Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 23416, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39379613

ABSTRACT

The ceramic industry produces a significant volume of ceramic waste (CW), representing around 20-30% of its the entire output. The waste mostly comes from challenges noticed in the manufacturing process, overproduction, and damage to products. Considering the substantial worldwide production of ceramics, it is crucial to efficiently handle and recycle this waste to promote sustainability efforts. This study explores the conversion of ceramic waste into fine aggregates suitable for the production of paver blocks. Currently, a variety of assessments are being conducted to determine the effectiveness of these enhanced paver blocks. The evaluations involve aspects like compressive strength, water absorption (WA), dry density, flow table measurements, ultrasonic pulse velocity (UPV), and rebound hammer tests. The results indicate that replacing natural aggregates with up to 30% CW significantly improves compressive strength (CS) and Rebound results from tests. This study provides useful information into optimising the content of CW in paver blocks, contributing to the development of sustainable and economical construction materials. Furthermore, it focusses on minimising landfill waste and preserving natural resources.

2.
Sci Rep ; 14(1): 21508, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277700

ABSTRACT

The global surge in glass waste generation, exceeding 130 million tons annually, presents a pressing environmental issue, compounded by inadequate recycling practices, it is concerning that the global recycling rate for glass waste is below 50%. This research investigates the utilization of WG as a FA substitute in paver block to mitigate the ecological footprint of conventional paver block while enhancing its mechanical properties. WG's unique characteristics, such as high silica content and impermeability, make it a promising alternative. A comprehensive experimental approach, including tests like water absorption, dry density, workability, compressive strength, ultrasonic pulse velocity, and rebound hammer, demonstrated WG's potential to improve concrete's durability and performance. For instance, a 40% WGA replacement reduced the absorption rate 12%, while 20% WGA incorporation-maintained strength properties close to the control mix, with compressive strengths up to 30.80 MPa at 28 days. Employing RSM as predictive models, the study showed R2 values of 0.9513, 0.9983, 0.9156, 0.9925, and 0.9895 for water absorption, dry density, compressive strength, ultrasonic pulse velocity, and rebound hammer, respectively. This study offers supporting global research efforts to advance sustainable and affordable construction materials, leading to a significant reduction in landfill waste and the conservation of precious natural resources worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL