Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.097
Filter
1.
Front Microbiol ; 15: 1447348, 2024.
Article in English | MEDLINE | ID: mdl-39220044

ABSTRACT

Atrazine, a commonly employed herbicide for corn production, can leave residues in soil, resulting in photosynthetic toxicity and impeding growth in subsequent alfalfa (Medicago sativa L.) crops within alfalfa-corn rotation systems. The molecular regulatory mechanisms by which atrazine affects alfalfa growth and development, particularly its impact on the microbial communities of the alfalfa rhizosphere, are not well understood. This study carried out field experiments to explore the influence of atrazine stress on the biomass, chlorophyll content, antioxidant system, and rhizosphere microbial communities of the atrazine-sensitive alfalfa variety WL-363 and the atrazine-resistant variety JN5010. The results revealed that atrazine significantly reduced WL-363 growth, decreasing plant height by 8.58 cm and root length by 5.42 cm (p < 0.05). Conversely, JN5010 showed minimal reductions, with decreases of 1.96 cm in height and 1.26 cm in root length. Chlorophyll content in WL-363 decreased by 35% under atrazine stress, while in JN5010, it was reduced by only 10%. Reactive oxygen species (ROS) accumulation increased by 60% in WL-363, compared to a 20% increase in JN5010 (p < 0.05 for both). Antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT), were significantly elevated in JN5010 (p < 0.05), suggesting a more robust defense mechanism. Although the predominant bacterial and fungal abundances in rhizosphere soils remained generally unchanged under atrazine stress, specific microbial groups exhibited variable responses. Notably, Promicromonospora abundance declined in WL-363 but increased in JN5010. FAPROTAX functional predictions indicated shifts in the abundance of microorganisms associated with pesticide degradation, resistance, and microbial structure reconstruction under atrazine stress, displaying different patterns between the two varieties. This study provides insights into how atrazine residues affect alfalfa rhizosphere microorganisms and identifies differential microbial responses to atrazine stress, offering valuable reference data for screening and identifying atrazine-degrading bacteria.

2.
Nanomedicine (Lond) ; : 1-17, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225145

ABSTRACT

Aim: To evaluate the anti-pancreatic cancer effect of novel Tubeimoside I multifunctional liposomes combined with gemcitabine.Methods: Liposomes were prepared through the thin film hydration method, with evaluations conducted on parameters including encapsulation efficiency (EE%), particle size, polydispersity index (PDI), zeta potential (ZP), storage stability, and release over a 7-day period. The cellular uptake rate, therapeutic efficacy in vitro and in vivo and the role of immune microenvironment modulation were evaluated.Results: The novel Tubeimoside I multifunctional liposomal exhibited good stability, significant anti-cancer activity, and immune microenvironment remodeling effects. Furthermore, it showed a safety profile.Conclusion: This study underscores the potential of Novel Tubeimoside I multifunctional liposomal as a promising treatment option for pancreatic cancer.


[Box: see text].

3.
BMC Plant Biol ; 24(1): 840, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242996

ABSTRACT

BACKGROUND: Alfalfa (Medicago sativa L.) is an essential leguminous forage with high nutrition and strong adaptability. The TIFY family is a plant-specific transcription factor identified in many plants. However, few reports have been reported on the phylogenetic analysis and gene expression profiling of TIFY family genes in alfalfa. RESULT: A total of 84 TIFY genes belonging to 4 categories were identified in alfalfa, including 58 MsJAZs, 18 MsZMLs, 4 MsTIFYs and 4 MsPPDs, respectively. qRT-PCR data from 8 genes in different tissues revealed that most MsTIFY genes were highly expressed in roots. The expression of MsTIFY14 was up-regulated after different times in both thrips-resistant and susceptible alfalfa after thrips feeding, and the expression of the remaining MsTIFYs had a strong correlation with the time of thrips feeding. Different abiotic stresses, including drought, salt, and cold, could induce or inhibit the expression of MsTIFY genes to varying degrees. In addition, the eight genes were all significantly up-regulated by JA and/or SA. Interestingly, MsTIFY77 was induced considerably by all the biotic, abiotic, or plant hormones (JA or SA) except ABA. CONCLUSION: Our study identified members of the TIFY gene family in alfalfa and analyzed their structures and possible functions. It laid the foundation for further research on the molecular functions of TIFYs in alfalfa.


Subject(s)
Gene Expression Regulation, Plant , Medicago sativa , Phylogeny , Plant Proteins , Transcription Factors , Medicago sativa/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Gene Expression Profiling , Animals , Genome, Plant , Genes, Plant
4.
Meat Sci ; 218: 109644, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39241667

ABSTRACT

Protein grass hay (PGH) was used as a new feed source for lambs to study its effect on fattening performance and meat quality. Fifty-six male lambs were allotted to four experimental groups and fed for eight weeks either alfalfa hay (AH)-based diet (control) or diets in which AH was replaced with 33 %, 66 %, or 99 % PGH. The inclusion of PGH did not affect final body weight, dry matter intake, average daily gain, feed conversion ratio, or carcass weight. Moreover, substituting AH with PGH at any level did not influence the ruminal fermentation or serum biochemical parameters, meat color, water holding capacity, shear force, or amino acid profile. However, relative liver weight was increased with 66 % substitutions. Furthermore, replacing 99 % AH with PGH decreased the meat's pH at 24 h. Higher levels of C18:3n-3, C20:5n-3, and total n-3 PUFA and a lower ratio of n-6: n-3 PUFA were also observed in meat from lambs fed PGH at 99 %. These findings suggest that PGH could be incorporated into the lamb's diet up to 99 % without compromising fattening performance and body health while improving their meat n-3 PUFA deposition.

5.
J Virol Methods ; 330: 115021, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233059

ABSTRACT

This study describes production of polyclonal antibodies against recently reported novel potyvirid infecting alfalfa (Medicago sativa L.). The virus was first found in alfalfa seed material and later identified in plant samples collected from commercial alfalfa fields in Arizona, USA. It was classified as a novel species related to the members of the genus Ipomovirus and potentially representing a new genus in the family Potyviridae (Nemchinov et al., 2023b). Polyclonal antibodies were produced against the predicted viral coat protein expressed in bacterial cells and used in different types of immunoassays for specific detection of this emerging virus. They could be helpful in plant virus certification programs, screening of alfalfa germplasm, research on pathogenicity, biology, and geographic distribution of this emerging virus.

6.
Plant Pathol J ; 40(4): 390-398, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39117337

ABSTRACT

The Chinese artichoke (Stachys affinis syn. S. sieboldii) is a widely cultivated crop, and its rhizome is used as a medicinal vegetable. To investigate the causes of viral diseases in Chinese artichokes, the infection rates of four virus species infecting Chinese artichoke were investigated. Since the Chinese artichoke propagates through its tuber, this study aimed to determine whether viral transmission to the progeny is possible through the tuber, by identifying the virus present in the tuber and investigating its accumulation. First, reverse transcription polymerase chain reaction analysis was performed to detect viruses using total RNA extracted from the flowers, leaves, and tubers of Chinese artichoke plants. Alfalfa mosaic virus (AMV) and Chinese artichoke mosaic virus (ChAMV) had high infectivity in Chinese artichoke and most plants were simultaneously infected with AMV and ChAMV. These viruses were present in all tissues, but their detection frequency and accumulation rates varied across different tissues of the Chinese artichoke. Also, we sequenced the coat protein (CP) genes of AMV and ChAMV to investigate genetic variations of virus between the leaf and tuber. It provides information on CP gene sequences and genetic diversity of isolates identified from new hosts of AMV and ChAMV. This study offers valuable insights into the distribution and spread of the ChAMV and AMV within Chinese artichoke plants, which have implications for the management and control of viral infections in crops.

7.
Anal Chim Acta ; 1319: 342946, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39122268

ABSTRACT

BACKGROUND: Researchers have investigated different techniques for synthesis of carbon dots. These techniques include Arc discharge, laser ablation, oxidation, water/solvothermal, and chemical vapor deposition. However, these techniques suffer from some limitations like the utilization of gaseous charged particles, high current, high temperature, potent oxidizing agents, non-environmentally friendly carbon sources, and the generation of uneven particle size. Therefore, there was a significant demand for the adoption of a new technology that combines the environmentally friendly aspects of both bio-based carbon sourcing and synthesis technique. RESULTS: Medicago sativa L (alfalfa)-derived N, S-CDs have been successfully synthesized via microwave irradiation. The N,S-CDs exhibit strong fluorescence (λex/em of 320/420 nm) with fluorescence quantum yield of 2.2 % and high-water solubility. The produced N,S-CDs were characterized using TEM, EDX, Zeta potential analysis, IR, UV-Visible, and fluorescence spectroscopy. The average diameter of the produced N, S-CDs was 4.01 ± 1.2 nm, and the Zeta potential was -24.5 ± 6.63 mv. The stability of the produced nano sensors was also confirmed over wide pH range, long time, and in presence of different ions. The synthesized N, S-CDs were employed to quantify the antibacterial drug, nifuroxazide (NFZ), by fluorescence quenching via inner filter effect mechanism. The method was linear with NFZ concentration ranging from 1.0 to 30.0 µM. LOD and LOQ were 0.16 and 0.49 µM, respectively. The method was applied to quantify NFZ in simulated gastric juice (SGJ) with % recovery 99.59 ± 1.4 in addition to pharmaceutical dosage forms with % recovery 98.75 ± 0.61 for Antinal Capsules® and 100.63 ± 1.54 for Antinal suspension®. The Method validation was performed in compliance with the criteria outlined by ICH. SIGNIFICANCE AND NOVELTY: The suggested approach primarily centers on the first-time use of alfalfa, an ecologically sustainable source of dopped-CDs, and a cost-effective synthesis technique via microwave irradiation, which is characterized by low energy consumption, minimized reaction time, and the ability to control the size of the produced CDs. This is in line with the growing global recognition of the implementation of green analytical chemistry principles.


Subject(s)
Biomass , Gastric Juice , Medicago sativa , Microwaves , Nitrofurans , Medicago sativa/chemistry , Nitrofurans/analysis , Gastric Juice/chemistry , Green Chemistry Technology , Hydroxybenzoates/analysis , Hydroxybenzoates/chemistry , Quantum Dots/chemistry , Humans , Particle Size
8.
J Anim Sci ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096209

ABSTRACT

The issue of global warming, primarily fueled by anthropogenic greenhouse gas (GHG) emissions, necessitates effective strategies to address methane (CH4) emissions from both ruminants and nonruminants. Drawing inspiration from successful approaches employed in ruminants, this study evaluates the impact of supplementing the diets of Taiwan's native black-feathered chickens with alfalfa meal and sorghum distillery residues (SDRs) on CH4 emissions. Using a respiration chamber the results reveal a significant reduction in CH4 emissions when incorporating either 30% alfalfa meal or 30% SDRs into the chicken diet, demonstrating a 59% and 49% decrease, respectively, compared to the control group (P < 0.05). Considering that alfalfa meal contains saponins and SDRs contain tannins, the study delves into the mechanism through which these components mitigate CH4 production in chickens. Incorporating saponins or tannins show that groups supplemented with these components exhibit significantly lower CH4 emissions compared to the control group (P < 0.05), with a consistent linear decrease as the concentration of the feed additive increases. Further in vitro analysis of chicken cecal contents indicates a proportional reduction in CH4 production with increasing levels of added saponins or tannins (P < 0.05). These findings suggest that the CH4-reducing effects of alfalfa meal and SDRs can be attributed to their saponins and tannin content. However, caution is warranted as excessive alfalfa meal supplementation may adversely impact poultry growth. Consequently, sorghum distillery residue emerges as a more suitable feed ingredient for mitigating CH4 emissions in Taiwan's native black-feathered chickens compared to alfalfa. Additionally, substituting SDRs for conventional commercial chicken feed not only reduces CH4 emissions but also enhances the utilization of by-products.

9.
BMC Plant Biol ; 24(1): 741, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095692

ABSTRACT

BACKGROUND: Daye No.3 is a novel cultivar of alfalfa (Medicago sativa L.) that is well suited for cultivation in high-altitude regions such as the Qinghai‒Tibet Plateau owing to its high yield and notable cold resistance. However, the limited availability of transcriptomic information has hindered our investigation into the potential mechanisms of cold tolerance in this cultivar. Consequently, we conducted de novo transcriptome assembly to overcome this limitation. Subsequently, we compared the patterns of gene expression in Daye No. 3 during cold acclimatization and exposure to cold stress at various time points. RESULTS: A total of 15 alfalfa samples were included in the transcriptome assembly, resulting in 141.97 Gb of clean bases. A total of 441 DEGs were induced by cold acclimation, while 4525, 5016, and 8056 DEGs were identified at 12 h, 24 h, and 36 h after prolonged cold stress at 4 °C, respectively. The consistency between the RT‒qPCR and transcriptome data confirmed the accuracy and reliability of the transcriptomic data. KEGG enrichment analysis revealed that many genes related to photosynthesis were enriched under cold stress. STEM analysis demonstrated that genes involved in nitrogen metabolism and the TCA cycle were consistently upregulated under cold stress, while genes associated with photosynthesis, particularly antenna protein genes, were downregulated. PPI network analysis revealed that ubiquitination-related ribosomal proteins act as hub genes in response to cold stress. Additionally, the plant hormone signaling pathway was activated under cold stress, suggesting its vital role in the cold stress response of alfalfa. CONCLUSIONS: Ubiquitination-related ribosomal proteins induced by cold acclimation play a crucial role in early cold signal transduction. As hub genes, these ubiquitination-related ribosomal proteins regulate a multitude of downstream genes in response to cold stress. The upregulation of genes related to nitrogen metabolism and the TCA cycle and the activation of the plant hormone signaling pathway contribute to the enhanced cold tolerance of alfalfa.


Subject(s)
Cold-Shock Response , Gene Expression Profiling , Medicago sativa , Transcriptome , Medicago sativa/genetics , Medicago sativa/physiology , Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Acclimatization/genetics , Cold Temperature , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126068

ABSTRACT

Alfalfa (Medicago L.) is a high-quality perennial leguminous forage with the advantages of salt tolerance, mowing tolerance, high protein content, and other economically valuable characteristics. As the sixth class of plant hormones, brassinosteroids (BRs) play indispensable roles in modulating a variety of plant growth, maturation, and environmental adaptation processes, thereby influencing vegetal expansion and development. Brassinosteroid signal kinases (BSKs) are key cytoplasmic receptor kinases downstream of the BR signaling transduction pathway, participating in plant growth, development, and stress regulation. However, the phylogenetic and expression pattern analyses of the BSK gene family among the five alfalfa species have rarely been reported; in this study, 52 BSK family members were found in the genomes of the five subspecies, and phylogenetic trees were constructed according to protein sequences, allowing us to categorize all BSKs into seven distinct groups. Domain, conserved motif, and exon-intron structural analyses showed that most BSK members were relatively conserved, except for MtBSK3-2, MtBSK7-1, and MtBSK7-2, which may be truncated members. Intra-species collinearity and Ka/Ks analyses showed that purifying selection influenced BSK genes during evolution; most of the cis-acting elements in the promoter region were associated with responses, such as light, defense, and stress, anaerobic induction, MeJA, and abscisic acid. Expression pattern analysis indicated that the majority of alfalfa genes exhibited downregulation after reaching a peak at 0.5 h after treatment with 250 mM NaCl, especially for MsBSK14, MsBSK15, MsBSK17, MsBSK19, and MsBSK21; meanwhile, MsBSK4, MsBSK7, and MsBSK9 increased and were highly expressed at 12 h, demonstrating significantly altered expression patterns under salt stress; furthermore, MsBSK4, MsBSK7, and MsBSK9 exhibited expression specifically in the leaves. qRT-PCR analysis confirmed the expression trends for MsBSK4, MsBSK7, MsBSK9, MsBSK14, MsBSK15, and MsBSK16 matched the transcriptome data. However, the trends for MsBSK17, MsBSK19, and MsBSK21 diverged from the transcriptome data. Our study may provide a foundation for further functional analyses of BSK genes in growth, development, and salt stress tolerance in alfalfa.


Subject(s)
Brassinosteroids , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Salt Stress , Brassinosteroids/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Signal Transduction/genetics , Gene Expression Profiling , Protein Kinases/genetics , Protein Kinases/metabolism , Medicago sativa/genetics
11.
J Chem Ecol ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133432

ABSTRACT

Odontothrips loti (Haliday) (Thysanoptera: Thripidae) is one of the most serious pests on alfalfa, causing direct damage by feeding and indirect damage by transmitting plant viruses. This damage causes significant loss in alfalfa production. Semiochemicals offer opportunities to develop new approaches to thrips management. In this study, behavioral responses of female and male adults of O. loti to headspace volatiles from live female and male conspecifics were tested in a Y-tube olfactometer. The results showed that both male and female adults of O. loti were attracted to the odors released by conspecific males but not those released by females. Headspace volatiles released by female and male adults were collected using headspace solid-phase microextraction (HS-SPME). The active compound in the volatiles was identified by gas chromatography-mass spectrometry (GC-MS). The analysis showed that there was one major compound, (R)-lavandulyl (R)-2-methylbutanoate. The attractive activity of the synthetic aggregation pheromone compound was tested under laboratory and field conditions. In an olfactometer, both male and female adults showed significant preference for synthetic (R)-lavandulyl (R)-2-methylbutanoate at certain doses. Lures with synthetic (R)-lavandulyl (R)-2-methylbutanoate significantly increased the trap catches of sticky white traps at doses of 40-80 µg in the field. This study confirmed the production of aggregation pheromone by O. loti male adults and identified its active compound as (R)-lavandulyl (R)-2-methylbutanoate, providing a basis for population monitoring and mass trapping of this pest.

12.
BMC Plant Biol ; 24(1): 776, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143536

ABSTRACT

High temperature stress is one of the most severe forms of abiotic stress in alfalfa. With the intensification of climate change, the frequency of high temperature stress will further increase in the future, which will bring challenges to the growth and development of alfalfa. Therefore, untargeted metabolomic and RNA-Seq profiling were implemented to unravel the possible alteration in alfalfa seedlings subjected to different temperature stress (25 ℃, 30 ℃, 35 ℃, 40 ℃) in this study. Results revealed that High temperature stress significantly altered some pivotal transcripts and metabolites. The number of differentially expressed genes (DEGs) markedly up and down-regulated was 1876 and 1524 in T30_vs_CK, 2, 815 and 2667 in T35_vs_CK, and 2115 and 2, 226 in T40_vs_CK, respectively. The number for significantly up-regulated and down-regulated differential metabolites was 173 and 73 in T30_vs_CK, 188 and 57 in T35_vs_CK, and 220 and 66 in T40_vs_CK, respectively. It is worth noting that metabolomics and transcriptomics co-analysis characterized enriched in plant hormone signal transduction (ko04705), glyoxylate and dicarboxylate metabolism (ko00630), from which some differentially expressed genes and differential metabolites participated. In particular, the content of hormone changed significantly under T40 stress, suggesting that maintaining normal hormone synthesis and metabolism may be an important way to improve the HTS tolerance of alfalfa. The qRT-PCR further showed that the expression pattern was similar to the expression abundance in the transcriptome. This study provides a practical and in-depth perspective from transcriptomics and metabolomics in investigating the effects conferred by temperature on plant growth and development, which provided the theoretical basis for breeding heat-resistant alfalfa.


Subject(s)
Medicago sativa , Metabolomics , Transcriptome , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/physiology , Gene Expression Profiling , Metabolome , Gene Expression Regulation, Plant , Hot Temperature , Stress, Physiological/genetics , Seedlings/genetics , Seedlings/metabolism , Seedlings/physiology , Seedlings/growth & development , Heat-Shock Response/genetics
13.
J Plant Physiol ; 302: 154319, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39106734

ABSTRACT

Alfalfa often suffers from low temperature during spring rejuvenation, so it is important to improve the cold tolerance of alfalfa leaves for its smooth rejuvenation, and the alternative pathway (AP) could effectively improve the plant's tolerance. In this study, the contribution of AP on spring rejuvenation of alfalfa was investigated in Xinmu No.4 and Gannong No.5 with different fall dormancy levels. Though the protein and AP capacity were decreased during the rejuvenation, the ratio of AP/TP were increased in two alfalfa varieties, compared to those in alfalfa before overwintering. This indicated that AP had positive response to alfalfa rejuvenation. The limitation of AP significantly affected the leaf length, leaf width and growth rate of greening alfalfa, showing that AP played an important role in alfalfa rejuvenation. Inhibition of AP resulted in a significant decrease in Pn, Ci, Gs and stomatal structure deformity, suggestion that AP affected photosynthesis by influencing stomatal development during rejuvenation. AP reduces oxidative damage to PSII core protein repair in alfalfa leaves and optimizes photosynthesis by up-regulating NADP-MDH activity, decreasing the accumulation of excess reducing power in the chloroplasts, and by increasing SOD and POD activities and decreasing the accumulation of hydrogen peroxide. The higher proportion of AP keeps it more tolerant to low temperature for rejuvenation in Xinmu No.4 with a lower fall dormancy level.


Subject(s)
Medicago sativa , Medicago sativa/physiology , Medicago sativa/growth & development , Medicago sativa/metabolism , Plant Leaves/physiology , Plant Leaves/growth & development , Seasons , Photosynthesis/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Cold Temperature
14.
Plant Physiol Biochem ; 215: 109033, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39137681

ABSTRACT

Soil salinity constrains growth, development and yield of alfalfa (Medicago sativa L.). To illustrate the molecular mechanisms responsible for salt tolerance, a comparative proteome analysis was explored to characterize protein profiles of alfalfa seedling roots exposed to 100 and 200 mM NaCl for three weeks. There were 52 differentially expressed proteins identified, among which the mRNA expressions of 12 were verified by Real-Time-PCR analysis. The results showed increase in abundance of ascorbate peroxidase, POD, CBS protein and PR-10 in salt-stressed alfalfa, suggesting an effectively antioxidant and defense systems. Alfalfa enhanced protein quality control system to refold or degrade abnormal proteins induced by salt stress through upregulation of unfolded protein response (UPR) marker PDIs and molecular chaperones (eg. HSP70, TCP-1, and GroES) as well as the ubiquitin-proteasome system (UPS) including ubiquitin ligase enzyme (E3) and proteasome subunits. Upregulation of proteins responsible for calcium signal transduction including calmodulin and annexin helped alfalfa adapt to salt stress. Specifically, annexin (MsANN2), a key Ca2+-binding protein, was selected for further characterization. The heterologous of the MsANN2 in Arabidopsis conferred salt tolerance. These results provide detailed information for salt-responsive root proteins and highlight the importance of MsANN2 in adapting to salt stress in alfalfa.

15.
Plant Physiol Biochem ; 215: 109048, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39159534

ABSTRACT

Saline-alkali stress is one of the main abiotic stresses that limits plant growth. Salt stress has been widely studied, but alkaline salt degradation caused by NaHCO3 has rarely been investigated. In the present study, the alfalfa cultivar 'Zhongmu No. 1' was treated with 50 mM NaHCO3 (0, 4, 8, 12 and 24 h) to study the resulting enzyme activity and changes in mRNA, miRNA and metabolites in the roots. The results showed that the enzyme activity changed significantly after alkali stress treatment. The genomic analysis revealed 14,970 differentially expressed mRNAs (DEMs), 53 differentially expressed miRNAs (DEMis), and 463 differentially accumulated metabolites (DAMs). Combined analysis of DEMs and DEMis revealed that 21 DEMis negatively regulated 42 DEMs. In addition, when combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEMs and DAMs, we found that phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism and plant hormone signal transduction played important roles in the alkali stress response. The results of this study further elucidated the regulatory mechanism underlying the plant response to alkali stress and provided valuable information for the breeding of new saline-alkaline tolerance plant varieties.

16.
G3 (Bethesda) ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167829

ABSTRACT

Multi-spectral imaging by unoccupied aerial vehicles provides a non-destructive, high throughput approach to measuring biomass accumulation over successive alfalfa (Medicago sativa L. subsp. sativa) harvests. Information from estimated growth curves can be used to infer harvest biomass and to gain insights into the relationship between growth dynamics and forage biomass stability across cuttings and years. In this study, multi-spectral imaging and several common vegetation indices were used to estimate genetic parameters and model growth of alfalfa cultivars to determine the longitudinal relationship between vegetation indices and forage biomass. Results showed moderate heritability for vegetation indices, with median plot level heritability ranging from 0.11-0.64, across multiple cuttings in three trials planted in Ithaca, NY, and Las Cruces, NM. Genetic correlations between the normalized difference vegetation index and forage biomass were moderate to high across trials, cuttings, and the timing of multi-spectral image capture. To evaluate the relationship between growth parameters and forage biomass stability across cuttings and environmental conditions, random regression modeling approaches were used to estimate the growth parameters of cultivars for each cutting and the variance in growth was compared to the variance in genetic estimates of forage biomass yield across cuttings. These analyses revealed high correspondence between stability in growth parameters and stability of forage yield. The results of this study indicate that vegetation indices are effective at modeling genetic components of biomass accumulation, presenting opportunities for more efficient screening of cultivars and new longitudinal modeling approaches that can provide insights into temporal factors influencing cultivar stability.

17.
Front Plant Sci ; 15: 1426838, 2024.
Article in English | MEDLINE | ID: mdl-39193214

ABSTRACT

Flower development is a crucial and complex process in the reproductive stage of plants, which involves the interaction of multiple endogenous signals and environmental factors. However, regulatory mechanism of flower development was unknown in alfalfa (Medicago sativa). In this study, the three stages of flower development of 'M. sativa cv. Gannong No. 5' (G5) and its early flowering and multi flowering mutant (MG5) were comparatively analyzed by transcriptomics. The results showed that compared with late bud stage (S1), 14287 and 8351 differentially expressed genes (DEGs) were identified at early flower stage (S2) in G5 and MG5, and 19941 and 19469 DEGs were identified at late flower stage (S3). Compared with S2, 9574 and 10870 DEGs were identified at S3 in G5 and MG5, respectively. Venn analysis revealed that 547 DEGs were identified among the three comparison groups. KEGG pathway enrichment analysis showed that these genes were involved in the development of alfalfa flowers through redox pathways and plant hormone signaling pathways. Key candidate genes including SnRK2, BSK, GID1, DELLA and CRE1, for regulating the development from buds to mature flowers in alfalfa were screened. In addition, differential expression of transcription factors such as MYB, AP2, bHLH, C2C2, MADS-box, NAC, bZIP, B3 and AUX/IAA also played an important role in this process. The results laid a theoretical foundation for studying the molecular mechanisms of the development process from buds to mature flowers in alfalfa.

18.
Viruses ; 16(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39205229

ABSTRACT

Alfalfa mosaic virus (AMV) is one of the most widely distributed viruses; it often exhibits combined infection with white clover mosaic virus (WCMV). Even so, little is known about the effects of co-infection with AMV and WCMV on plants. To determine whether there is a synergistic effect of AMV and WCMV co-infection, virus co-infection was studied by electron microscopy, the double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), and real-time fluorescence quantitative PCR (RT-qPCR) of AMV and WCMV co-infection in Nicotiana benthamiana. Meanwhile, measurements were carried out on the photosynthetic pigments, photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters. The results showed that the most severe disease development was induced by AMV and WCMV co-infection, and the disease grade was scale 7. N. benthamiana leaves induced mottled yellow-green alternating patterns, leaf wrinkling, and chlorosis, and chloroplasts were observed to be on the verge of disintegration. The relative accumulation of AMV CP and WCMV CP was significantly increased by 15.44-fold and 10.04-fold upon co-infection compared to that with AMV and WCMV single infection at 21 dpi. In addition, chlorophyll a, chlorophyll b, total chlorophyll, the net photosynthetic rate, the water use efficiency, the apparent electron transport rate, the PSII maximum photochemical efficiency, the actual photochemical quantum yield, and photochemical quenching were significantly reduced in leaves co-infected with AMV and WCMV compared to AMV- or WCMV-infected leaves and CK. On the contrary, the carotenoid content, transpiration rate, stomatal conductance, intercellular CO2 concentration, minimal fluorescence value, and non-photochemical quenching were significantly increased. These findings suggest that there was a synergistic effect between AMV and WCMV, and AMV and WCMV co-infection severely impacted the normal function of photosynthesis in N. benthamiana.


Subject(s)
Alfalfa mosaic virus , Chlorophyll , Chloroplasts , Nicotiana , Photosynthesis , Plant Diseases , Plant Leaves , Nicotiana/virology , Chloroplasts/virology , Chloroplasts/metabolism , Plant Diseases/virology , Alfalfa mosaic virus/genetics , Plant Leaves/virology , Chlorophyll/metabolism , Coinfection/virology
19.
Int J Mol Sci ; 25(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39201594

ABSTRACT

Leaves are a key forage part for livestock, and the aging of leaves affects forage biomass and quality. Preventing or delaying premature leaf senescence leads to an increase in pasture biomass accumulation and an improvement in alfalfa quality. NAC transcription factors have been reported to affect plant growth and abiotic stress responses. In this study, 48 NAC genes potentially associated with leaf senescence were identified in alfalfa under dark or salt stress conditions. A phylogenetic analysis divided MsNACs into six subgroups based on similar gene structure and conserved motif. These MsNACs were unevenly distributed in 26 alfalfa chromosomes. The results of the collinearity analysis show that all of the MsNACs were involved in gene duplication. Some cis-acting elements related to hormones and stress were screened in the 2-kb promoter regions of MsNACs. Nine of the MsNAC genes were subjected to qRT-PCR to quantify their expression and Agrobacterium-mediated transient expression to verify their functions. The results indicate that Ms.gene031485, Ms.gene032313, Ms.gene08494, and Ms.gene77666 might be key NAC genes involved in alfalfa leaf senescence. Our findings extend the understanding of the regulatory function of MsNACs in leaf senescence.


Subject(s)
Gene Expression Regulation, Plant , Medicago sativa , Phylogeny , Plant Leaves , Plant Proteins , Transcription Factors , Medicago sativa/genetics , Medicago sativa/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Transcriptome , Multigene Family , Plant Senescence/genetics , Salt Stress/genetics , Gene Expression Profiling , Darkness
20.
Int J Biol Macromol ; 277(Pt 4): 134388, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116978

ABSTRACT

Numerous studies have investigated seed aging, with a particular emphasis on the involvement of reactive oxygen species. Reactive oxygen species diffuse into the nucleus and damage telomeres, resulting in loss of genetic integrity. Telomerase reverse transcriptase (TERT) plays an essential role in maintaining plant genomic stability. Genome-wide analyses of TERT genes in alfalfa (Medicago sativa) have not yet been conducted, leaving a gap in our understanding of the mechanisms underlying seed aging associated with TERT genes. In this study, four MsTERT genes were identified in the alfalfa genome. The expression profiles of the four MsTERT genes during seed germination indicated that MS. gene79077 was significantly upregulated by seed aging. Transgenic seeds overexpressing MS. gene79077 in Arabidopsis exhibited enhanced tolerance to seed aging by reducing the levels of H2O2 and increasing telomere length and telomerase activity. Furthermore, transcript profiling of aging-treated Arabidopsis wild-type and overexpressing seeds showed an aging response in genes related to glutathione-dependent detoxification and antioxidant defense pathways. These results revealed that MS. gene79077 conferred Arabidopsis seed-aging tolerance via modulation of antioxidant defense and telomere homeostasis. This study provides a new way to understand stress-responsive MsTERT genes for the potential genetic improvement of seed vigor.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Medicago sativa , Seeds , Telomerase , Telomere Homeostasis , Telomere , Arabidopsis/genetics , Medicago sativa/genetics , Telomerase/genetics , Telomerase/metabolism , Seeds/genetics , Telomere/genetics , Telomere/metabolism , Plants, Genetically Modified , Germination/genetics , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Antioxidants/metabolism , Plant Senescence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL