Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.816
Filter
1.
J. bras. nefrol ; 46(3): e20240023, July-Sept. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558252

ABSTRACT

In the last few years, evidence from the Brazilian Registry of Bone Biopsy (REBRABO) has pointed out a high incidence of aluminum (Al) accumulation in the bones of patients with CKD under dialysis. This surprising finding does not appear to be merely a passive metal accumulation, as prospective data from REBRABO suggest that the presence of Al in bone may be independently associated with major adverse cardiovascular events. This information contrasts with the perception of epidemiologic control of this condition around the world. In this opinion paper, we discussed why the diagnosis of Al accumulation in bone is not reported in other parts of the world. We also discuss a range of possibilities to understand why bone Al accumulation still occurs, not as a classical syndrome with systemic signs of intoxication, as occurred it has in the past.


Nos últimos anos, evidências do Registro Brasileiro de Biópsia óssea (REBRABO) apontaram uma alta incidência de intoxicação por alumínio (Al) no tecido ósseo de pacientes com DRC em diálise. Essa surpreendente informação parece representar não apenas um acúmulo passivo deste metal, visto que dados prospectivos do REBRABO sugerem que a presença de Al no tecido ósseo pode estar independentemente relacionada a eventos cardiovasculares adversos maiores. Essas informações contrastam com a percepção mundial do controle epidemiológico dessa condição. Neste artigo de opinião, discutimos por que o diagnóstico de acúmulo ósseo de Al não é relatado em outras partes do mundo, e também discutimos uma gama de possibilidades para entender por que nós acreditamos que o acúmulo de Al no tecido ósseo ainda ocorre, não como se apresentava no passado, ou seja, como uma síndrome com sinais e sintomas sistêmicos de intoxicação.

2.
Article in English | MEDLINE | ID: mdl-38946070

ABSTRACT

Xenon (Xe) is a commercially valuable element found in trace amounts in the off-gas from used nuclear fuel. Recovering Xe from these streams provides a cost-effective means to increase its supply. However, achieving high-purity Xe recovery is challenging due to the need for separation from nearly identical krypton (Kr). Metal-organic frameworks (MOFs), a class of crystalline porous materials, show potential to separate Xe and Kr by utilizing differences in their kinetic diameters, allowing for selective separation. In this work, we study the impact of pore aperture and volume on selective Xe recovery using four robust aluminum MOFs: Al-PMOF, Al-PyrMOF, Al-BMOF and MIL-120, all with conserved structural topology. The pore topology in each MOF is dictated by the dimensions of the tetracarboxylate ligand employed, with larger ligands leading to MOFs with increased pore size and volume. Our experimental and computational investigations revealed that MIL-120 exhibits the highest affinity (21.94 kH(Xe) = 21.94 mmol g-1 bar-1) for Xe among all MOFs, while Al-BMOF demonstrates the highest Xe/Kr selectivity of 14.34. We evaluated the potential of both MIL-120 and Al-BMOF for Xe recovery through breakthrough analysis using a mixture of 400 ppm Xe:40 ppm Kr. Our results indicate that due to its larger pore volume, Al-BMOF captured more Xe than MIL-120, demonstrating superior Xe/Kr separation efficiency.

3.
J Environ Manage ; 365: 121600, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963957

ABSTRACT

Electrolytic manganese residue (EMR) is known for high concentrations of Mn2+, NH4+, and heavy metals. Failure to undergo benign treatment and landfill disposal would undeniably lead to negative impacts on the quality of the surrounding ecological environment. This study sought to mitigate the latent environmental risks associated with EMR using a cooperative solidification/stabilization (S/S) method involving coal fly ash (CFA). Leveraging leaching toxicity tests, the leaching behavior of pollutants in electrolytic manganese residue-based geopolymer materials (EMRGM) was determined. At the same time, mechanistic insights into S/S processes were explored utilizing characterization techniques such as XRF, XRD, FT-IR, SEM-EDS, and XPS. Those results confirmed significant reductions in the leaching toxicities of Mn2+ and NH4+ to 4.64 µg/L and 0.99 mg/L, respectively, with all other heavy metal ions falling within the permissible limits set by relevant standards. Further analysis shows that most of NH4+ volatilizes into the air as NH3, and a small part is fixed in the EMRGM in the form of struvite; in addition to being oxidized to MnOOH and MnO2, Mn2+ will also be adsorbed and wrapped by silicon-aluminum gel together with other heavy metal elements in the form of ions or precipitation. This research undeniably provides a solid theoretical foundation for the benign treatment and resourceful utilization of EMR and CFA, two prominent industrial solid wastes.

4.
Nanotechnology ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964311

ABSTRACT

Carbon nanotubes (CNTs) and their composites are gaining popularity due to their exceptional strength qualities. It is well known that adding carbon nanotubes to metal foam composites boosts compressive strength. On the other hand CNT addition is still a costly process due to high cost of the CNTs. This study presents a novel and cost-effective solution by selectively adding CNTs to the structurally weakest regions of aluminum foam materials produced via powder metallurgy, employing a newly developed focused multi-step additive method. The cell borders of aluminum foam are strengthened with multiple spherical layers of CNTs, using a transfer method by initially coating the space holders used at the foaming process. The strength increase effect of this CNT addition method was compared with the widely known aluminum foam production parameters via a 4-parameter design of experiment (DOE) study. Compressive strength values of the samples were evaluated using a constant speed compression test acc. to ISO13314. The compacting pressure, CNT concentration, sintering temperature, and sintering period were chosen as design of experiment parameters, and 78% of the interactions effecting on final compressive strength could be explained with the model. As a result, it was established that, compared to the other parameters, sintering duration had the highest influence on compressive strength. But besides It has also been shown that adding 0.53% CNT by weight only to the cell border regions increases overall strength by 9%. This weight-strength increase ratio is compared with similar studies in the literature and found to be providing a production cost advantage due to the lower amount of CNT addition requirement for the comparable weight relative strength increase. Focused strength increase method has potential to enable controlled failure of foam materials by selectively strengthening strength critical areas of a component.

5.
Lasers Med Sci ; 39(1): 167, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954050

ABSTRACT

Nowadays, lasers are used in various medical fields. Ophthalmology was the first medical specialty to utilize lasers in patient treatment and still remains the leading medical field that uses laser energy for both therapeutic and diagnostic purposes. The neodymium: yttrium-aluminum-garnet (Nd: YAG) laser is one of the most common lasers used in ophthalmology. It is a solid-state laser with a wavelength of 1064 nm that works on the principle of photodisruption. Since its introduction in ophthalmology over 40 years ago, it has found various applications, mainly for procedures where cutting or disruption of ocular tissue is required. Compared to surgical alternatives, the use of Nd: YAG lasers on ocular tissue is minimally invasive. In this review, we focus on the two most common ophthalmic applications of Nd: YAG laser - laser peripheral iridotomy and posterior capsulotomy. The history of the techniques, current trends, potential complications, and the prognosis for future use is discussed.


Subject(s)
Lasers, Solid-State , Humans , Lasers, Solid-State/therapeutic use , Laser Therapy/methods , Laser Therapy/instrumentation , Posterior Capsulotomy/methods , Iridectomy/methods , Ophthalmology , Iris/surgery
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124726, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38950477

ABSTRACT

Industrial waste contaimnation of water sources is a serious environmental problem. As a result, it's critical to identify metallic contamination in water with precision, sensitivity, and accuracy. In acetonitrile, the fluorimetric parameters of N,N-'bis(2,5-dihydroxybenzylidene)-4,4'-diamino diphenyl ether (DHDPE) and aluminum complex were determined. In the acetonitrile medium, the best fluorescence intensity of the DHDPE-Al complex was observed at λex = 280 nm, λem = 391 nm (excitation and emission wavelengths). For optimum complex formation, the ideal pH, duration, and temperature were 4.5, 20 min, and 25 °C, respectively. Within the ranges of 0.027-0.27 and 0.27-2.70 ppm aluminum concentrations, [Al3+]-F.I. Calibration graphs were linear. The fluorimetric aluminum measurement method was applied to diverse water sources using the newly synthesized macro molecular Schiff base DHDPE as the ligand. The aluminum concentration in water inflow to KOSKI (Konya Water and Sewerage Administration) was doubled as a result of the examination when compared to other samples of water.

7.
Calcif Tissue Int ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951179

ABSTRACT

This systematic review was performed to understand better the myriad presentations, various therapeutic options, response to therapy, and its clinical outcomes in hyperphosphatemic tumoral calcinosis (HTC). Full texts were selected according to strict inclusion criteria. All case reports of HTC wherein baseline phosphate was measured, treatment offered was mentioned, and information on follow-up and response to therapy that were available were included. A total of 43 of 188 eligible studies (N = 63 patients) met the inclusion criteria. A list of desired data was extracted and graded for methodological quality. A total of 63 individuals (Males = 33) were included from the 43 eligible case studies. The median age of the patients was 18 (IQR 8-32) years. The most frequently involved sites were the hip/gluteal region (34/63; 53.9%) followed by the elbow/forearm (26/63; 41.2%), and the shoulder (18/63; 28.5%). Three patients had conjunctival calcific deposits. The mean (SD) phosphate was 6.9 (1.1) mg/dL. Among the subjects, 36/63 (57.1%) underwent surgical excision with some form of medical therapy. Two patients underwent only surgical excision (2.1%). One patient was maintained on follow-up (1.6%) and 24/63 (38.1%) patients were treated with medical measures. The median (IQR) follow-up duration was 3 (1-9) years. Regression or reduction in lesion size was reported in 19/63 (30.2%) subjects; 20/63 (31.7%) showed progression, 24/63 (38.1%) had features of stable disease, and mortality was reported in 3 patients (4.7%). We report for the first time a detailed description of the clinical and therapeutic response of HTC. A combination of medical measures aimed at lowering serum phosphate appears to be the cornerstone of treatment, although clinical responses may vary.

8.
Article in English | MEDLINE | ID: mdl-38951394

ABSTRACT

Aluminum electrolyte is a necessity for aluminum reduction cells; however, its stock is rising every year due to several factors, resulting in the accumulation of solid waste. Currently, it has become a favorable material for the resources of lithium, potassium, and fluoride. In this study, the calcification roasting-two-stage leaching process was introduced to extract lithium and potassium separately from aluminum electrolyte wastes, and the fluoride in the form of CaF2 was recycled. The separation behaviors of lithium and potassium under different conditions were investigated systematically. XRD and SEM-EDS were used to elucidate the phase evolution of the whole process. During calcification roasting-water leaching, the extraction efficiency of potassium was 98.7% under the most suitable roasting parameters, at which the lithium extraction efficiency was 6.6%. The mechanism analysis indicates that CaO combines with fluoride to form CaF2, while Li-containing and K-containing fluorides were transformed into water-insoluble LiAlO2 phase and water-soluble KAlO2 phase, respectively, thereby achieving the separation of two elements by water leaching. In the second acid-leaching stage, the extraction efficiency of lithium was 98.8% from water-leached residue under the most suitable leaching conditions, and CaF2 was obtained with a purity of 98.1%. The present process can provide an environmentally friendly and promising method to recycle aluminum electrolyte wastes and achieve resource utilization.

9.
Toxicology ; : 153874, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955312

ABSTRACT

During the manufacture and use of aluminium (aluminum), inhalation exposure may occur. We reviewed the pulmonary toxicity of this metal including its toxicokinetics. The normal serum/plasma level based on 17 studies was 5.7 ± 7.7µg Al/L (mean ± SD). The normal urine level based on 15 studies was 7.7 ± 5.3µg/L. Bodily fluid and tissue levels during occupational exposure are also provided, and the urine level was increased in aluminium welders (43 ± 33µg/L) based on 7 studies. Some studies demonstrated that aluminium from occupational exposure can remain in the body for years. Excretion pathways include urine and faeces. Toxicity studies were mostly on aluminium flakes, aluminium oxide and aluminium chlorohydrate as well as on mixed exposure, e.g. in aluminium smelters. Endpoints affected by pulmonary aluminium exposure include body weight, lung function, lung fibrosis, pulmonary inflammation and neurotoxicity. In men exposed to aluminium oxide particles (3.2µm) for two hours, lowest observed adverse effect concentration (LOAEC) was 4mg Al2O3/m3 (= 2.1mg Al/m3), based on increased neutrophils in sputum. With the note that a similar but not statistically significant increase was seen during control exposure. In animal studies LOAECs start at 0.3mg Al/m3. In intratracheal instillation studies, all done with aluminium oxide and mainly nanomaterials, lowest observed adverse effect levels (LOAELs) started at 1.3mg Al/kg body weight (bw) (except one study with a LOAEL of ~0.1mg Al/kg bw). The collected data provide information regarding hazard identification and characterisation of pulmonary exposure to aluminium.

10.
J Cutan Pathol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923071

ABSTRACT

The potential adverse health effects of antiperspirant use are of interest to patients, primary care providers, dermatologists, and pathologists. In rare instances, antiperspirants containing aluminum-zirconium complexes have been associated with granulomatous dermatoses despite being deemed non-sensitizing in experiments. In this case study, we present a detailed examination of an axillary granuloma in a 28-year-old female who had been using an aluminum-zirconium-based antiperspirant for several years and presented with a left axillary nodule that was excised and analyzed using scanning electron microscopy with energy-dispersive x-ray analysis (SEM/EDXA). Histopathological examination revealed a foreign body-type reaction with amphophilic granular material within giant cells that corresponded to collocated zirconium and aluminum on SEM/EDXA elemental maps. Our case adds to the limited reports of axillary granulomas related to aluminum-zirconium complexes. It illustrates the histopathological appearance and in situ distribution of the aluminum-zirconium complexes, supporting the formation of foreign body-type granulomas. Additionally, our case study illustrates the potential role of these compounds in such reactions and aims to increase awareness among pathologists and clinicians.

11.
Small Methods ; : e2400707, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38923411

ABSTRACT

For N-type tunnel-oxide-passivated-contact silicon solar cells, optimal Ag/Al-Si contact interface is crucial to improve the efficiency. However, the specific roles of Ag and Al at the interface have not been clearly elucidated. Hence, this work delves into the sintering process of Ag/Al paste and examines the impact of the Ag/Al-Si interface structure on contact quality. By incorporating TeO2 into PbO-based Ag/Al paste, the Ag/Al-Si interface structure can be modulated. It can be found that TeO2 accelerates the sintering of Ag powder and increases Ag colloids within glass layer, while it simultaneously impedes the diffusion of molten Al. It leads to a reduced Al content near the Ag/Al-Si interface and a shorter diffusion distance of Al into Si. Notably, it can be demonstrated that the diffusion of Al in Si layer is more effective to reduce the contact resistance than the precipitation of Ag colloids. Therefore, the PbO-based Ag/Al paste, which favors Al diffusion, leads to solar cells with lower contact resistance and series resistance, higher fill factor, and superior photoelectric conversion efficiency. In brief, this work is significant for optimizing metallization of silicon solar cells and other semiconductor devices.

12.
Vaccines (Basel) ; 12(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38932338

ABSTRACT

Introducing new recombinant protein antigens to existing pediatric combination vaccines is important in improving coverage and affordability, especially in low- and middle-income countries (LMICs). This case-study highlights the analytical and formulation challenges encountered with three recombinant non-replicating rotavirus vaccine (NRRV) antigens (t-NRRV formulated with Alhydrogel® adjuvant, AH) combined with a mock multidose formulation of a pediatric pentavalent vaccine used in LMICs. This complex formulation contained (1) vaccine antigens (i.e., whole-cell pertussis (wP), diphtheria (D), tetanus (T), Haemophilus influenza (Hib), and hepatitis B (HepB), (2) a mixture of aluminum-salt adjuvants (AH and Adju-Phos®, AP), and (3) a preservative (thimerosal, TH). Selective, stability-indicating competitive immunoassays were developed to monitor binding of specific mAbs to each antigen, except wP which required the setup of a mouse immunogenicity assay. Simple mixing led to the desorption of t-NRRV antigens from AH and increased degradation during storage. These deleterious effects were caused by specific antigens, AP, and TH. An AH-only pentavalent formulation mitigated t-NRRV antigen desorption; however, the Hib antigen displayed previously reported AH-induced instability. The same rank-ordering of t-NRRV antigen stability (P[8] > P[4] > P[6]) was observed in mock pentavalent formulations and with various preservatives. The lessons learned are discussed to enable future multidose, combination vaccine formulation development with new vaccine candidates.

13.
Vaccines (Basel) ; 12(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932410

ABSTRACT

Particulate aluminum salts have long occupied a central place worldwide as inexpensive immunostimulatory adjuvants that enable induction of protective immunity for vaccines. Despite their huge benefits and safety, the particulate structures of aluminum salts require transportation and storage at temperatures between 2 °C and 8 °C, and they all have exquisite sensitivity to damage caused by freezing. Here, we propose to solve the critical freezing vulnerability of particulate aluminum salt adjuvants by introducing soluble aluminum salts as adjuvants. The solubility properties of fresh and frozen aluminum chloride and aluminum triacetate, each buffered optimally with sodium acetate, were demonstrated with visual observations and with UV-vis scattering analyses. Two proteins, A244 gp120 and CRM197, adjuvanted either with soluble aluminum chloride or soluble aluminum triacetate, each buffered by sodium acetate at pH 6.5-7.4, elicited murine immune responses that were equivalent to those obtained with Alhydrogel®, a commercial particulate aluminum hydroxide adjuvant. The discovery of the adjuvanticity of soluble aluminum salts might require the creation of a new adjuvant mechanism for aluminum salts in general. However, soluble aluminum salts might provide a practical substitute for particulate aluminum salts as vaccine adjuvants, thereby avoiding the risk of inactivation of vaccines due to accidental freezing of aluminum salt particles.

14.
Article in English | MEDLINE | ID: mdl-38941589

ABSTRACT

Titanium (Ti) is widely used as anode current collectors in proton exchange membrane (PEM)-based water electrolyzers due to its self-passivated oxide layer, which protects it from corrosion in acidic solutions. However, the cost of the material and machining process for Ti is high. A wider utilization of water electrolyzers to produce hydrogen could be favored by the use of less expensive coated aluminum (Al) substrates, which could potentially replace high-cost Ti-based components. It is shown here by depositing a pinhole-free oxygen vacancy-rich titanium oxide (TiOx) protection layer by atomic layer deposition (ALD), the corrosion resistance of Al substrates in acidic environments at oxygen evolution potentials can be enhanced. The optimization of the oxygen vacancy concentration is accomplished by tuning the ALD parameters to achieve ideal stoichiometry and conformal coating on rough substrates. The robustness of the coatings was evaluated at high potentials (2.4 V vs NHE = normal hydrogen electrode) in low pH conditions. A low TiOx dissolution rate of the order of ∼6 nm year-1 was observed. By testing under industrially relevant conditions, i.e., high applied voltages (2.4 V) and low pH, an Al loss at around the zero ppb level was achieved using optimized ALD parameters. It is proposed that a 40 nm TiOx coating on Al may be adequate to provide 60,000 h of durability in a PEM water electrolyzer anode current collector.

15.
J Colloid Interface Sci ; 674: 445-458, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38941937

ABSTRACT

Aluminum hypophosphite (AHP) has been used as a flame retardant for a long time. Previous studies about AHP employed in flame retardant materials mostly focus on coating, modification, and complex system. It is valuable to explore simple experimental steps to prepare nano hybrids with AHP and metal-organic frameworks (MOFs). We found acidic substances could etch zeolitic imidazolate framework-67 (ZIF-67) to obtain MOF derivatives. Unfortunately, AHP and ZIF-67 could not directly form a hybrid. Therefore, carboxymethylcellulose (CMC) is introduced as a dual function layer (buffer and support). The CMC resists the complete conversion of ZIF-67 etched by phosphoric acid to amorphous cobalt phosphate hydrate (ACP). Meanwhile, CMC containing hydroxyl groups combines with AHP through electrostatic interaction and coordination bonds. A double-layer hollow MOF derivative is synthesized through this one-stone-two-birds strategy. Due to multiple flame retardant elements and unique nanostructure, this MOF derivative endows epoxy (EP) resin with excellent flame retardancy. With 2.0 wt% addition, the peak heat release rate (pHRR) and total heat release (THR) of EP/AHP/ACP@CMC are decreased by 47.8 and 21.0 %, respectively. This study proposes a novel scheme that converts AHP into MOF derivatives as high-performance FRs.

16.
Nanomaterials (Basel) ; 14(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921908

ABSTRACT

Anionic carboxylated cellulose nanofibers (CNF) are effective media to remove cationic contaminants from water. In this study, sustainable cationic CNF-based adsorbents capable of removing anionic contaminants were demonstrated using a simple approach. Specifically, the zero-waste nitro-oxidization process was used to produce carboxylated CNF (NOCNF), which was subsequently converted into a cationic scaffold by crosslinking with aluminum ions. The system, termed Al-CNF, is found to be effective for the removal of fluoride ions from water. Using the Langmuir isotherm model, the fluoride adsorption study indicates that Al-CNF has a maximum adsorption capacity of 43.3 mg/g, which is significantly higher than that of alumina-based adsorbents such as activated alumina (16.3 mg/g). The selectivity of fluoride adsorption in the presence of other anionic species (nitrate or sulfate) by Al-CNF at different pH values was also evaluated. The results indicate that Al-CNF can maintain a relatively high selectivity towards the adsorption of fluoride. Finally, the sequential applicability of using spent Al-CNF after the fluoride adsorption to further remove cationic contaminant such as Basic Red 2 dye was demonstrated. The low cost and relatively high adsorption capacity of Al-CNF make it suitable for practical applications in fluoride removal from water.

17.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928379

ABSTRACT

Stylo (Stylosanthes spp.) is an important pasture legume with strong aluminum (Al) resistance. However, the molecular mechanisms underlying its Al tolerance remain fragmentary. Due to the incomplete genome sequence information of stylo, we first conducted full-length transcriptome sequencing for stylo root tips treated with and without Al and identified three Snakin/GASA genes, namely, SgSnakin1, SgSnakin2, and SgSnakin3. Through quantitative RT-PCR, we found that only SgSnakin1 was significantly upregulated by Al treatments in stylo root tips. Histochemical localization assays further verified the Al-enhanced expression of SgSnakin1 in stylo root tips. Subcellular localization in both tobacco and onion epidermis cells showed that SgSnakin1 localized to the cell wall. Overexpression of SgSnakin1 conferred Al tolerance in transgenic Arabidopsis, as reflected by higher relative root growth and cell vitality, as well as lower Al concentration in the roots of transgenic plants. Additionally, overexpression of SgSnakin1 increased the activities of SOD and POD and decreased the levels of O2·- and H2O2 in transgenic Arabidopsis in response to Al stress. These findings indicate that SgSnakin1 may function in Al resistance by enhancing the scavenging of reactive oxygen species through the regulation of antioxidant enzyme activities.


Subject(s)
Aluminum , Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Reactive Oxygen Species , Aluminum/toxicity , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Fabaceae/metabolism , Fabaceae/genetics , Fabaceae/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Hydrogen Peroxide/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects
18.
Materials (Basel) ; 17(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930175

ABSTRACT

Among the different types of phase change materials, paraffin is known to be the most widely used type due to its advantages. However, paraffin's low thermal conductivity, its limited operating temperature range, and leakage and stabilization problems are the main barriers to its use in applications. In this research, a thermal energy storage unit (TESU) was designed using a cylindrical macroencapsulation technique to minimize these problems. Experimental and numerical analyses of the storage unit using a tubular heat exchanger were carried out. The Ansys 18.2-Fluent software was used for the numerical analysis. Two types of paraffins with different thermophysical properties were used in the TESU, including both encapsulated and non-encapsulated forms, and their thermal energy storage performances were compared. The influence of the heat transfer fluid (HTF) inlet conditions on the charging performance (melting) was investigated. The findings demonstrated that the heat transfer rate is highly influenced by the HTF intake temperature. When the effect of paraffin encapsulation on heat transfer was examined, a significant decrease in the total melting time was observed as the heat transfer surface and thermal conductivity increased. Therefore, the energy stored simultaneously increased by 60.5% with the encapsulation of paraffin-1 (melting temperature range of 52.9-60.4 °C) and by 50.7% with the encapsulation of paraffin-2 (melting temperature range of 32.2-46.1 °C), thus increasing the charging rate.

19.
Materials (Basel) ; 17(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38930307

ABSTRACT

Aluminum technical alloys are well known for their outstanding mechanical properties, especially after heat treatment. However, quenching and aging, which improve the mechanical properties, by the formation of Cu-rich zones and phases that are coherent with the matrix and block the dislocation motion, cause uneven distribution of the elements in the alloy and consequently make it prone to corrosion. One method providing satisfactory corrosion protection of aluminum alloys is anodizing. On an industrial scale, it is usually carried out in electrolytes containing chromates that were found to be cancerogenic and toxic. Therefore, much effort has been undertaken to find substitutions. Currently, there are many Cr(VI)-free substitutes like tartaric-sulfuric acid anodizing or citric-sulfuric acid anodizing. Despite using such approaches even on the industrial scale, Cr(VI)-based anodizing still seems to be superior; therefore, there is an urge to find more complex but more effective approaches in anodizing. The incorporation of anions into anodic alumina from the electrolytes is a commonly known effect. Researchers used this phenomenon to entrap various other anions and organic compounds into anodic alumina to change their properties. In this review paper, the impact of the incorporation of various corrosion inhibitors into anodic alumina on the corrosion performance of the alloys is discussed. It is shown that Mo compounds are promising, especially when combined with organic acids.

20.
Materials (Basel) ; 17(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930338

ABSTRACT

The 2024 aluminum alloy is one of the high-quality lightweight materials. Friction stir welding (FSW) has shown advantages in reducing welding defects and improving welding quality in 2024 aluminum alloys. Currently, the research regarding FSW joint corrosion performance is mainly about the joint without plastic deformation. However, FSW joints often need to be formed into complex shapes by plastic deformation. The influence of plastic deformation on the corrosion performance of FSW joints is the focus of scientific research. To address this problem, the effect of high-temperature deformation on the mechanical properties and corrosion behavior of 2024 aluminum alloy joints was researched. The exfoliation corrosion test, scanning electron microscopy, energy-dispersive spectroscopy, and transmission electron microscopy were employed to analyze the corrosion mechanism and microstructure. The results show that high-temperature deformation of the weld nugget zone greatly affects the mechanical properties and corrosion behavior of the FSW joint. Compared with the 0% deformation specimen, the hardness and tensile strength of the 20% deformation FSW joint increased by 32% and 21%, respectively. The FSW joint with 20% deformation shows the best mechanical properties and corrosion resistance. The number of precipitated S' phases of the FSW joint increases when the deformation increases to 20%, and the shape of the S' phase is a regular round particle shape. The dislocation density of the FSW joint increases continuously during deformation, which provides a favorable nucleation location for the S' phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...