaction. In vivo studies confirmed significant alleviation by alantolactone of two NLRP3-driven inflammatory conditions, acute lung injury and gouty arthritis. CONCLUSION AND IMPLICATIONS: The phytochemical alantolactone inhibited activity of NLRP3 inflammasomes by directly targeting the NACHT domain of NLRP3. Alantolactone shows great potential in the treatment of NLRP3-driven diseases and could lead to the development of novel NLRP3 inhibitors.


Subject(s)
Acute Lung Injury , Arthritis, Gouty , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology
13.
Anticancer Agents Med Chem ; 23(1): 94-104, 2023.
Article in English | MEDLINE | ID: mdl-35598249

ABSTRACT

BACKGROUND: Melanoma is a highly invasive and metastatic malignant tumor originating from melanocytes and is associated with a poor prognosis. Surgical resection and chemotherapy are currently the main therapeutic options for malignant melanoma; however, their efficacy is poor, highlighting the need for the development of new, safe, and effective drugs for the treatment of this cancer. OBJECTIVE: To investigate the effects of alantolactone (ALT) on the proliferative, migratory, invasive, and apoptotic ability of malignant melanoma cells and explore its potential anticancer mechanism. METHODS: Melanoma cells (A375 and B16) were treated with different concentrations (4, 6, 8, and 10 µmol/L) of ALT, with DMSO and no treatment serving as controls. The effects of the different concentrations of the drug on cell proliferation were assessed by crystal violet staining and CCK-8 assay. The effects on cell migration and invasion were detected by wound healing and Transwell assays, respectively. Flow cytometry was used to evaluate the effects of the drug on apoptosis and the cell cycle. ALT target genes in melanoma were screened using network pharmacology. Western blotting was used to measure the expression levels of the proliferation-related protein PCNA; the apoptosisrelated proteins Bax, Bcl-2, and caspase-3; the invasion and metastasis-related proteins MMP-2, MMP-7, MMP-9, vimentin, E-cadherin, and N-cadherin; and the canonical Wnt signaling pathway-related proteins ß-catenin, c-Myc, and p-GSK3ß. In addition, an l model of melanoma was established by the subcutaneous injection of A375 melanoma cells into nude mice, following which the effects of ALT treatment on malignant melanoma were determined in vivo. RESULTS: Compared with the controls, the proliferative, migratory, and invasive capacity of ALT-treated melanoma cells was significantly inhibited, whereas apoptosis was enhanced (P<0.01), showing effects that were exerted in a dose-dependent manner. The expression levels of the pro-apoptotic proteins Bax and caspase-3, as well as those of the interstitial marker E-cadherin, were upregulated in melanoma cells irrespective of the ALT concentration (P<0.05). In contrast, the expression levels of the anti-apoptotic protein Bcl-2, the proliferation-related protein PCNA, and the invasion and metastasis-related proteins MMP-2, MMP-7, MMP-9, N-cadherin, and vimentin were downregulated (P<0.05). The network pharmacology results indicated that GSK3ß may be a key ALT target in melanoma. Meanwhile, western blotting assays showed that ALT treatment markedly suppressed the expression of ß-catenin as well as that of its downstream effector c-Myc, and could also inhibit GSK3ß phosphorylation. CONCLUSION: ALT can effectively inhibit the culture viability, migration, and invasion of A375 and B16 melanoma cells while also promoting their apoptosis. ALT may exert its anti-melanoma effects by inhibiting the Wnt/ß-catenin signaling pathway. Combined, our data indicate that ALT has the potential as an effective and safe therapeutic drug for the treatment of melanoma.


Subject(s)
Melanoma, Experimental , Wnt Signaling Pathway , Animals , Mice , Apoptosis , bcl-2-Associated X Protein , beta Catenin/metabolism , Cadherins , Caspase 3/metabolism , Cell Culture Techniques , Cell Line, Tumor , Cell Movement , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 7/metabolism , Matrix Metalloproteinase 9/metabolism , Melanoma, Experimental/pathology , Mice, Nude , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/pharmacology , Vimentin/metabolism , Humans , Melanoma, Cutaneous Malignant
14.
Basic Clin Pharmacol Toxicol ; 132(3): 253-262, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36507595

ABSTRACT

BACKGROUND: Oesophageal adenocarcinoma (EAC) is a highly lethal cancer associated with a rapidly rising incidence and a poor prognosis. Alantolactone, a sesquiterpene lactone isolated from inula helenium, has anti-inflammatory, antimicrobial, neuroprotective activities, and anticancer properties. OBJECTIVE: In the present study, the anticancer effects of alantolactone on the human EAC cells were investigated in vitro and in vivo. METHODS AND FINDINGS: After treated with alantolactone, the cell viability of KYAE-1, KYAE-2, OE19, and OE33 cells reduced significantly compared with that of the control cells. Alantolactone induced apoptosis of the EAC cell lines by inhibiting the protein expression levels of nuclear factor erythroid2-related factor 2 (Nrf2). Furthermore, the apoptosis-inducing effect of alantolactone was enhanced by Nrf2 knockdown while reduced by overexpression of Nrf2. Antioxidant α-tocopherol and glutathione can protect EAC cell lines against alantolactone. A xenograft nude mice model showed that alantolactone can inhibit EAC growth in vivo. CONCLUSIONS: Alantolactone inhibits oesophageal adenocarcinoma cells through Nrf2-mediated reactive oxygen species (ROS) increment. Alantolactone maybe a potential therapeutical candidate for treating EAC.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Reactive Oxygen Species , Sesquiterpenes, Eudesmane , Animals , Humans , Mice , Adenocarcinoma/drug therapy , Apoptosis , Cell Line, Tumor , Lactones/pharmacology , Mice, Nude , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Sesquiterpenes, Eudesmane/pharmacology , Esophageal Neoplasms/drug therapy
15.
Phytomedicine ; 108: 154528, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36343549

ABSTRACT

BACKGROUND: Anaplastic thyroid cancer (ATC) is one of the fatal cancers and has not effective treatments. Alantolactone (ATL), a terpenoid extracted from traditional Chinese medicinal herb Inula helenium L., confers significant anti-inflammatory, antibacterial and antitumor activity. However, the activity and mechanisms of ATL in ATC remain unclear. PURPOSE: To investigate the potential anti-ATC effects in vitro and in vivo and the mechanisms involved. METHODS: The anti-proliferative activity of Alantolactone (ATL) against ATC cells was analyzed through CCK-8 and colony formation assays. Flow cytometry assay was performed to assess the cell cycle, cell apoptosis, ROS, and mitochondrial membrane potential (ΔΨm), whereas the cellular localization of cytochrome c and calreticulin were determined using cellular immunofluorescence assays. The lactate dehydrogenase (LDH) enzyme activity in the cell culture medium was measured using a commercial LDH kit, whereas ELISA was conducted to assess the secretory function of IL-1ß. Western blot assays were conducted to determine the expression or regulation of proteins associated with apoptosis and pyroptosis. Subcutaneous tumor model of nude mice was established to evaluate the anticancer activity of ATL in vivo. The expression of Ki67, cyclin B1, cleaved-PARP, cleaved-caspase 3, and IL-1ß in the animal tumor tissues was profiled using immunohistochemistry analyses. RESULTS: Our data showed that ATL significantly inhibited the proliferation and colony formation activity of ATC cells. ATL induced ATC cell cycle arrest at G2/M phase, and downregulated the expression of cyclin B1 and CDC2. Furthermore, ATL induced concurrent apoptosis and pyroptosis in the ATC cells, and the cleavage of PARP and GSDME. It also significantly increased the release of LDH and IL-1ß. Mechanically, ATL-mediated increase in ROS suppressed the Bcl-2/Bax ratio, downregulated the mitochondrial membrane potential and increased the release of cytochrome c, leading to caspase 9 and caspase 3 cleavage. We also found that ATL induced the translocation of an immunogenic cell death marker (calreticulin) to the cell membrane. In addition, it inhibited the growth of the ATC subcutaneous xenograft model, and activated proteins associated with apoptosis and pyroptosis, with a high safety profile. CONCLUSION: Taken together, these results firstly demonstrated that ATL exerted an anti-ATC activity by inducing concurrent apoptosis and GSDME-dependent pyroptosis through ROS-mediated mitochondria-dependent caspase activation. Meanwhile, these cell deaths exhibited obvious characteristics of immunogenic cell death, which may synergistically increase the potential of cancer immunotherapy in ATC. Further studies are needed to explore deeper mechanisms for the anti- ATC activity of ATL.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Mice , Animals , Humans , Caspase 3/metabolism , Pyroptosis , Caspases/metabolism , Reactive Oxygen Species/metabolism , Cyclin B1/metabolism , Calreticulin/metabolism , Calreticulin/pharmacology , Cytochromes c/metabolism , Mice, Nude , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Apoptosis , Mitochondria , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Cell Line, Tumor
16.
Molecules ; 27(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36500514

ABSTRACT

Using the methodology of "click" chemistry, a singular method has been developed for the synthesis of unique conjugates based on sesquiterpene lactones: dehydrocostuslactone and alantolactone with polyalkoxybenzenes. To expand the structural range of the resulting conjugates, the length of the 1,2,3-triazole spacer was varied. For all synthesized compounds, the cytotoxic profile was determined on the cell lines of tumor origin (SH-SY5Y, HeLa, Hep-2, A549) and normal Hek 293 cells. It was found that the compounds based on alantolactone 7a-d with a long spacer and substances containing dehydrocostuslactone 10a-d with a short spacer have the greatest toxic effect. The decrease in cell survival under the action of these conjugates may be due to their ability to cause dissipation of the transmembrane potential of mitochondria and inhibit the process of glycolysis, leading to cell death. The obtained results confirm the assumption that the development of conjugates based on sesquiterpene lactones and polyalkoxybenzenes can be considered as a promising strategy for the search for potential antitumor agents.


Subject(s)
Antineoplastic Agents , Neuroblastoma , Sesquiterpenes , Humans , Sesquiterpenes/chemistry , HEK293 Cells , Lactones/chemistry , Antineoplastic Agents/pharmacology , Phytochemicals , Click Chemistry
17.
Chem Biodivers ; 19(12): e202200486, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36263992

ABSTRACT

Inula racemosa, a resourceful critically endangered medicinal herb in the Himalayas is traditionally utilized to cure various human disorders. The species is a wealthy source of sesquiterpene lactones has many pharmacological properties. To quantify and identify the best genetic stocks for a maximum build-up of desired metabolites (isoalantolactone and alantolactone) among existent cytotypes in the species, LC-MS/MS analysis was made. The other comprehensive experiments carried out at present included detailed meiotic examinations of different populations collected from different areas of Kashmir Himalayas. The results presented the occurrence of variable chromosome numbers as n=10 and n=20 in different populations, but the tetraploid cytotype (n=20) is new for the species. The LC-MS/MS investigation revealed significant variability in the content of sesquiterpene lactones in different plant tissues (stem, leaf, and root). An upsurge in the quantity of isoalantolactone and alantolactone was noticed with increasing ploidy levels along the increasing altitudes. Therefore, a habit to accumulate abundant quantities of secondary metabolites and increased adaptability by species/cytotypes thriving at higher altitudes is seen among tetraploid cytotypes during the present investigation. Also, the chromosomal variations seem to enhance the flexibility of polyploid species primarily at upper elevations. Thus, the present study strongly provides quantification of elite cytotypes/chemotypes with optimum concentration of secondary metabolites.


Subject(s)
Inula , Plants, Medicinal , Sesquiterpenes , Humans , Inula/chemistry , Plants, Medicinal/genetics , Chromatography, Liquid , Tetraploidy , Tandem Mass Spectrometry , Sesquiterpenes/pharmacology , Phytochemicals , Cytogenetic Analysis
18.
Article in English | MEDLINE | ID: mdl-36183605

ABSTRACT

Ethnomedicine Eerdun Wurile (EW) can significantly promote poststroke neuro-recovery through modulation of microglia polarization. Fraction 4-6 (F4-6) isolated from EW via serial fractionation inhibits the expression of pro-inflammatory genes in LPS stimulated microglia. However, the key active molecules of F4-6 have not been identified. Herein, we identified alantolactone (Ala) and dehydrodiisoeugenol (Deh) as the active anti-inflammatory components of F4-6 by UPLC-qTof MS analysis. We confirmed that, F4-6, Ala, Deh and mixture of Ala and Deh (Mix) downregulate the expression of several pro-inflammatory genes including Ccl2, Cox2 and Il6 in LPS-treated microglia in a similar pattern. At the same time upregulate the expression of anti-inflammatory genes including Hmox1, Tgfß, Igf1 and Creb1. Moreover, the conditioned culture media obtained from F4-6 treated microglia significantly enhanced proliferation of N2a cells, and promoted neurite outgrowth possibly through upregulation of Nefh and Dlg4. Mechanistically, F4-6 strongly downregulated the expression of NF-κB p65, while also inhibiting the nuclear translocation of p65, leading to the suppression of transcription of pro-inflammatory genes initiated by NF-κB. Collectively, our data identified and quantified the key chemicals of EW and provide insights into the optimization of the herbal composition for neuroprotection.


Subject(s)
Microglia , NF-kappa B , Microglia/metabolism , NF-kappa B/metabolism , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
19.
Eur J Med Chem ; 240: 114574, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35785724

ABSTRACT

Based on the reported synthetic lethality of the combination of PARP inhibitor olaparib with the natural product alantolactone, we designed several series of new PARP1 inhibitors by structurally merging both compounds into a single hybrid compound. Among them, compounds 20e and 25a displayed not only high biochemical activity (IC50 = 2.99 nM and 5.91 nM vs 11.36 nM), but also higher inhibitory effects against proliferation of BRCA1-deficient UWB1.289 cells than olaparib (IC50 = 0.27 µM and 0.41 µM vs 0.66 µM). Much weak activity was observed in BRCA1 wild-type human fetal lung IMR-90 and WI-38 cells (IC50s > 10 µM). Treatment with compounds 20e and 25a was found to induce increased levels of γH2AX in a concentration-dependent manner in both MDA-MB-436 and Capan-1 cells to a degree comparable with that of olaparib. Further mechanism study indicated that these compounds activated the cell cycle checkpoints, and subsequently induced G2/M arrest and apoptosis. The results validated that merging PARP inhibitors with other DNA-damage related compounds would produce more potent PARP inhibitors for anticancer studies. However, the poor aqueous solubility and low cell penetration of the current hybrid compounds call for further structural optimization.


Subject(s)
Biological Products , Poly(ADP-ribose) Polymerase Inhibitors , Apoptosis , Biological Products/pharmacology , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Humans , Lactones , Phthalazines/chemistry , Piperazines , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Sesquiterpenes, Eudesmane
20.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897937

ABSTRACT

Recent studies have shown that Nur77 and AMPKα play an important role in regulating adipogenesis and isoalantolactone (ISO) dual-targeting AMPKα and Nur77 inhibits adipogenesis. In this study, we hypothesized that Inula helenium (elecampane) root extract (IHE), which contains two sesquiterpene lactones, alantolactone (ALA) and ISO, as major compounds, might inhibit adipogenesis. Here, we found that ALA and IHE simultaneously target AMPKα and Nur77 and inhibited adipogenic differentiation of 3T3-L1 cells, accompanied by the decreased expression of adipocyte markers. Further mechanistic studies demonstrated that IHE shares similar mechanisms of action with ISO that reduce mitotic clonal expansion during the early phase of adipogenic differentiation and decrease expression of cell cycle regulators. These results suggest that IHE inhibits adipogenesis, in part, through co-regulation of AMPKα and Nur77, and has potential as a therapeutic option for obesity and related metabolic dysfunction.


Subject(s)
Inula , Sesquiterpenes , 3T3-L1 Cells , AMP-Activated Protein Kinases , Adipogenesis , Animals , Cell Differentiation , Lactones/pharmacology , Mice , Phytochemicals , Plant Extracts/pharmacology , Sesquiterpenes/pharmacology , Sesquiterpenes, Eudesmane
SELECTION OF CITATIONS
SEARCH DETAIL
...