Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
J Rural Med ; 19(3): 126-130, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38975041

ABSTRACT

Objective: To elucidate the actual circumstances of damage caused by Japanese Alocasia (A) odora. Materials and Methods: We investigated cases in Japan from our own hospital in the eastern part of Shizuoka Prefecture as well as published reports. Results: A. dorais found in western Japan, and plants of the Alocasia genus are cultivated often. A. odora is frequently associated with food poisoning because its aboveground parts resemble those of Satoimo (Colocasia esculenta). Moreover, A. odora contains insoluble calcium oxalate crystals, which cause poisoning symptoms, such as oral pain, nausea, vomiting, and laryngeal edema, resulting in near asphyxia, diarrhea following shock, and skin dermatitis. Calcium oxalate crystals are abundant in Araceae family plants, and cases of health damage owing to the accidental ingestion of Araceae plants have been reported worldwide. Conclusion: Due to the strong irritation felt in the mouth upon contact with the plant, it is advisable to immediately spit out the plant and rinse the mouth. In addition to drug administration, ensuring a secure airway may be necessary if there is a risk of asphyxiation.

2.
Phytochemistry ; 222: 114069, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548035

ABSTRACT

Seventeen piperidine alkaloids, including 15 previously undescribed 2-substituted-6-(9-phenylnonyl)-piperidine-3,4-diol alkaloids and a previously undescribed 2-substituted-6-(9-phenylnonyl)-piperidine-3-ol alkaloid, were isolated from the leaves of Alocasia macrorrhiza (L.) Schott. Their planar structures and configurations were elucidated based on HR-ESI-MS, 1D and 2D NMR, Snatzke's method, modified Mosher method, single-crystal X-ray crystallography, as well as quantum chemical calculation. It was found that ΔδH5b-H5a can be used to elucidate the relative configuration of 2,3,4,6-tetrasubstituted piperidine, by analyzing the NMR data of 2-substituted-6-(9-phenylnonyl)-piperidine-3,4-diol. Antiproliferative activity was evaluated for all of the alkaloids, and compounds 6-8 showed considerable inhibitory activity against K562 cell line, with the IC50 values of 17.24 ± 1.62, 19.31 ± 0.9 and 18.77 ± 1.09µM, respectively. Furthermore, compounds 6 and 7 exerted an antiproliferative effect by inducing apoptosis.


Subject(s)
Alkaloids , Alocasia , Antineoplastic Agents, Phytogenic , Cell Proliferation , Drug Screening Assays, Antitumor , Piperidines , Plant Leaves , Plant Leaves/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Molecular Structure , Piperidines/pharmacology , Piperidines/chemistry , Piperidines/isolation & purification , Alocasia/chemistry , Structure-Activity Relationship , Dose-Response Relationship, Drug , K562 Cells , Crystallography, X-Ray
3.
Chin J Integr Med ; 30(1): 52-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37340203

ABSTRACT

OBJECTIVE: To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism. METHODS: B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR. RESULTS: In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells. CONCLUSIONS: Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.


Subject(s)
Alocasia , Mice , Animals , Alocasia/metabolism , MAP Kinase Signaling System , Caspase 3/metabolism , Apoptosis , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Journal of Rural Medicine ; : 126-130, 2024.
Article in English | WPRIM (Western Pacific) | ID: wpr-1040014

ABSTRACT

Objective: To elucidate the actual circumstances of damage caused by Japanese Alocasia (A) odora.Materials and Methods: We investigated cases in Japan from our own hospital in the eastern part of Shizuoka Prefecture as well as published reports.Results:A. dorais found in western Japan, and plants of the Alocasia genus are cultivated often. A. odora is frequently associated with food poisoning because its aboveground parts resemble those of Satoimo (Colocasia esculenta). Moreover, A. odora contains insoluble calcium oxalate crystals, which cause poisoning symptoms, such as oral pain, nausea, vomiting, and laryngeal edema, resulting in near asphyxia, diarrhea following shock, and skin dermatitis. Calcium oxalate crystals are abundant in Araceae family plants, and cases of health damage owing to the accidental ingestion of Araceae plants have been reported worldwide.Conclusion: Due to the strong irritation felt in the mouth upon contact with the plant, it is advisable to immediately spit out the plant and rinse the mouth. In addition to drug administration, ensuring a secure airway may be necessary if there is a risk of asphyxiation.

5.
Article in English | WPRIM (Western Pacific) | ID: wpr-1010296

ABSTRACT

OBJECTIVE@#To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism.@*METHODS@#B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR.@*RESULTS@#In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells.@*CONCLUSIONS@#Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.


Subject(s)
Mice , Animals , Alocasia/metabolism , MAP Kinase Signaling System , Caspase 3/metabolism , Apoptosis , RNA, Messenger/metabolism
6.
Plant Dis ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037205

ABSTRACT

Alocasia macrorrhiza, which belongs to the Araceae family, is an important landscape plant in China, and has of significant medicinal uses. In 2022, A. macrorrhiza displaying abnormal symptoms were found in Qionghai, Hainan Island of China (110°23'3.06″,19°7'56.29″). The incidence of symptomatic plants was about 40% in the sampled areas. The abnormal symptoms included that the ovoid leaves color turned yellow from green gradually, with ovoid leaves chlorosis, mesophyll tissue yellowing, miniature leaves and systemic wilting. The diseased symptoms suspected to be associated with phytoplasma according to the protocols of phytoplasma identification. In order to identify the pathogen, eleven diseased samples and three asymptomatic samples were collected from an area of about 40 hectares. Total DNAs were extracted from 0.10 g fresh plant leaf tissues using a CTAB DNA extraction method. PCR amplifications were performed using primers R16mF2/R16mR1 and fTuf1/rTuf1 specific for the phytoplasma 16S rRNA and tuf genes. Target PCR amplicons were obtained from the DNA of 11 diseased samples, whereas not from the DNA of the asymptomatic samples. The PCR products were cloned and sequenced by Biotechnology (Shanghai) Co., Ltd. (Guangzhou, China), and the obtained sequences were assembled, edited and analyzed using the EditSeq program and DNAMAN version 6.0. The phytoplasma 16S rRNA and tuf gene amplicons were 1336 and 930 bp in length, respectively. The sequences of all 16S rRNA and tuf amplicons in this study were identical. The sequencing data were deposited in GenBank with accession numbers OR466206 (16S rDNA) and OR513090 (tuf). According to the methods and protocols of phytoplasma identified and classification, the phytoplasma strain was described as Alocasia macrorrhiza yellows (AmY) phytoplasma, AmY-hn strain. BLAST search were conducted based on 16Sr RNA and tuf genes. The results showed that the AmY-hn had 100 % 16Sr RNA sequence identity (1336 bp out of 1336 bp) with that of 16SrI-B subgroup phytoplasmas like onion yellows phytoplasma (OY-M, AP006628). The AmY-hn had 100 % tuf sequence identity (930 bp out of 930 bp) with that of 16SrI-B subgroup phytoplasmas like OY-M. RFLP profiles obtained with iPhyClassifier demonstrated that AmY-hn strain was a member of the 16SrI-B subgroup with a similarity coefficient 1.00 to the reference phytoplasma strain (AP006628). Separated phylogenetic analysis based on 16S rRNA and tuf genes obtained with MEGA 7.0 using the neighbor-joining (NJ) method with 1000 bootstrap value indicated that AmY-hn clustered into one clade with phytoplasma strains of OY-M and chinaberry witches'-broom (KP662119) with 100 % and 87 % bootstrap value respectively. To our knowledge, this is the first report that a 'Candidatus Phytoplasma asteris'-related strain belonging to 16SrI-B subgroup infects A. macrorrhiza in China. The 16SrI-B subgroup 'Candidatus Phytoplasma asteris'-related strains can spread outwards through the plant A. macrorrhiza. Thus, the findings in the study will be beneficial to the detection of phytoplasmas which parasitic in this plant and the epidemic monitoring of the related diseases.

7.
Nat Prod Res ; : 1-6, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615635

ABSTRACT

This study describes the extraction and identification by electrophoretic and spectrometric techniques of protease inhibitor from the medicinal plant Alocasia macrorrhizos as well as investigates their immunomodulatory properties and cell viability. The A. macrorrhizos tubers were subjected to protease inhibitor extractions and characterised using SDS-PAGE and MALDI-TOF. The protein extracts were assessed for activities trypsin inhibition stoichiometry, haemagglutinating, cell viability, NO and TNF-α production inhibition. Concerning the protease inhibitors analysis through SDS-PAGE, the results showed two bands with 11 and 24 kDa, and the MS analysis detected the ions more intense of m/z 4276.795 and 8563.361 in the roasted protein extract. The IC50 of trypsin inhibition was 0.119 and 0.302 mg L-1 in the roasted and crude tuber, respectively. The protease inhibitors extract from the roasted tubers showed a reduction in the production of NO and TNF-α at concentrations lower than 100 µg mL-1, without a reduction in cell viability.

8.
Int J Biol Macromol ; 246: 125705, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37414314

ABSTRACT

The current work investigated the impact of different pressure processing times (5, 10, and 15 min) at 120 psi on the rheological behavior of a mixture of dry-heated Alocasia macrorrizhos starch with monosaccharide and disaccharide. Shear-thinning behavior was exhibited by the samples in steady shear evaluation and the highest viscosity was observed in the 15 min pressure treated samples. In the initial phase of amplitude sweep measurement, samples exhibited strain dependency but later they remain unaffected with applied deformation. The greater value of Storage modulus (G') than loss modulus (G″) (G' > G″) indicating the weak gel-like behavior. Increasing in pressure treatment duration enhanced the value of G' and G″ with applied frequency and found maximum at 15 min. In temperature sweep measurement the G', G″ as well as complex viscosity curves increased initially and then decreased after achieving peak temperature. However, the rheological parameters of the samples treated under long pressure processing time were found to be improved during temperature sweep measurements. The resulting extremely viscous, pressure-treated dry-heated Alocasia macrorrizhos starch-saccharides combination has a variety of uses in different pharmaceuticals as well as in food industries.


Subject(s)
Alocasia , Humans , Starch , Disaccharides , Monosaccharides , Duration of Therapy , Rheology , Viscosity
9.
Heliyon ; 9(7): e18069, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483701

ABSTRACT

Hyperuricemia has become a significant public-health concern in recent years, and the available treatments have been reported to have an adverse side effect on patients. Alocasia longiloba has been used traditionally in Malaysia for treating gout, inflammation, and wounds. However, the plant has not been investigated for its effects on hyperuricemia. This study investigated the anti-hyperuricemic and anti-inflammatory effects of A. longiloba extracts in hyperuricemic rats induced by potassium oxonate (250 mg/kg body weight). Rats were given A. longiloba extracts or a standard drug for two-week, and blood and tissue samples were collected for analysis. Results show that A. longiloba extracts significantly reduced serum uric acid levels in hyperuricemic rats and inhibited xanthine oxidase (XOD) activity in the liver and kidney, which could be the mechanism underlying the urate-lowering effects. The extracts also significantly (p < 0.05) reduced the levels of proinflammatory cytokines (IL-18 and IL-1ß) in serum samples and had hepatoprotective and nephroprotective effects in hyperuricemic rats. The study supports the use of A. longiloba as a complementary therapy for treating hyperuricemia.

10.
Int J Biol Macromol ; 241: 124663, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37119887

ABSTRACT

High viscous products made with starch are of great scientific interest in the food, pharmaceutical, and cosmetic industries because they can be used to make creams and gels, as well as functional foods and nutritional products. But, obtaining a good quality highly viscous materials represent a technological challenge. In this present study, the effect of high-pressure treatment at 120 psi for different time interval on the mixture of dry-heated alocasia starch in presence of monosaccharide and disaccharide was studied. A flow measurement test on the samples revealed their shear-thinning behavior. With 15 min of high-pressure processing time, the dry-heated starch and saccharide mixtures displayed the highest viscosity. The dynamic viscoelasticity measurement showed that the storage and loss modulus was enhanced significantly after high-pressure treatment, and all pressure-treated samples showed a gel-like structure (G/>G//). In temperature sweep measurement, the rheological profile of storage modulus, loss modulus, and complex viscosity exhibited a two-stage pattern, i.e., first increased, then decreased, and their values were enhanced significantly after pressure treatment. The resultant highly viscous dry-heated starch and saccharide system have various functionalities in diverse food and pharmaceutical products.


Subject(s)
Alocasia , Starch , Starch/chemistry , Disaccharides , Monosaccharides , Viscosity , Rheology
11.
Acta toxicol. argent ; 31(1): 5-5, abr. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1556761

ABSTRACT

Resumen Se describirán y verán imágenes de 3 especies vegetales tóxicas (Asclepia, Alocasia y Ricino) comunes de encontrar en paisajes urbanos (jardines, parques, terrenos baldíos, viveros). Por su apariencia atractiva y accesibilidad resultan en contactos o ingestas accidentales en niños, incluso en animales domésticos. Sus principios activos pueden causar cuadros clínicos de variable severidad. Resulta importante la identificación de estas especies para facilitar el diagnóstico y el tratamiento a la hora de la consulta.


Abstract Images of 3 toxic plant species (Asclepia, Alocasia and Castor) that are common to be found in urban landscapes (gardens, parks, vacant lots, plant shops or greenhouses) will be described and seen. Due to their attractive appearance and accessibility, they result in accidental contact or ingestion in children, even in domestic animals. Its xenobiotics can cause poisonings of variable severity. It is important to identify these species to facilitate diagnosis and treatment at the time of consultation.

12.
Nat Prod Res ; 37(8): 1386-1391, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34821186

ABSTRACT

In traditional Brazilian medicine, tubers extracts from Alocasia macrorrhizos are widely used in the treatment of skin pigmentation disorder. However, studies that evaluate its benefits in the treatment of this disorder are non-existent. Thus, this work aims to investigate the bioactivity of A. macrorrhizos extracts in cell culture and murine model of Vitiligo and correlating with its phenolic profile. The metabolic profiling from the bioactive extracts was obtained by LC-DAD-MS, FTIR, NMR, and CE-UV. The murine model of Vitiligo was induced with 5% hydroquinone in C57BL/6 male mice, which were treated or not with 100 mg/kg of roasted tuber aqueous extract. In Vitiligo model assay was observed hair follicle repigmentation and reduction of the epidermal layer thickness at the histopathological level, in the animals treated with aqueous extract of roasted tubers. The present study provides new molecular insight and scientific evidence on the potential utility of the extract of A. macrorrhizos against Vitiligo.


Subject(s)
Pigmentation Disorders , Vitiligo , Male , Animals , Mice , Polyphenols/pharmacology , Vitiligo/chemically induced , Vitiligo/drug therapy , Disease Models, Animal , Spectroscopy, Fourier Transform Infrared , Mice, Inbred C57BL
13.
Appl Microbiol Biotechnol ; 107(1): 111-123, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36441209

ABSTRACT

Silver nanoparticles (AgNPs) have various applications in the biomedical field and are considered excellent microbicidal agents. Moreover, biological synthesis of AgNPs using medicinal plants further improves the medicinal applicability of these plants. In this study, the aqueous extract of Alocasia odora rhizome (RE) and Alocasia odora stem (SE) were used to synthesize stem aqueous extract-AgNPs (SNP) and rhizome aqueous extract-AgNPs (RNP). Furthermore, RNP and SNP were evaluated for their virucidal potential. The synthesis of SNP and RNP was monitored using a UV spectrophotometer by observing their surface plasmon resonance peak. In addition, scanning electron microscopy (SEM) gave further insight into their morphology and particle size, whereas energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of silver ions. Interestingly, Fourier-transform infrared spectroscopy (FTIR) analysis of AgNPs revealed that phytomolecules acted as capping and stabilizing agents for SNP and RNP. The in vitro cytotoxicity of SNP and RNP was further analyzed using MTT assay on the U87-MG human glioblastoma cancer cell line and SNP found to be the most cytotoxic (43.40 µg/ml) among all. Besides that, SNP has also found to show the maximum cytopathic effects (CPE) against dengue virus type 2 (DENV-2) on Huh-7 cell line. As a result of the observations, it can be concluded that they can become a promising antiviral drug candidate and thus merit further testing. KEY POINTS: • AgNPs were successfully synthesized through Alocasia odora aqueous extract. • AgNPs were more cytotoxic on the U87-MG cell line than the extract alone. • AgNPs have shown significant reduction in the dengue viral infection than the extract alone.


Subject(s)
Alocasia , Metal Nanoparticles , Humans , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Particle Size , Spectroscopy, Fourier Transform Infrared , Anti-Bacterial Agents/chemistry
14.
Molecules ; 27(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36500595

ABSTRACT

Hepatocellular carcinoma (HCC) is a poor-prognosis type of cancer with high resistance to chemotherapy, making the search for safe drugs a mandatory issue. Plant-derived products have potential to reduce negative side effects of cancer treatments. In this work, ability of a defatted methanolic extract of Alocasia gigantea leaves to fight HCC was evaluated in an animal model. Overall, treatment of HCC-induced mice with the methanolic extract at 150 mg/kg body weight for four consecutive weeks caused induction of autophagy through silencing of the relative expression of autophagy suppressor (mTOR) and inducement of autophagy markers (AMPK, Beclin-1, and LC-3). Moreover, it improved preservation of the hepatic histological architecture of the animals, with minor hepatocytic changes but scattered foci of hepatocytic apoptosis. Chemical profiling of the methanolic extract via ultra-high-performance liquid chromatography coupled to a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI-MS/MS) allowed identification of di-C-glycosyl flavones, mostly represented by 6-C-hexosyl-8-C-pentosyl apigenin isomers, which may possibly be associated with inducement of the autophagy pathway in HCC. Overall, these outcomes gave an initial visualization of the operative effect of some compounds in A. gigantea leaves that are potential treatment for HCC.


Subject(s)
Alocasia , Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Tandem Mass Spectrometry , Carcinoma, Hepatocellular/drug therapy , Spectrometry, Mass, Electrospray Ionization/methods , Liver Neoplasms/drug therapy , Chromatography, High Pressure Liquid/methods , Plant Extracts/pharmacology , Plant Extracts/chemistry , Methanol/chemistry , Autophagy
15.
Plant Dis ; 2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36089675

ABSTRACT

Alocasia macrorrhizos (Giant elephant's ear), a perennial herb in the Araceae family, is native to South Asia and the Asia-Pacific (Takano, et al. 2012). It is cultivated as a medicinal and ornamental plant, and has a considerable economic importance in China. In September 2020, a severe infection of unknown leaf spot disease was observed on these plants at the Sichuan Agricultural University, Sichuan, China. The leaf spots first appeared as yellow dots. As these lesions expanded, they became circular to oval and light brown with darker brown edges. Around the lesions, the leaf tissue was chlorotic, thereby creating a yellow halo. When the infection became severe, spots merged into larger irregular lesions. Eventually, the diseased leaves senesced and dried. To identify the pathogen, five leaf samples of diseased plants were collected, and symptomatic tissues were surface-disinfected with 75% ethanol for 30 s followed by 3% NaCl solution for 30 s. Samples were rinsed three times in sterilized water, placed on potato dextrose agar (PDA), and incubated at 25°C ± 1°C in the dark. The colony grown on PDA was white (3 days), the center was brown (5 days), turned pink to dark red (8 days) with fluffy aerial mycelium and pigmentation with age. Ten pure cultures were inoculated into carnation leaf agar (CLA) medium and incubated at 25°C in an incubator (12 h for one light-dark cycle). In CLA medium, pathogen produced hyaline, sickle-shaped, macroconidia with 3 to 5 septa, and an average size of 30 to 50 × 4 to 5 µm (n = 30) macroconidia but no microconidia in 10 days. Chlamydospores were spherical to subspherical (5.4 to 13.8 µm). Morphological characteristics of the all isolates were consistent with the description of the Fusarium asiaticum (Leslie and Summerell 2006). To validate this identification, RNA polymerase II (RPB2) (Liu et al. 1999), translation elongation factor (EF-1) (Geiser et al. 2004), and ß-tubulin (TUB2) gene region of five isolates were amplified and sequenced (O' Donnell et al. 2015; White et al. 1990). The sequence of one representative isolate (ZL10) sequence was submitted to GenBank (ON215729, ON215730, and ON215731). The NCBI BLAST identified the top hits, 100%, 100%, and 99.87% for RPB2, EF, and TUB gene sequences, respectively, all indicating to Fusarium asiaticum. Pairwise matched of RPB2 and EF genes by MycoBank Fusarium MSIL showed the top hit rate of 100% for F. asiaticum (MH582120 and MH582249). For Koch's postulate and pathogenicity test, spore suspensions (1 × 10^7 conidia/ml) collected from PDA and CLA cultures with 0.05% Tween 80 buffer were used to inoculate with a spray bottle on leaves of a one year old A. macrorrhizos plants. Two leaves of each plant (20 pots in total) were inoculated with the spore suspension (approximately 2000 µl per leaf). An equal number of control leaves were applied with water and 0.05% Tween 80 buffer. Twenty days later, the inoculated plants showed similar symptoms to those of the original diseased plants while the controls remained asymptomatic. Fusarium asiaticum was reisolated from the infected leaves and confirmed using morphological characteristics and DNA sequence analysis. The pathogenicity test was repeated three times with similar results. This first report raises awareness of a new leaf spot disease infecting a commercial A. macrorrhizos in China. It provides an insight for a need of systematic survey identifying current spread, disease origin, and ultimately developing disease management strategies. Funding: Funding was provided by Sichuan Agricultural University Subject Dual Support Program (Grant No. 2121993055). Funding was provided by Deyang Science and Technology Bureau (Sichuan Province) for key R&D projects in agriculture and rural areas (Grant No. 2021NZ048). Funding was provided by the Sichuan Provincial Department of science and technology for the Sichuan Provincial Science and technology project for connecting and Promoting Rural Revitalization (Grant No, 2022ZHXC0007) References: Geiser, D. M., et al. 2004. Eur. J. Plant Pathol. 110:473. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0 Crossref, ISI, Google Scholar Leslie, J. F., and Summerall, B. A., eds. 2006. Page 176 in The Fusarium Laboratory Manual. Blackwell Publishing, Ames, IA. https://doi.org/10.1002/9780470278376 Liu, Y. J., et al. 1999. Mol. Biol. Evol. 16:1799. https://doi.org/10.1093/oxfordjournals.molbev.a026092 O'Donnell, K., and Cigelnik, E. 1997. Mol. Phylogenet. Evol. 7:103. https://doi.org/10.1006/mpev.1996.0376 Takano K T, et al. 2012, Plant Bio., 14(4). https://doi.org/10.1111/j.1438-8677.2011.00541.x.

16.
Chin J Nat Med ; 20(7): 541-550, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35907653

ABSTRACT

The rhizome of giant taro (Alocasia macrorrhiza (L.) Schott), which is a highly adaptable wild plant, is a traditional Chinese herbal medicine. In the current study, the antiproliferative constituents of giant taro were investigated and six new (1-6) and four known piperidine alkaloids (7-10) were isolated from its rhizomes. Their chemical structures and absolute configurations were elucidated using various spectroscopic methods and the Mosher ester method. The isolated alkaloids were screened for the antiproliferative activity through MTT assay. The results indicated that piperidine alkaloids exerted potential antiproliferative activity against HepG2, AGS and MCF-7 tumor cells. Further researches showed that compounds 3-5 dose-dependently decreased the colony formation rate and induced the apoptosis of AGS cells, while compound 4 induced AGS cell death via the proapoptotic pathway. This study demonstrates that the piperidine alkaloids isolated from giant taro exhibit significant antitumor activity, which provides phytochemical evidence for further development and utilization.


Subject(s)
Alkaloids , Alocasia , Alkaloids/analysis , Alkaloids/pharmacology , Alocasia/chemistry , Humans , Piperidines/pharmacology , Plants , Rhizome/chemistry
17.
Saudi J Biol Sci ; 29(5): 3184-3193, 2022 May.
Article in English | MEDLINE | ID: mdl-35844413

ABSTRACT

Hyperuricemia is defined as a metabolic abnormality that occurs when serum uric acid (UA) level is abnormally high in the body. We previously reported that A. longiloba possesses various important phytochemicals and in vitro xanthine oxidase activity. Despite A. longiloba ethnomedicinal benefits, its toxicity and anti-hyperuricemic effects have not been reported. The present study was carried out to ensure the safety and investigate the anti-hyperuricemic effects of A. longiloba fruit and petiole ethanolic extracts on rats. In the acute toxicity study, extracts were orally administered at a dose of 2000 mg/kg bodyweight and closely monitored for 2-week for any toxicity effects. The rats were then sacrificed and samples were collected and analyzed for hematological, biochemical, and histopathological parameters. The anti-hyperuricemic effect of A. longiloba fruit or petiole extract was investigated through determination of UA levels on potassium oxonate (PO)-induced hyperuricemic rats. Extracts or standard drug treatments were orally administrated 1-h after PO administration for 14-day. Animals were euthanized and samples were collected for further experiments. The toxicity results show, no significant changes were observed in behavioral, bodyweight changes in experimental groups compared to the control. Moreover, there were no significant changes in hematological, biochemical, and histological parameters between extracts treated and control group. In the anti-hyperuricemia study, the fruit and petiole extracts treatments significantly reduced the level of UA in serum compared to the hyperuricemic model group. This study demonstrated that the extracts of A. longiloba have anti-hyperuricemic activity and was found to be non-toxic to rats in acute toxicity test.

18.
Front Pharmacol ; 13: 849704, 2022.
Article in English | MEDLINE | ID: mdl-35685633

ABSTRACT

The genus Alocasia (Schott) G. Don consists of 113 species distributed across Asia, Southeast Asia, and Australia. Alocasia plants grow in tropical and subtropical forests with humid lowlands. Featuring their large green heart-shaped or arrow-shaped ear leaves and occasionally red-orange fruit, they are very popular ornamental plants and are widely used as traditional medicines to treat various diseases such as jaundice, snake bite, boils, and diabetes. This manuscript critically analysed the distribution, traditional uses, and phytochemical contents of 96 species of Alocasia. The numerous biological activities of Alocasia species were also presented, which include anti-cancer, antidiabetic and antihyperglycaemic, antioxidant, antidiarrhoea, antimicrobial and antifungal, antiparasitic (antiprotozoal and anthelminthic), antinociceptive and anti-inflammatory, brine shrimp lethality, hepatoprotective, anti-hemagglutinin, anti-constipation and diuretic, and radioprotective activities as well as acute toxicity studies. Research articles were acquired by the accessing three scientific databases comprising PubMed, Scopus, and Google Scholar. For this review, specific information was obtained using the general search term "Alocasia", followed by the "plant species names" and "phytochemical" or "bioactivity" or "pharmacological activity". The accepted authority of the plant species was referred from theplantlist.org. Scientific studies have revealed that the genus is mainly scattered throughout Asia. It has broad traditional benefits, which have been associated with various biological properties such as cytotoxic, antihyperglycaemic, antimicrobial, and anti-inflammatory. Alocasia species exhibit diverse biological activities that are very useful for medical treatment. The genus Alocasia was reported to be able to produce a strong and high-quality anti-cancer compound, namely alocasgenoside B, although information on this compound is currently limited. Therefore, it is strongly recommended to further explore the relevant use of natural compounds present in the genus Alocasia, particularly as an anti-cancer agent. With only a few Alocasia species that have been scientifically studied so far, more attention and effort is required to establish the link between traditional uses, active compounds, and pharmacological activities of various species of this genus.

19.
Article in English | WPRIM (Western Pacific) | ID: wpr-939919

ABSTRACT

The rhizome of giant taro (Alocasia macrorrhiza (L.) Schott), which is a highly adaptable wild plant, is a traditional Chinese herbal medicine. In the current study, the antiproliferative constituents of giant taro were investigated and six new (1-6) and four known piperidine alkaloids (7-10) were isolated from its rhizomes. Their chemical structures and absolute configurations were elucidated using various spectroscopic methods and the Mosher ester method. The isolated alkaloids were screened for the antiproliferative activity through MTT assay. The results indicated that piperidine alkaloids exerted potential antiproliferative activity against HepG2, AGS and MCF-7 tumor cells. Further researches showed that compounds 3-5 dose-dependently decreased the colony formation rate and induced the apoptosis of AGS cells, while compound 4 induced AGS cell death via the proapoptotic pathway. This study demonstrates that the piperidine alkaloids isolated from giant taro exhibit significant antitumor activity, which provides phytochemical evidence for further development and utilization.


Subject(s)
Humans , Alkaloids/pharmacology , Alocasia/chemistry , Piperidines/pharmacology , Plants , Rhizome/chemistry
20.
Plant Cell Rep ; 41(1): 263-275, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34704119

ABSTRACT

KEY MESSAGE: Floral thermogenesis is an important reproductive strategy for attracting pollinators. We developed essential biological tools for studying floral thermogenesis using two species of thermogenic aroids, Symplocarpus renifolius and Alocasia odora. Aroids contain many species with intense heat-producing abilities in their inflorescences. Several genes have been proposed to be involved in thermogenesis of these species, but biological tools for gene functional analyses are lacking. In this study, we aimed to develop a protoplast-based transient expression (PTE) system for the study of thermogenic aroids. Initially, we focused on skunk cabbage (Symplocarpus renifolius) because of its ability to produce intense as well as durable heat. In this plant, leaf protoplasts were isolated from potted and shoot tip-cultured plants with high efficiency (ca. 1.0 × 105/g fresh weight), and more than half of these protoplasts were successfully transfected. Using this PTE system, we determined the protein localization of three mitochondrial energy-dissipating proteins, SrAOX, SrUCPA, and SrNDA1, fused to green fluorescent protein (GFP). These three GFP-fused proteins were localized in MitoTracker-stained mitochondria in leaf protoplasts, although the green fluorescent particles in protoplasts expressing SrUCPA-GFP were significantly enlarged. Finally, to assess whether the PTE system established in the leaves of S. renifolius is applicable for floral tissues of thermogenic aroids, inflorescences of S. renifolius and another thermogenic aroid (Alocasia odora) were used. Although protoplasts were successfully isolated from several tissues of the inflorescences, PTE systems worked well only for the protoplasts isolated from the female parts (slightly thermogenic or nonthermogenic) of A. odora inflorescences. Our developed system has a potential to be widely used in inflorescences as well as leaves in thermogenic aroids and therefore may be a useful biological tool for investigating floral thermogenesis.


Subject(s)
Alocasia/physiology , Araceae/physiology , Botany/methods , Flowers/physiology , Protoplasts/metabolism , Thermogenesis
SELECTION OF CITATIONS
SEARCH DETAIL