Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
Front Neuroergon ; 5: 1399578, 2024.
Article in English | MEDLINE | ID: mdl-38894852

ABSTRACT

Introduction: Learning through perceptual training using the Gabor patch (GP) has attracted attention as a new vision restoration technique for myopia and age-related deterioration of visual acuity (VA). However, the task itself is monotonous and painful and requires numerous training sessions and some time before being effective, which has been a challenge for its widespread application. One effective means of facilitating perceptual learning is the empowerment of EEG alpha rhythm in the sensory cortex before neurofeedback (NF) training; however, there is a lack of evidence for VA. Methods: We investigated whether four 30-min sessions of GP training, conducted over 2 weeks with/without EEG NF to increase alpha power (NF and control group, respectively), can improve vision in myopic subjects. Contrast sensitivity (CS) and VA were measured before and after each GP training. Results: The NF group showed an improvement in CS at the fourth training session, not observed in the control group. In addition, VA improved only in the NF group at the third and fourth training sessions, this appears as a consolidation effect (maintenance of the previous training effect). Participants who produced stronger alpha power during the third training session showed greater VA recovery during the fourth training session. Discussion: These results indicate that enhanced pretraining alpha empowerment strengthens the subsequent consolidation of perceptual learning and that even a short period of GP training can have a positive effect on VA recovery. This simple protocol may facilitate use of a training method to easily recover vision.

2.
Front Neurol ; 15: 1353305, 2024.
Article in English | MEDLINE | ID: mdl-38721122

ABSTRACT

Alpha rhythm slowing is an important electroencephalogram(EEG) feature associated with (AD). This study aims to understand the correlation between alpha band deceleration and molecular changes from the perspective of neural computing. Considering the effect of Aß amyloid deposition on the inhibitory changes in the thalamic, a thalamic cortical model coupled with Aß amyloid is established. The results show that Aß amyloid deposition may induce neurotoxicity in thalamic reticular nucleus neurons, which results in inhibitory changes in the thalamus and slows the alpha rhythm of EEG output from the thalamus. In order to understand the pathogenesis more intuitively, some numerical simulations are provided to illustrate the obtained theories. This research is helpful to understand the pathogenesis of AD, so as to provide theoretical basis for the intervention and control of the disease.

3.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38679481

ABSTRACT

Increasingly, in the field of communication, education, and business, people are switching to video interaction, and interlocutors frequently complain that the perception of nonverbal information and concentration suffer. We investigated this issue by analyzing electroencephalogram (EEG) oscillations of the sensorimotor (mu rhythm) and visual (alpha rhythm) cortex of the brain in an experiment with action observation live and on video. The mu rhythm reflects the activity of the mirror neuron system, and the occipital alpha rhythm shows the level of visual attention. We used 32-channel EEG recorded during live and video action observation in 83 healthy volunteers. The ICA method was used for selecting the mu- and alpha-components; the Fourier Transform was used to calculate the suppression index relative to the baseline (stationary demonstrator) of the rhythms. The main range of the mu rhythm was indeed sensitive to social movement and was highly dependent on the conditions of interaction-live or video. The upper mu-range appeared to be less sensitive to the conditions, but more sensitive to different movements. The alpha rhythm did not depend on the type of movement; however, a live performance initially caused a stronger concentration of visual attention. Thus, subtle social and nonverbal perceptions may suffer in remote video interactions.


Subject(s)
Electroencephalography , Humans , Male , Female , Adult , Young Adult , Electroencephalography/methods , Attention/physiology , Visual Cortex/physiology , Alpha Rhythm/physiology , Sensorimotor Cortex/physiology , Visual Perception/physiology , Photic Stimulation/methods
4.
Neuroimage ; 292: 120614, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38631618

ABSTRACT

With increasing age, peak alpha frequency (PAF) is slowed, and alpha power is reduced during resting-states with eyes closed. These age-related changes are evident across the whole scalp but remained unclear at the source level. The purpose of this study was to determine whether age impacts the power and frequency of the dominant alpha rhythm equally across source generators or whether the impact of age varies across sources. A total of 28 young adults and 26 elderly adults were recruited. High-density EEG was recorded for 10 mins with eyes closed. Single dipoles for each independent component were localized and clustered based on their anatomical label, resulting in 36 clusters. Meta-analyses were then conducted to assess effect sizes for PAF and power at PAF for all 36 clusters. Subgroup analyses were then implemented for frontal, sensorimotor, parietal, temporal, and occipital regions. The results of the meta-analyses showed that the elderly group exhibited slower PAF and less power at PAF compared to the young group. Subgroup analyses revealed age effects on PAF in parietal (g = 0.38), temporal (g = 0.65), and occipital regions (g = 1.04), with the largest effects observed in occipital regions. For power at PAF, age effects were observed in sensorimotor (g = 0.84) and parietal regions (g = 0.80), with the sensorimotor region showing the largest effect. Our findings show that age-related slowing and attenuation of the alpha rhythm manifests differentially across cortical regions, with sensorimotor and occipital regions most susceptible to age effects.


Subject(s)
Aging , Alpha Rhythm , Electroencephalography , Humans , Male , Alpha Rhythm/physiology , Female , Adult , Aged , Young Adult , Aging/physiology , Electroencephalography/methods , Brain/physiology , Middle Aged , Rest/physiology
5.
J Headache Pain ; 25(1): 53, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584260

ABSTRACT

BACKGROUND: Visual snow syndrome is a disorder characterized by the combination of typical perceptual disturbances. The clinical picture suggests an impairment of visual filtering mechanisms and might involve primary and secondary visual brain areas, as well as higher-order attentional networks. On the level of cortical oscillations, the alpha rhythm is a prominent EEG pattern that is involved in the prioritisation of visual information. It can be regarded as a correlate of inhibitory modulation within the visual network. METHODS: Twenty-one patients with visual snow syndrome were compared to 21 controls matched for age, sex, and migraine. We analysed the resting-state alpha rhythm by identifying the individual alpha peak frequency using a Fast Fourier Transform and then calculating the power spectral density around the individual alpha peak (+/- 1 Hz). We anticipated a reduced power spectral density in the alpha band over the primary visual cortex in participants with visual snow syndrome. RESULTS: There were no significant differences in the power spectral density in the alpha band over the occipital electrodes (O1 and O2), leading to the rejection of our primary hypothesis. However, the power spectral density in the alpha band was significantly reduced over temporal and parietal electrodes. There was also a trend towards increased individual alpha peak frequency in the subgroup of participants without comorbid migraine. CONCLUSIONS: Our main finding was a decreased power spectral density in the alpha band over parietal and temporal brain regions corresponding to areas of the secondary visual cortex. These findings complement previous functional and structural imaging data at a electrophysiological level. They underscore the involvement of higher-order visual brain areas, and potentially reflect a disturbance in inhibitory top-down modulation. The alpha rhythm alterations might represent a novel target for specific neuromodulation. TRIAL REGISTRATION: we preregistered the study before preprocessing and data analysis on the platform osf.org (DOI: https://doi.org/10.17605/OSF.IO/XPQHF , date of registration: November 19th 2022).


Subject(s)
Alpha Rhythm , Migraine Disorders , Perceptual Disorders , Humans , Alpha Rhythm/physiology , Case-Control Studies , Vision Disorders/complications , Electroencephalography , Visual Perception/physiology
6.
Epilepsy Res ; 202: 107353, 2024 May.
Article in English | MEDLINE | ID: mdl-38522152

ABSTRACT

OBJECTIVE: The alpha rhythm has been a subject of research for the past few decades. Right-left alpha amplitude asymmetry is a common phenomenon. Several explanations have been proposed to explain this asymmetry, including differences in skull thickness. Our research aims to improve our understanding of the relationship between alpha asymmetry and skull thickness as measured by CT/MRI images. METHODS: We analyzed EEGs to study alpha rhythm characteristics. Alpha rhythm amplitude was measured using peak-to-peak values in O1 and O2 reference channels. Significant alpha asymmetry was defined as exceeding 20%. Skull thickness differences at corresponding locations were determined through CT/MRI scans. We examined the correlation between alpha and skull thickness asymmetry using Kruskal-Wallis, Spearman correlation, and median regression. RESULTS: We examined 401 EEGs and images, categorizing patients into three groups based on alpha asymmetry. Group 1(n= 211) had less than 20 percent alpha asymmetry, Group 2(n=107) showed higher right-side alpha amplitudes, and Group 3(n= 83) displayed higher left-side alpha amplitudes. Our analysis revealed a significant association between groups with asymmetry and skull thickness differences (p<0.001), with a Spearman correlation (Rs) of -0.25 (p<0.001), indicating a significant negative correlation. After adjusting for age, sex, and handedness, Median Regression confirmed a statistically significant variation in skull thickness difference among the groups. SIGNIFICANCE: The present study involving a large cohort, the first of its kind, demonstrated a significant relationship between alpha amplitude asymmetry and skull thickness.


Subject(s)
Alpha Rhythm , Magnetic Resonance Imaging , Skull , Tomography, X-Ray Computed , Humans , Male , Female , Magnetic Resonance Imaging/methods , Skull/anatomy & histology , Skull/diagnostic imaging , Adult , Tomography, X-Ray Computed/methods , Middle Aged , Alpha Rhythm/physiology , Young Adult , Electroencephalography , Aged , Adolescent , Functional Laterality/physiology
7.
Curr Biol ; 34(5): 1048-1058.e4, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38377998

ABSTRACT

Whether prestimulus oscillatory brain activity contributes to the generation of post-stimulus-evoked neural responses has long been debated, but findings remain inconclusive. We first investigated the hypothesized relationship via EEG recordings during a perceptual task with this correlational evidence causally probed subsequently by means of online rhythmic transcranial magnetic stimulation. Both approaches revealed a close link between prestimulus individual alpha frequency (IAF) and P1 latency, with faster IAF being related to shorter latencies, best explained via phase-reset mechanisms. Moreover, prestimulus alpha amplitude predicted P3 size, best explained via additive (correlational and causal evidence) and baseline shift mechanisms (correlational evidence), each with distinct prestimulus alpha contributors. Finally, in terms of performance, faster prestimulus IAF and shorter P1 latencies were both associated with higher task accuracy, while lower prestimulus alpha amplitudes and higher P3 amplitudes were associated with higher confidence ratings. Our results are in favor of the oscillatory model of ERP genesis and modulation, shedding new light on the mechanistic relationship between prestimulus oscillations and functionally relevant evoked components.


Subject(s)
Alpha Rhythm , Transcranial Magnetic Stimulation , Transcranial Magnetic Stimulation/methods , Alpha Rhythm/physiology , Photic Stimulation , Electroencephalography/methods , Visual Perception/physiology
8.
Clin Neurophysiol ; 159: 66-74, 2024 03.
Article in English | MEDLINE | ID: mdl-38350295

ABSTRACT

OBJECTIVE: Photic driving in the human visual cortex evoked by intermittent photic stimulation is usually characterized in averaged data by an ongoing oscillation showing frequency entrainment and resonance phenomena during the course of stimulation. We challenge this view of an ongoing oscillation by analyzing unaveraged data. METHODS: 64-channel EEGs were recorded during visual stimulation with light flashes at eight stimulation frequencies between 7.8 and 23 Hz for fourteen healthy volunteers. Time-frequency analyses were performed in averaged and unaveraged data. RESULTS: While we find ongoing oscillations in the averaged data during intermittent photic stimulation, we find transient events (bursts) of activity in the unaveraged data. Both resonance and entrainment occur for the ongoing oscillations in the averaged data and the bursts in the unaveraged data. CONCLUSIONS: We argue that the continuous oscillations in the averaged signal may be composed of brief, transient bursts in single trials. Our results can also explain previously observed amplitude fluctuations in averaged photic driving data. SIGNIFICANCE: Single-trial analyses might consequently improve our understanding of resonance and entrainment phenomena in the brain.


Subject(s)
Brain , Visual Cortex , Humans , Electroencephalography , Healthy Volunteers , Vibration
9.
Psychophysiology ; 61(5): e14525, 2024 May.
Article in English | MEDLINE | ID: mdl-38234038

ABSTRACT

Ongoing brain activity preceding visual stimulation has been suggested to shape conscious perception. According to the pulsed inhibition framework, bouts of functional inhibition arise in each alpha cycle (every ~100 ms), allowing information to be processed in a pulsatile manner. Consequently, it has been hypothesized that perceptual outcome can be influenced by the specific phase of alpha oscillations prior to the stimulus onset, although empirical findings are controversial. In this study, we aimed to shed light on the role of prestimulus alpha oscillations in visual perception. To this end, we recorded electroencephalographic activity, while participants performed three near-threshold visual detection tasks with different attentional involvement: a no-cue task, a noninformative cue task (50% validity), and an informative cue task (100% validity). Cluster-based permutation statistics were complemented with Bayesian analyses to test the effect of prestimulus oscillatory amplitude and phase on visual awareness. We additionally examined whether these effects differed in trials with low and high oscillatory amplitude, as expected from the pulsed inhibition theory. Our results show a clear effect of prestimulus alpha amplitude on conscious perception, but only when alpha fluctuated spontaneously. In contrast, we did not find any evidence that prestimulus alpha phase influenced perceptual outcome, not even when differentiating between low- and high-amplitude trials. Furthermore, Bayesian analysis provided moderate evidence in favor of the absence of phase effects. Taken together, our results challenge the central theoretical predictions of the pulsed inhibition framework, at least for the particular experimental conditions used here.


Subject(s)
Electroencephalography , Visual Perception , Humans , Bayes Theorem , Visual Perception/physiology , Attention/physiology , Photic Stimulation/methods , Alpha Rhythm/physiology
10.
Brain Sci ; 14(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275517

ABSTRACT

Sleep state misperception (SSM) is a common issue in insomnia disorder (ID), causing a discrepancy between objective and subjective sleep/wake time estimation and increased daytime impairments. In this context, the hyperarousal theory assumes that sustained central nervous system activation contributes to the SSM. This study investigates factors influencing SSM during sleep latency (SL) and total sleep time (TST). Objective polysomnographic sleep variables (the alpha density index, latency-to-sleep stages and the first K-complex, and Rapid Eye Movement (REM) arousal density) and subjective sleep indices, taken from sleep diaries, were analyzed in 16 ID patients. Correlation analyses revealed a positive association between the degree of SL misperception (SLm) and the percentage of epochs that contained a visually scored stereotyped alpha rhythm during objective SL. A regression analysis showed that the REM arousal density and alpha density index significantly predicted TST misperception (TSTm). Furthermore, the degree of SLm was associated with an increased probability of transitioning from stage 1 of non-REM sleep to wakefulness during subjective SL. These findings support the role of hyperarousal in SSM and highlight the importance of alpha activity in unravelling the heterogeneous underpinnings of SSM.

11.
J Clin Anesth ; 93: 111343, 2024 05.
Article in English | MEDLINE | ID: mdl-37995609

ABSTRACT

BACKGROUND: Postoperative delirium (POD) is a serious complication of surgery, especially in the elderly patient population. It has been proposed that decreasing the amount of anesthetics by titrating to an EEG index will lower POD rate, but clear evidence is missing. A strong age-dependent negative correlation has been reported between the peak oscillatory frequency of alpha waves and end-tidal anesthetic concentration, with older patients generating slower alpha frequencies. We hypothesized, that slower alpha oscillations are associated with a higher rate of POD. METHOD: Retrospective analysis of patients` data from a prospective observational study in cardiac surgical patients approved by the Bernese Ethics committee. Frontal EEG was recorded during Isoflurane effect-site concentrations of 0.7 to 0.8 and peak alpha frequency was measured at highest power between 6 and 17 Hz. Delirium was assessed by chart review. Demographic and clinical characteristics were compared between POD and non-POD groups. Selection bias was addressed using nearest neighbor propensity score matching (PSM) for best balance. This incorporated 18 variables, whereas patients with missing variable information or without an alpha oscillation were excluded. RESULT: Of the 1072 patients in the original study, 828 were included, 73 with POD, 755 without. PSM allowed 328 patients into the final analysis, 67 with, 261 without POD. Before PSM, 8 variables were significantly different between POD and non-POD groups, none thereafter. Mean peak alpha frequency was significantly lower in the POD in contrast to non-POD group before and after matching (7.9 vs 8.9 Hz, 7.9 vs 8.8 Hz respectively, SD 1.3, p < 0.001). CONCLUSION: Intraoperative slower frontal peak alpha frequency is independently associated with POD after cardiac surgery and may be a simple intraoperative neurophysiological marker of a vulnerable brain for POD. Further studies are needed to investigate if there is a causal link between alpha frequency and POD.


Subject(s)
Delirium , Emergence Delirium , Humans , Aged , Emergence Delirium/diagnosis , Emergence Delirium/epidemiology , Emergence Delirium/etiology , Delirium/diagnosis , Delirium/epidemiology , Delirium/etiology , Retrospective Studies , Electroencephalography , Brain , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology
12.
Brain Topogr ; 37(3): 397-409, 2024 May.
Article in English | MEDLINE | ID: mdl-37776472

ABSTRACT

Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific neurophysiological signature previously unreported in a psychiatric population.


Subject(s)
Borderline Personality Disorder , Humans , Wakefulness , Arousal/physiology , Electroencephalography
13.
Elife ; 122023 Dec 01.
Article in English | MEDLINE | ID: mdl-38038725

ABSTRACT

Evoked responses and oscillations represent two major electrophysiological phenomena in the human brain yet the link between them remains rather obscure. Here we show how most frequently studied EEG signals: the P300-evoked response and alpha oscillations (8-12 Hz) can be linked with the baseline-shift mechanism. This mechanism states that oscillations generate evoked responses if oscillations have a non-zero mean and their amplitude is modulated by the stimulus. Therefore, the following predictions should hold: (1) the temporal evolution of P300 and alpha amplitude is similar, (2) spatial localisations of the P300 and alpha amplitude modulation overlap, (3) oscillations are non-zero mean, (4) P300 and alpha amplitude correlate with cognitive scores in a similar fashion. To validate these predictions, we analysed the data set of elderly participants (N=2230, 60-82 years old), using (a) resting-state EEG recordings to quantify the mean of oscillations, (b) the event-related data, to extract parameters of P300 and alpha rhythm amplitude envelope. We showed that P300 is indeed linked to alpha rhythm, according to all four predictions. Our results provide an unifying view on the interdependency of evoked responses and neuronal oscillations and suggest that P300, at least partly, is generated by the modulation of alpha oscillations.


Subject(s)
Alpha Rhythm , Evoked Potentials, Auditory , Humans , Aged , Middle Aged , Aged, 80 and over , Evoked Potentials, Auditory/physiology , Brain/physiology , Neurons , Electroencephalography/methods
14.
Arq. neuropsiquiatr ; 81(12): 1163-1168, Dec. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1527908

ABSTRACT

Abstract More than 100 years of research have passed by and still the human electroencephalogram (EEG) remains a puzzle to be solved. Starting from his studies on plethysmography until his theories on brain thermodynamics, Hans Berger was able to refine his method of recording cortical signs with the apparatus at his disposal in an ordinary neuropsychiatric yard towards an early account of human EEG. This review is an appraisal of his contribution to the field of modern neurophysiology.


Resumo Mais de 100 anos se passaram e o eletroencefalograma humano (EEG) continua sendo um enigma a ser desvendado. A partir de seus estudos sobre pletismografia até suas teorias sobre termodinâmica cerebral, Hans Berger conseguiu refinar seu método de registro da atividade elétrica cortical com os equipamentos a sua disposição em uma ala psiquiátrica comum produzindo uma descrição acurada do EEG humano. Esta revisão é um breve resumo de sua contribuição para o campo da neurofisiologia moderna.

15.
Front Neurosci ; 17: 1224479, 2023.
Article in English | MEDLINE | ID: mdl-38027496

ABSTRACT

Introduction: Auditory change detection is a pre-attentive cortical auditory processing ability. Many neurological and psychological disorders can lead to defects in this process. Some studies have shown that phase synchronization may be related to auditory discrimination. However, the specific contributions of phase synchronization at different frequencies remain unclear. Methods: We analyzed the electroencephalogram (EEG) data of 29 healthy adults using an oddball paradigm consisting of a standard stimulus and five deviant stimuli with varying frequency modulation patterns, including midpoint frequency transitions and linear frequency modulation. We then compared the peak amplitude and latency of inter-trial phase coherence (ITC) at the theta(θ), alpha(α), and beta(ß) frequencies, as well as the N1 component, and their relationships with stimulus changes. At the same time, the characteristics of inter-trial phase coherence in response to the pure tone stimulation and chirp sound with a fine time-frequency structure were also assessed. Result: When the stimulus frequency did not change relative to the standard stimulus, the peak latency of phase coherence at ß and α frequencies was consistent with that of the N1 component. The inter-trial phase coherence at ß frequency (ß-ITC)served as a faster indicator for detecting frequency transition when the stimulus frequency was changed relative to the standard stimulus. ß-ITC demonstrates temporal stability when detecting pure sinusoidal tones and their frequency changes, and is less susceptible to interference from other neural activities. The phase coherence at θ frequency could integrate the frequency and temporal characteristics of deviant into a single representation, which can be compared with the memory trace formed by the standard stimulus, thus effectively identifying auditory changes. Pure sinusoidal tone stimulation could induce higher inter-trial phase coherence in a smaller time window, but chirp sounds with a fine time-frequency structure required longer latencies to achieve phase coherence. Conclusion: Phase coherence at theta, alpha, and beta frequencies are all involved in auditory change detection, but play different roles in this automatic process. Complex time-frequency modulated stimuli require longer processing time for effective change detection.

16.
J Pharmacopuncture ; 26(3): 276-284, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37799615

ABSTRACT

Objectives: Previous studies have shown that anger can lead to frontal lobe α (8-13 Hz) band asymmetry (FAA) in electroencephalogram (EEG), in accordance with motivational direction. This pilot study aimed to investigate the impact of acupuncture on FAA elicited by anger. Methods: Thirty-four right-handed participants scoring above 75 points on the Novaco Anger Scale were included. Baseline EEG signals were recorded for eight minutes using a 32-channel cap under comfortable conditions. Anger was induced through a nine-minute sequence of Articulated Thoughts in Simulated Situations (ATSS) task. Following that, participants received acupuncture at GB20 and GB21 for 10 minutes. Fast Fourier transform was employed for frequency analysis, and repeated measure ANOVA was conducted for statistical analysis. Results: The results revealed that participants exhibited significantly higher FAA (p = 0.026), particularly in the left hemisphere, after the ATSS task sequence compared to the baseline. During acupuncture treatment, the greater left-sided FAA was significantly reduced (p = 0.027) and reversed. Upon the cessation of acupuncture, FAA returned to a value between the baseline and the anger-evoked stage (p = 0.046). Conclusion: The EEG results of this study revealed that anger stimulation induced an increase in left-sided FAA, which was effectively alleviated by acupuncture. This led to an immediate restoration of FAA asymmetry induced by anger. These findings suggest the potential of acupuncture as a treatment option for reducing FAA associated with anger.

17.
J Appl Biomed ; 21(3): 113-120, 2023 09.
Article in English | MEDLINE | ID: mdl-37747311

ABSTRACT

PURPOSE: This study investigated EEG alpha rhythm spectral power in children with Specific Language Impairment (SLI) and compared it to typically developing children to better understand the electrophysiological characteristics of this disorder. Specifically, we explored resting-state EEG, because there are studies that point to it being linked to speech and language development. METHODS: EEG recordings of 30 children diagnosed with specific language impairment and 30 typically developing children, aged 4.0-6.11 years, were carried out under eyes closed and eyes open conditions. Differences in alpha rhythm spectral power in relation to brain topography and experimental conditions were calculated. RESULTS: In the eyes closed condition, alpha rhythm spectral power was statistically significantly lower in children with specific language impairment in the left temporal (T5) and occipital electrodes (O1, O2) than in typically developing children. In the eyes open condition, children with SLI showed significantly lower alpha rhythm spectral power in the left temporal (T3, T5), parietal (P3, Pz), and occipital electrodes (O1, O2). There were no statistically significant differences between the groups in relation to the relative change (the difference between average alpha rhythm spectral power during eyes closed condition and average alpha rhythm spectral power during eyes open condition divided by average alpha rhythm spectral power during eyes closed condition) in the alpha rhythm spectral power between the conditions. CONCLUSION: Lower alpha rhythm spectral power in the left temporal, left, midline parietal, and occipital brain regions could be a valuable electrophysiological marker in children with SLI. Further investigation is needed to examine the connection between EEG alpha spectral power and general processing and memory deficits in patients with SLI.


Subject(s)
Alpha Rhythm , Specific Language Disorder , Humans , Child , Alpha Rhythm/physiology , Cross-Sectional Studies , Electroencephalography , Brain/physiology
18.
J Neural Eng ; 20(5)2023 09 18.
Article in English | MEDLINE | ID: mdl-37683653

ABSTRACT

Objective.Neurofeedback and brain-computer interfacing technology open the exciting opportunity for establishing interactive closed-loop real-time communication with the human brain. This requires interpreting brain's rhythmic activity and generating timely feedback to the brain. Lower delay between neuronal events and the appropriate feedback increases the efficacy of such interaction. Novel more efficient approaches capable of tracking brain rhythm's phase and envelope are needed for scenarios that entail instantaneous interaction with the brain circuits.Approach.Isolating narrow-band signals incurs fundamental delays. To some extent they can be compensated using forecasting models. Given the high quality of modern time series forecasting neural networks we explored their utility for low-latency extraction of brain rhythm parameters. We tested five neural networks with conceptually distinct architectures in forecasting synthetic EEG rhythms. The strongest architecture was then trained to simultaneously filter and forecast EEG data. We compared it against the state-of-the-art techniques using synthetic and real data from 25 subjects.Main results.The temporal convolutional network (TCN) remained the strongest forecasting model that achieved in the majority of testing scenarios>90% rhythm's envelope correlation with<10 ms effective delay and<20∘circular standard deviation of phase estimates. It also remained stable enough to noise level perturbations. Trained to filter and predict the TCN outperformed the cFIR, the Kalman filter based state-space estimation technique and remained on par with the larger Conv-TasNet architecture.Significance.Here we have for the first time demonstrated the utility of the neural network approach for low-latency narrow-band filtering of brain activity signals. Our proposed approach coupled with efficient implementation enhances the effectiveness of brain-state dependent paradigms across various applications. Moreover, our framework for forecasting EEG signals holds promise for investigating the predictability of brain activity, providing valuable insights into the fundamental questions surrounding the functional organization and hierarchical information processing properties of the brain.


Subject(s)
Brain-Computer Interfaces , Neurofeedback , Humans , Brain , Cognition , Neural Networks, Computer
19.
Brain Sci ; 13(8)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37626490

ABSTRACT

Alzheimer's disease (AD) is a degenerative brain disease, and the condition is difficult to assess. In the past, numerous brain dynamics models have made remarkable contributions to neuroscience and the brain from the microcosmic to the macroscopic scale. Recently, large-scale brain dynamics models have been developed based on dual-driven multimodal neuroimaging data and neurodynamics theory. These models bridge the gap between anatomical structure and functional dynamics and have played an important role in assisting the understanding of the brain mechanism. Large-scale brain dynamics have been widely used to explain how macroscale neuroimaging biomarkers emerge from potential neuronal population level disturbances associated with AD. In this review, we describe this emerging approach to studying AD that utilizes a biophysically large-scale brain dynamics model. In particular, we focus on the application of the model to AD and discuss important directions for the future development and analysis of AD models. This will facilitate the development of virtual brain models in the field of AD diagnosis and treatment and add new opportunities for advancing clinical neuroscience.

20.
Bull Exp Biol Med ; 175(3): 295-299, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37566249

ABSTRACT

The effect of lateralized optical stimulation with a frequency of 10 Hz on the effectiveness of cognitive task performance (n-back test) was studied in 33 healthy subjects (right-handed men). Test visual information was presented to the right or left visual hemifield under normal conditions and against the background of optical stimulation with a frequency of 10 Hz. The absolute values of the spectral power of the high (10-13 Hz) subrange of alpha-rhythm of EEG (SPα2) were calculated. When test information was sent to the right hemisphere against the background of stimulation, an increase in task performance was revealed in subjects with low SPα2. This was accompanied by an increase in SPα2 in some cortical areas of the contralateral (left) hemisphere and, as a result, an increase in left-side dominance of SPα2. The findings indicate the possibility of using lateralized optical stimulation to improve cognitive task performance, in particular, by changing the interhemispheric asymmetry of the EEG alpha2-rhythm.


Subject(s)
Alpha Rhythm , Electroencephalography , Male , Humans , Alpha Rhythm/physiology , Photic Stimulation , Healthy Volunteers , Cognition/physiology , Functional Laterality/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...