Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Foods ; 13(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39123648

ABSTRACT

Cocoa (Theobroma cacao, L.) represents an important market that gained relevance and became an esteemed commodity thanks to cocoa powder, chocolate, and other related products. This work analyzed 59 cocoa powder samples from the European market. Three distinct subgroups were identified: organic or conventional, alkalized or not alkalized, and raw or roasted processing. The impact of the technological process on their pH, color, and compositional traits, as well as their content of biogenic amines and salsolinol, was evaluated. The phenolic fraction was also investigated through both common and emerging methods. The results depict that the influence of the agronomical practices (organic/conventional) did not significantly (p < 0.05) affect the composition of the cocoa powders; similarly, the roasting process was not a determinant of the compounds traced. On the other hand, the alkalinization process greatly impacted color and pH, no matter the cocoa's provenience or obtention or other processes, also resulting in reducing the phenolic fraction of the treated samples. Principal component analysis confirmed that the alkali process acts on pH, color, and phenolic composition but not on the content of other bioactive molecules (biogenic amines and salsolinol). All the samples were safe, while the alkalized powders saw a great reduction in beneficial biocompounds. A novel strategy could be to emphasize on the label whether cocoa powder is non-alkalized to meet the demand for more beneficial products.

2.
Food Chem X ; 23: 101651, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39148527

ABSTRACT

Cocoa can undergo an alkalization process to enhance its color and solubility. It reduces astringency and alters its composition, particularly in the phenolic compound content, which is related to cocoa health benefits. This study aimed to investigate the impact of alkalization on the composition of seven commercial cocoa powders. A liquid chromatography-based metabolomic approach was employed to assess the metabolic differences between alkalized and non-alkalized cocoa powders. Supervised orthogonal partial least squares discriminant analysis (OPLS-DA) was used to identify the most discriminating variables between groups. A feature-based molecular network (FBMN) was used to explore the chemical space. Three hundred forty-seven metabolites were obtained as the most discriminant, among which 60 were tentatively annotated. Phenolic compounds, lysophosphatidylethanolamines, amino acids, and their derivatives were significantly reduced in alkalized cocoas. In contrast, fatty acids and their derivatives significantly increased with alkalization. Despite the variability among commercial cocoas, chemometrics allowed the elucidation of alterations induced specifically by alkalization in their composition.

3.
ACS Nano ; 18(34): 23566-23578, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39145584

ABSTRACT

The clearance of senescent cells may be detrimental to low cell density diseases, such as intervertebral disc degeneration (IVDD), and rejuvenating these cells presents a formidable obstacle. In this study, we investigate a mild-alkalization strategy employing magnesium boride-alginate (MB-ALG) hydrogels to rejuvenate senescent cells associated with age-related diseases. MB-ALG hydrogels proficiently ensnare senescent cells owing to their surface roughness. The hydrolysis of MB-ALG hydrogels liberates hydroxide ions (OH-), effecting a transition from an acidic microenvironment (pH ∼ 6.2) to a mildly alkaline state (pH ∼ 8.0), thereby fostering senescent cell proliferation via activation of the PI3K/Akt/mTOR pathway. Additionally, H2 aids in ROS clearance, which reduces cellular oxidative stress. And, Mg2+ rejuvenates senescent cells by inhibiting Ca2+ influx and fine-tuning the sirt1-p53 signaling pathways. Both in vitro and in vivo experiments conducted on rat intervertebral discs corroborate the sustained antisenescence and rejuvenation properties of MB-ALG hydrogels, with effects persisting for up to 12 weeks postoperation. These discoveries elucidate the role of mild-alkalization in dictating cellular destiny and provide key insights for addressing age-related diseases.


Subject(s)
Alginates , Cellular Senescence , Hydrogels , Alginates/chemistry , Alginates/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Cellular Senescence/drug effects , Rats , Cell Proliferation/drug effects , Rats, Sprague-Dawley , Boron Compounds/chemistry , Boron Compounds/pharmacology , Humans , Oxidative Stress/drug effects , Magnesium/chemistry , Magnesium/pharmacology , Reactive Oxygen Species/metabolism
4.
Mikrochim Acta ; 191(8): 471, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028342

ABSTRACT

Electrochemical alkalization of (Cu-S)n metal-organic framework (MOF) and graphene oxide ((Cu-S)n MOF/GO) composite yields a new CuO/(Cu-S)n MOF/RGO (reduced GO) composite with porous morphology on screen printed carbon electrode (SPCE) which facilitated the electron transfer properties in electrochemical quercetin (QUE) detection. A selective QUE detection ability has been demonstrated by the constructed electrochemical sensor (CuO/(Cu-S)n MOF/RGO/SPCE), which also has a broad dynamic range of 0.5 to 115 µM in pH 3 by differential pulse voltammetry. The detection limit is 0.083 µM (S/N = 3). In this study, it was  observed that the real samples contained 0.34 mg mL-1 and 27.7 µg g-1 QUE in wine and onion, respectively.

5.
Pharmaceutics ; 16(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931908

ABSTRACT

Cancer treatment is a significant focus in medicine, owing to the increasing global incidence of cancers. Patients with advanced cancers that do not respond to conventional therapies have limited options and an unfavorable prognosis. Consequently, researchers are investigating complementary approaches to conventional treatments. One such approach is alkalization therapy, which aims to neutralize the acidic tumor microenvironment (TME) by increasing its pH level. The acidic TME promotes inflammation, tumor progression, and drug resistance. Alkalization therapy has been demonstrated to be effective for various cancers. In addition, natural products, such as triterpenoids, parthenolides, fulvic acid, Taxus yunnanensis, and apple pectin have the potential to alleviate symptoms, maintain physical fitness, and improve treatment outcomes of cancer patients through their anti-inflammatory, antioxidant, and anticancer properties. In this review, we focus on the effects of alkalization therapy and natural products on cancer. Furthermore, we present a case series of advanced cancer patients who received alkalization therapy and natural products alongside standard treatments, resulting in long-term survival. We posit that alkalization therapy together with supplementation with natural products may confer benefits to cancer patients, by mitigating the side effects of chemotherapy and complementing standard treatments. However, further research is warranted to validate these clinical findings.

6.
J Hazard Mater ; 476: 135025, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38944991

ABSTRACT

In response to the need for trace arsenic removal and detoxification, an electro-assisted self-alkalization and oxidant-free processes (ESOP) cell was developed and investigated. It was found that the ESOP removed 90.3 % of arsenic and reduced the As(III) concentration from 150 µg L-1 to less than 5 µg L-1 in its cathode chamber. The As removal involved migration of As(III) and As(V) from the cathode to the anode driven by electrical current. In the ESOP cathode, As(III) was dissociated to As(III) oxyanions via alkalization and then oxidized into As(V) by H2O2. Nearly 80 % of As(III) migration could be attributed to the oxidation by H2O2 and approximately 20 % dissociation by pH alkalization. The voltage-controlled conditions (1.2 -1.5 V) achieved a peak cumulative H2O2 concentration of 10.9 mg L-1. The ESOP demonstrated a high As(III) oxidation to As(V) conversion efficiency of 97.0 % as well as a low energy cost of 0.013 kWh m-3 at 1.2 V. The migrated arsenic was stabilized onto the anode electrode through in-situ electro-oxidation of As(III) and electrosorption of As(III, V); this would help with the post-treatment waste disposal. Those results have provided important insights into an electrochemical approach for highly efficient arsenic detoxification.

7.
Nanomaterials (Basel) ; 14(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668174

ABSTRACT

A layered Ti3C2Tx MXene structure was prepared by etching MAX-phase Ti3AlC2 with hydro-fluoric acid (HF), followed by alkalization in sodium hydroxide (NaOH) solutions of varying concentrations and for varying durations. Compared to sensors utilizing unalkalized Ti3C2Tx, those employing alkalized Ti3C2Tx MXene exhibited enhanced sensitivity for NH3 detection at room temperature and a relative humidity of 40%. Both the concentration of NaOH and duration of alkalization significantly influenced sensor performance. Among the tested conditions, Ti3C2Tx MXene alkalized with a 5 M NaOH solution for 12 h exhibited optimal performance, with high response values of 100.3% and a rapid response/recovery time of 73 s and 38 s, respectively. The improved sensitivity of NH3 detection can be attributed to the heightened NH3 adsorption capability of oxygen-rich terminals obtained through the alkalization treatment. This is consistent with the observed increase in the ratio of oxygen to fluorine atoms on the surface terminations of the alkalization-treated Ti3C2Tx. These findings suggest that the gas-sensing characteristics of Ti3C2Tx MXene can be finely tuned and optimized through a carefully tailored alkalization process, offering a viable approach to realizing high-performance Ti3C2Tx MXene gas sensors, particularly for NH3 sensing applications.

8.
Antimicrob Agents Chemother ; 68(5): e0169023, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38501806

ABSTRACT

Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.


Subject(s)
Adenosine Triphosphate , Antimalarials , Fluorescence Resonance Energy Transfer , Plasmodium falciparum , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Plasmodium falciparum/genetics , Adenosine Triphosphate/metabolism , Antimalarials/pharmacology , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Humans , Quinine/pharmacology , Doxycycline/pharmacology , Artemisinins/pharmacology , Chloroquine/pharmacology , Hydrogen-Ion Concentration
9.
Food Res Int ; 182: 114147, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519177

ABSTRACT

In this study, the effects of independent variables such as alkaline (NaOH) salt concentration (3.0-6.0 g/100 mL), alkalization temperature (60-90 °C), and time (20-40 min) on cocoa powder (low-fat) properties were investigated by using Central Composite Design. The physicochemical and color properties of samples, powder characteristics, volatile component profile, total polyphenol content (TPC), as well as antioxidant activity potentials using different methods (DPPH and ABTS) were determined. Significant models were identified for the effects on major alkalization indicators (L*, a*/b*, pH), as well as TPC and antioxidant activity potential (DPPH), which are the main motivators for the preference and consumption of cocoa products (p < 0.05). The established model was validated, and their predicted values were found to be very close to real results. It was determined that the alkali concentration had a more significant effect on dependent variables, especially on alkalization indicators, compared to the other independent variables. Furthermore, strong correlations were determined between TPC and antioxidant activity potential and color properties (L*, a*, b*, and a*/b*). Optimum concentration, temperature and time were found to be 5.3 %, 84 °C and 35.7 min for maximizing a*/b* value. The establishment of such models lead to optimizing process conditions of alkalization with minimum effort and labor force for obtaining cocoa powder with desired quality depending on the usage purpose.


Subject(s)
Cacao , Chocolate , Chocolate/analysis , Antioxidants/chemistry , Cacao/chemistry , Polyphenols/chemistry , Food
10.
Sci Total Environ ; 927: 171967, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38537833

ABSTRACT

Critical loads are a risk assessment approach that has supported large decreases in atmospheric acidic deposition globally. In Canada, SOx emissions fell by approximately 70 % between 1990 and 2021, whereas total particulate matter (TPM) emissions increased by about 40 %, mostly after 2010. Base cations are a major component of TPM, and critical load models consider base cation deposition as beneficial to ecosystems insomuch as it reduces the risk of acidification. However, close to point sources, high levels of alkaline dust deposition have altered soil chemistry and caused an undesirable shift in ecosystem state; something that critical loads are designed to prevent. In this study, the simple mass balance model (SMB) was modified with the objective of preventing base cation accumulation in soil above an acceptable threshold. The concept was applied to a forested site close to large emission sources of sulphur, nitrogen, and base cations in the Oil Sands region of Alberta, Canada. At this site, base cation leaching measured at 25 cm was approximately three times higher than estimated background leaching and exceeded combined SO4 + NO3 leaching. The critical load for alkalization was exceeded under each scenario considered in this study, although the exceedance was marginal if all N in current deposition was assumed to leach from soil. While this framework can easily be applied to regional and national critical load efforts, the main uncertainties of the proposed approach include base cation deposition estimates, assumptions regarding the behavior of N in soil, the selection of an appropriate Alkle(crit) and the long-term immobilization of deposited base cations in soil.

11.
Front Oncol ; 14: 1342802, 2024.
Article in English | MEDLINE | ID: mdl-38390269

ABSTRACT

Tumor acidity has been identified as a key factor in promoting cancer progression, metastasis, and resistance. Tumor alkalization therapy has emerged as a potential strategy for cancer treatment. This article provides preclinical and clinical evidence for tumor alkalization therapy as a promising cancer treatment strategy. The potential of tumor alkalization therapy using sodium bicarbonate in the treatment of malignant ascites was studied. The concept of intraperitoneal perfusion with an alkalizing solution to increase the extracellular pH and its antitumor effect were explored. The significant extension in the overall survival of the Ehrlich ascites carcinoma mice treated with sodium bicarbonate solution compared to those treated with a sodium chloride solution was observed. In the sodium bicarbonate group, mice had a median survival of 30 days after tumor cell injection, which was significantly (p<0.05) different from the median survival of 18 days in the sodium chloride group and 14 days in the intact group. We also performed a case study of a patient with ovarian cancer malignant ascites resistant to previous lines of chemotherapy who underwent intraperitoneal perfusions with a sodium bicarbonate solution, resulting in a significant drop of CA-125 levels from 5600 U/mL to 2200 U/mL in and disappearance of ascites, indicating the potential effectiveness of the treatment. The preclinical and clinical results obtained using sodium bicarbonate perfusion in the treatment of malignant ascites represent a small yet significant contribution to the evolving field of tumor alkalization as a cancer therapy. They unequivocally affirm the good prospects of this concept.

12.
Mol Microbiol ; 121(4): 696-716, 2024 04.
Article in English | MEDLINE | ID: mdl-38178569

ABSTRACT

Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.


Subject(s)
Amino Acids , Candida albicans , Female , Humans , Candida albicans/metabolism , Amino Acids/metabolism , Ammonia/metabolism , Candida/metabolism , Proline/metabolism , Candida glabrata/metabolism
13.
J Urol ; 211(2): 276-284, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38193415

ABSTRACT

PURPOSE: The consumption of alkaline water, water with an average pH of 8 to 10, has been steadily increasing globally as proponents claim it to be a healthier alternative to regular water. Urinary alkalinization therapy is frequently prescribed in patients with uric acid and cystine urolithiasis, and as such we analyzed commercially available alkaline waters to assess their potential to increase urinary pH. MATERIALS AND METHODS: Five commercially available alkaline water brands (Essentia, Smart Water Alkaline, Great Value Hydrate Alkaline Water, Body Armor SportWater, and Perfect Hydration) underwent anion chromatography and direct chemical measurements to determine the mineral contents of each product. The alkaline content of each bottle of water was then compared to that of potassium citrate (the gold standard for urinary alkalinization) as well as to other beverages and supplements used to augment urinary citrate and/or the urine pH. RESULTS: The pH levels of the bottled alkaline water ranged from 9.69 to 10.15. Electrolyte content was minimal, and the physiologic alkali content was below 1 mEq/L for all brands of alkaline water. The alkali content of alkaline water is minimal when compared to common stone treatment alternatives such as potassium citrate. In addition, several organic beverages, synthetic beverages, and other supplements contain more alkali content than alkaline water, and can achieve the AUA and European Association of Urology alkali recommendation of 30 to 60 mEq per day with ≤ 3 servings/d. CONCLUSIONS: Commercially available alkaline water has negligible alkali content and thus provides no added benefit over tap water for patients with uric acid and cystine urolithiasis.


Subject(s)
Uric Acid , Urolithiasis , Humans , Cystine , Potassium Citrate/therapeutic use , Urolithiasis/therapy , Alkalies
14.
Adv Mater ; 36(5): e2305394, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37643367

ABSTRACT

Lysosomes are critical in modulating the progression and metastasis for various cancers. There is currently an unmet need for lysosomal alkalizers that can selectively and safely alter the pH and inhibit the function of cancer lysosomes. Here an effective, selective, and safe lysosomal alkalizer is reported that can inhibit autophagy and suppress tumors in mice. The lysosomal alkalizer consists of an iron oxide core that generates hydroxyl radicals (•OH) in the presence of excessive H+ and hydrogen peroxide inside cancer lysosomes and cerium oxide satellites that capture and convert •OH into hydroxide ions. Alkalized lysosomes, which display impaired enzyme activity and autophagy, lead to cancer cell apoptosis. It is shown that the alkalizer effectively inhibits both local and systemic tumor growth and metastasis in mice. This work demonstrates that the intrinsic properties of nanoparticles can be harnessed to build effective lysosomal alkalizers that are both selective and safe.


Subject(s)
Nanoparticles , Neoplasms , Mice , Animals , Lysosomes , Nanoparticles/chemistry , Apoptosis , Autophagy
15.
Plant Physiol Biochem ; 206: 108318, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38159548

ABSTRACT

We used manganese (Mn)-tolerant 'Xuegan' (Citrus sinensis) seedlings as materials and examined the characterization of Mn uptake and Mn-activated-release of root exudates under hydroponic conditions. We observed that root and shoot Mn bioaccumulation factor (BCF) reduced with the increase of Mn supply, and that Mn transfer factor (Tf) reduced greatly as Mn supply increased from 0 to 500 µM, beyond which Tf slightly increased with increasing Mn supply, suggesting that Mn supply reduced the ability to absorb and accumulate Mn in roots and shoots, as well as root-to-shoot Mn translocation. Without Mn, roots alkalized the solution pH from 5.0 to above 6.2, while Mn supply reduced root-induced alkalization. As Mn supply increased from 0 to 2000 µM, the secretion of root total phenolics (TPs) increased, while the solution pH decreased. Mn supply did not alter the secretion of root total free amino acids, total soluble sugars, malate, and citrate. Mn-activated-release of TPs was inhibited by low temperature and anion channel inhibitors, but not by protein biosynthesis inhibitor. Using widely targeted metabolome, we detected 48 upregulated [35 upregulated phenolic compounds + 13 other secondary metabolites (SMs)] and three downregulated SMs, and 39 upregulated and eight downregulated primary metabolites (PMs). These findings suggested that reduced ability to absorb and accumulate Mn in roots and shoots and less root-to-shoot Mn translocation in Mn-toxic seedlings, rhizosphere alkalization, and Mn-activated-release of root exudates (especially phenolic compounds) contributed to the high Mn tolerance of C. sinensis seedlings.


Subject(s)
Citrus sinensis , Citrus , Manganese/pharmacology , Manganese/metabolism , Citrus/metabolism , Rhizosphere , Plant Roots/metabolism , Seedlings/metabolism
16.
Front Oncol ; 13: 1291026, 2023.
Article in English | MEDLINE | ID: mdl-37799473

ABSTRACT

[This corrects the article DOI: 10.3389/fonc.2023.1179049.].

17.
Article in English | MEDLINE | ID: mdl-37878686

ABSTRACT

MXene is a highly latent capacity electrode material for supercapacitors, but its capacity limits its development. Herein, we have constructed an independently cross-linked three-dimensional (3D) Ti3C2TX MXene film (Zn-A-MXene) with a hydroxylation surface through a zinc ion (Zn2+) and NaOH. The alkalization of NaOH is used to replace the -F functional group that is not conducive to electrochemical reactions and cross-link the MXene nanosheets through the electrostatic interaction of zinc ions. The synergistic effect can greatly improve the effective area of the electrode, the accessibility of the electrolyte, and the specific capacitance. The 3D Zn-A-MXene films exhibit an extremely high capacity (465.1 F g-1 at 1 A g-1). The all-solid-state flexible supercapacitor assembled using a 3D Zn-A-MXene thin film also has a high energy density of 9.55 Wh kg at a power density of 603.16 W kg. After 5000 cycles, the flexible supercapacitor still has 81.25% of its initial capacity, demonstrating good cycling stability. This work furnishes the innovative idea for constructing high-capacity MXene flexible supercapacitors.

18.
Water Res ; 246: 120734, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37862875

ABSTRACT

It remains a great challenge to efficiently remove As(III) from groundwater using traditional technologies due to its stable electroneutral form. This study constructed an asymmetric flow-electrode electrochemical separation (AFES) system, which overcomes the drawback of H+ release from anodic carbon oxidation and achieves continuous self-alkalization function and highly efficient removal of As(III) from groundwater. At the applied voltage of 1.2 V and initial pH 7.5, the system could rapidly decrease the total As (T-As) concentration from 150.0 to 8.9 µg L-1 within 90 min, with an energy consumption of 0.04 kWh m-3. The self-alkalization was triggered by the generation of H2O2 from dissolved oxygen reduction and the adsorption of H+ on the cathode in the feed chamber, which significantly promoted the dissociation and oxidation of As(III), resulting in the removal of T-As predominantly in the form of As(V). The removal performance of T-As was slightly affected by the initial pH and coexisting ions in the feed chamber. The AFES system also exhibited considerable stability after 20 cycles of continuous experiments and superior performance in treating As-containing real groundwater. Moreover, the pH of the alkalized solution can be restored to the initial level by standing or aeration operation. This work offers a novel and efficient pathway for the detoxication of As(III)-contaminated groundwaters.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Water Purification , Hydrogen Peroxide , Water Pollutants, Chemical/analysis , Water Purification/methods , Oxidation-Reduction , Electrodes , Adsorption
19.
Arthritis Res Ther ; 25(1): 164, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679816

ABSTRACT

BACKGROUND: Low urine pH, which may be mediated by metabolic syndrome (MetS), is common in gout. Tart cherries are shown to improve MetS symptoms and possess anti-inflammatory properties. However, the efficacy of tart cherry supplements on urine pH has yet to be studied. OBJECTIVES: This study aimed to investigate the efficacy and safety of tart cherry supplementary citrate (TaCCi) mixture on urine pH, serum urate (sUA), C-reactive protein (CRP), and gout flares in gout patients initiating urate-lowering therapy (ULT), in comparison to citrate mixture and sodium bicarbonate. METHODS: A prospective, randomized (1:1:1), open-label, parallel-controlled trial was conducted among 282 men with gout and fasting urine pH ≤ 6, who were initiating ULT with febuxostat (initially 20 mg daily, escalating to 40 mg daily if serum urate ≥ 360 µmol/L). Participants were randomized to groups taking either sodium bicarbonate, citrate mixture, or TaCCi mixture. All participants were followed every 4 weeks until week 12. Urine pH and sUA were co-primary outcomes, with various biochemical and clinical secondary endpoints. RESULTS: Urine pH increased to a similar extent in all three groups. SUA levels declined in all three groups as well, with no significant differences observed between the groups. At week 12, the TaCCi mixture group exhibited a greater reduction in the urine albumin/creatinine ratio (UACR) compared to the other two groups (p < 0.05). Participants taking TaCCi mixture or citrate mixture experienced fewer gout flares than those in the sodium bicarbonate group over the study period (p < 0.05). Additionally, the TaCCi mixture group had a lower CRP level at week 12 relative to the other two groups (p < 0.01). Adverse events were similar across all three groups. CONCLUSION: The TaCCi mixture had similar efficacy and safety on urine alkalization and sUA-lowering as the citrate mixture and sodium bicarbonate in patients with gout. However, the TaCCi mixture resulted in greater improvements in UACR and CRP, which suggests that tart cherry supplements may provide additional benefits for renal protection and reduce inflammation in gout, particularly when starting ULT. TRIAL REGISTRATION: This project was registered in ChiCTR ( www.chictr.org.cn ), with the registration number: ChiCTR2100050749.


Subject(s)
Gout , Metabolic Syndrome , Prunus avium , Male , Humans , Citric Acid , Prospective Studies , Sodium Bicarbonate/therapeutic use , Uric Acid , Citrates , Gout/drug therapy , C-Reactive Protein
20.
Animals (Basel) ; 13(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37570230

ABSTRACT

To improve the utilization efficiency of rape straw, anaerobic calcium oxide (CaO) alkalization was conducted, and advanced molecular spectroscopy was applied, to detect the internal molecular structural changes. Rape straw was treated with different combinations of CaO (3%, 5%, and 7%) and moisture levels (50% and 60%) and stored under anaerobic conditions. We investigated the carbohydrate chemical constituents, the ruminal neutral detergent fiber (aNDF) and acid detergent fiber (ADF) degradation kinetics, and the carbohydrate molecular structural features. CaO-treated groups were higher (p < 0.05) for ash, Ca, non-fiber carbohydrate, soluble fiber, and the ruminal degradability of aNDF and ADF. In contrast, they were lower (p < 0.05) for the contents of aNDF, ADF, and indigestible fiber. With CaO levels rising from 3% to 7%, the content of aNDF and ADF linearly decreased (p < 0.05). CaO treatment and anaerobic storage changed the molecular characteristics, including structural parameters related to total carbohydrates (TC), cellulosic compounds (CEC), and structural carbohydrates (STC). Alterations in cellulosic compounds' spectral regions were highly correlated with the differences in carbohydrate chemical constituents and the ruminal digestibility of rape straw. In summary, CaO treatment and anaerobic storage altered the molecular structural parameters of carbohydrates, leading to an enhancement in the effective degradability (ED) of aNDF and ADF in rape straw. From the perspective of processing cost and effectiveness, 5% CaO + 60% moisture could be suggested as a recommended treatment combination.

SELECTION OF CITATIONS
SEARCH DETAIL