Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.870
Filter
1.
J. bras. nefrol ; 46(3): e20240023, July-Sept. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558252

ABSTRACT

In the last few years, evidence from the Brazilian Registry of Bone Biopsy (REBRABO) has pointed out a high incidence of aluminum (Al) accumulation in the bones of patients with CKD under dialysis. This surprising finding does not appear to be merely a passive metal accumulation, as prospective data from REBRABO suggest that the presence of Al in bone may be independently associated with major adverse cardiovascular events. This information contrasts with the perception of epidemiologic control of this condition around the world. In this opinion paper, we discussed why the diagnosis of Al accumulation in bone is not reported in other parts of the world. We also discuss a range of possibilities to understand why bone Al accumulation still occurs, not as a classical syndrome with systemic signs of intoxication, as occurred it has in the past.


Nos últimos anos, evidências do Registro Brasileiro de Biópsia óssea (REBRABO) apontaram uma alta incidência de intoxicação por alumínio (Al) no tecido ósseo de pacientes com DRC em diálise. Essa surpreendente informação parece representar não apenas um acúmulo passivo deste metal, visto que dados prospectivos do REBRABO sugerem que a presença de Al no tecido ósseo pode estar independentemente relacionada a eventos cardiovasculares adversos maiores. Essas informações contrastam com a percepção mundial do controle epidemiológico dessa condição. Neste artigo de opinião, discutimos por que o diagnóstico de acúmulo ósseo de Al não é relatado em outras partes do mundo, e também discutimos uma gama de possibilidades para entender por que nós acreditamos que o acúmulo de Al no tecido ósseo ainda ocorre, não como se apresentava no passado, ou seja, como uma síndrome com sinais e sintomas sistêmicos de intoxicação.

2.
Article in English | MEDLINE | ID: mdl-39082222

ABSTRACT

The capability to reliably program partial polarization states with nanosecond programming speed and femtojoule energies per bit in ferroelectrics makes them an ideal candidate to realize multibit memory elements for high-density crossbar arrays, which could enable neural network models with a large number of parameters at the edge. However, a thorough understanding of the domain switching dynamics involved in the polarization reversal is required to achieve full control of the multibit capability. Transient current integration measurements are adopted to investigate the domain dynamics in aluminum scandium nitride (Al0.85Sc0.15N) and hafnium zirconium oxide (Hf0.5Zr0.5O2). The switching dynamics are correlated to the crystal structure of the films. The contributions of domain nucleation and domain wall motion are decoupled by analyzing the rate of change of the time-dependent normalized switched polarization. Thermally activated creep domain wall motion characterizes the Al0.85Sc0.15N switching dynamics. The statistics of independently nucleating domains and the domain wall creep motion in Hf0.5Zr0.5O2 are associated with the spatially inhomogeneous distribution of local switching field due to polymorphism, absence of preferential crystallite orientation, as well as defects and charges that can be located at the grain boundaries. The c-axis texture, single-phase nature, and strong likelihood of less fabrication process-induced defects contribute to the homogeneity of the local switching field in Al0.85Sc0.15N. Nonetheless, defects generated and redistributed upon bipolar electric field switching cycling result in Al0.85Sc0.15N domain wall pinning. The wake-up effect in Hf0.5Zr0.5O2 is explained thorough the continuous addition of switchable regions associated with two independent distributions of characteristic switching times.

3.
Front Immunol ; 15: 1386590, 2024.
Article in English | MEDLINE | ID: mdl-39076984

ABSTRACT

Aluminum hydroxide has long been employed as a vaccine adjuvant for its safety profile, although its precise mechanism of action remains elusive. In this study, we investigated the transcriptomic responses in sheep spleen following repetitive vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. Notably, this work represents the first exploration of the sheep spleen transcriptome in such conditions. Animals were splitted in 3 treatment groups: vaccine group, adjuvant alone group and control group. A total of 18 high-depth RNA-seq libraries were sequenced, resulting in a rich dataset which also allowed isoform-level analysis. The comparisons between vaccine-treated and control groups (V vs C) as well as between vaccine-treated and adjuvant-alone groups (V vs A) revealed significant alterations in gene expression profiles, including protein coding genes and long non-coding RNAs. Among the differentially expressed genes, many were associated with processes such as endoplasmic reticulum (ER) stress, immune response and cell cycle. The analysis of co-expression modules further indicated a correlation between vaccine treatment and genes related to ER stress and unfolded protein response. Surprisingly, adjuvant-alone treatment had little impact on the spleen transcriptome. Additionally, the role of alternative splicing in the immune response was explored. We identified isoform switches in genes associated with immune regulation and inflammation, potentially influencing protein function. In conclusion, this study provides valuable insights into the transcriptomic changes in sheep spleen following vaccination with aluminum adjuvanted vaccines and aluminum hydroxide alone. These findings shed light on the molecular mechanisms underlying vaccine-induced immune responses and emphasize the significance of antigenic components in aluminum adjuvant mechanism of action. Furthermore, the analysis of alternative splicing revealed an additional layer of complexity in the immune response to vaccination in a livestock species.


Subject(s)
Adjuvants, Immunologic , Spleen , Transcriptome , Vaccination , Animals , Spleen/immunology , Spleen/metabolism , Sheep , Gene Expression Profiling , Vaccines/immunology , Aluminum Hydroxide/immunology , Alternative Splicing
4.
Article in English | MEDLINE | ID: mdl-39080170

ABSTRACT

Different dyes are discharged into water streams, causing significant pollution to the entire ecosystem. The present work deals with the removal of acid red 2 dye (methyl red-as an anionic dye) by green sorbents based on chitosan derivatization. In this regard, two classes of chitosan derivatives-a total of six-were prepared by gamma irradiation at 30 kGy. The first group (group A) constitutes a crosslinked chitosan/polyacrylamide/aluminum oxide with different feed ratios, while the second group, identified as group B, is composed of crosslinked carboxymethyl chitosan/polyacrylamide/aluminum oxide with different ratios. Glycerol was added to soften the resultant hydrogels. The products were characterized by different tools, including FTIR for confirming the chemical modification, TGA for investigating their thermal properties, and XRD for verifying their crystalline structure. The morphology of the prepared derivatives was studied through SEM, while their topography before and after dye adsorption was monitored via the AFM. The removal efficiencies of the prepared sorbents were verified at different operation conditions, such as pH, temperature, adsorbent dose, initial concentration of dye solutions, and contact time. The data revealed that the optimum conditions for maximum dye uptake were as follows: pH 4, contact time 120 min, 0.1-g sorbent dose, and 50-ppm dye concentration. Additionally, the prepared sorbents demonstrated potent adsorption capacity and removal efficiency. It was found that the elements of the second group displayed higher performance than their counterparts. The data showed also that the adsorption process best fits with the Freundlich model and obeyed pseudo-first-order kinetic isotherm. In addition, the synthesized composites showed observable antibacterial potency toward E. coli as a Gram-negative bacterium and S. aureus as a Gram-positive bacterium.

5.
Materials (Basel) ; 17(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39063704

ABSTRACT

Isobam is widely used for fabricating ceramics through spontaneous gelation and has attracted considerable interest. However, the disadvantage of the Isobam system is the low gelation strength. The effects of suitable additives and the mechanism by which they effectively enhance the green body strength and the rheological behavior of an aluminum nitride (AlN) slurry with 50 vol% solid loading were investigated using polyethyleneimine (PEI), hydantoin epoxy resin, and trimethylolpropane triglycidyl ether (TMPGE). Results showed that the additives acted as both dispersants and cross-linkers in the AlN suspension using the Isobam gelling system. The flexural strength of the AlN green body increased by 42%, 204%, and 268% with the addition of 1 wt% PEI, 1 wt% hydantoin epoxy resin, and 0.5 wt% TMPGE, respectively. After sintering at 1700 °C, the AlN ceramic with 0.5 wt% TMPGE had flexural strength and thermal conductivity of 235 MPa and 166.44 W/(m·K), respectively, showing superior performance to the ceramics without additives.

6.
Materials (Basel) ; 17(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39063718

ABSTRACT

Yttrium aluminum garnet (YAG)-based optical fiber is one of the research hotspots in the field of fiber lasers due to its combined advantages of a wide doping range of rare earth ions and the high mechanical strength of YAG material, as well as the flexibility and small size of the fiber structure. YAG-based optical fibers and related laser devices can be used in communication, sensing, medicine, etc. A comprehensive review of YAG-based optical fibers is provided in this paper. Firstly, the fabrication processes of YAG-based optical fibers are summarized and the structure and properties of fibers are classified and compared. Secondly, according to the optical wavelength regions, rare earth-doped YAG-based optical fibers for the applications of single-frequency and mode-locked fiber lasers are summarized. Lastly, the development challenges in both the fabrication and applications of YAG-based optical fibers are discussed.

7.
Materials (Basel) ; 17(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39063736

ABSTRACT

The growing use of aluminum and its compounds has increased the volume of aluminum waste. To mitigate environmental impacts and cut down on manufacturing expenses, extensive investigations have recently been undertaken to recycle aluminum compounds. This paper outlines the outcomes of a study on fabricating standard EN AW-2007 alloy using industrial and secondary scrap through continuous casting. The resultant recycled bars were analyzed for their chemical makeup and examined for microstructural features in both the cast and T4 states, undergoing mechanical property evaluations. The study identified several phases in the cast form through LM, SEM + EDS, and XRD techniques: Al7Cu2Fe, θ-Al2Cu, ß-Mg2Si, Q-Al4Cu2Mg8Si7, and α-Al15(FeMn)3 (SiCu)2, along with Pb particles. Most primary intermetallic precipitates such as θ-Al2Cu, ß-Mg2Si, and Q-Al4Cu2Mg8Si7 dissolved into the α-Al solid solution during the solution heat treatment. In the subsequent natural aging process, the θ-Al2Cu phase predominantly emerged as a finely dispersed hardening phase. The peak hardness achieved in the EN AW-2007 alloy was 124.8 HB, following a solution heat treatment at 500 °C and aging at 25 °C for 80 h. The static tensile test assessed the mechanical and ductility properties of the EN AW-2007 alloy in both the cast and T4 heat-treated states. Superior strength parameters were achieved after solution heat treatment at 500 °C for 6 h, followed by water quenching and natural aging at 25 °C/9 h, with a tensile strength of 435.0 MPa, a yield strength of 240.5 MPa, and an appreciable elongation of 18.1% at break. The findings demonstrate the feasibility of producing defect-free EN AW-2007 alloy ingots with excellent mechanical properties from recycled scrap using the continuous casting technique.

8.
Materials (Basel) ; 17(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39063739

ABSTRACT

The focus of this study was the investigation of how the total pressure of reactants and ammonia flow rate influence the growth morphology of aluminum-gallium nitride layers crystallized by Halide Vapor Phase Epitaxy. It was established how these two critical parameters change the supersaturation levels of gallium and aluminum in the growth zone, and subsequently the morphology of the produced layers. A halide vapor phase epitaxy reactor built in-house was used, allowing for precise control over the growth conditions. Results demonstrate that both total pressure and ammonia flow rate significantly affect the nucleation and crystal growth processes which have an impact on the alloy composition, surface morphology and structural quality of aluminum-gallium nitride layers. Reducing the total pressure and adjusting the ammonia flow rate led to a notable enhancement in the homogeneity and crystallographic quality of the grown layers, along with increased aluminum incorporation. This research contributes to a deeper understanding of the growth mechanisms involved in the halide vapor phase epitaxy of aluminum-gallium nitride, and furthermore it suggests a trajectory for the optimization of growth parameters so as to obtain high-quality materials for advanced optoelectronic and electronic applications.

9.
Materials (Basel) ; 17(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39063776

ABSTRACT

Laser shock peening (LSP) is a powerful technique for improving the fatigue performance of metallic components by customizing compressive residual stresses in the desired near-surface regions. In this study, the residual stress distribution characteristics of 6061-T6 aluminum alloy induced by LSP were identified by the X-ray diffraction method, and their dependent factors (i.e., LSP coverage, LSP energy, and scanning path) were evaluated quantitatively by numerical simulations, exploring the formation mechanism of LSP residual stresses and the key role factor of the distribution characteristics. The results show that LSP is capable of creating anisotropic compressive residual stresses on the specimen surface without visible deformation. Compressive residual stresses are positively correlated with LSP coverage. The greater the coverage, the higher the residual stress, but the longer the scanning time required. Raising LSP energy contributes to compressive residual stresses, but excessive energy may lead to a reduction in the surface compressive residual stress. More importantly, the anisotropy of residual stresses was thoroughly explored, identifying the scanning path as the key to causing the anisotropy. The present work provides scientific guidance for efficiently tailoring LSP-induced compressive residual stresses to improve component fatigue life.

10.
Materials (Basel) ; 17(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063815

ABSTRACT

Microbial contamination in aircraft fuel-containing systems poses significant threats to flight safety and operational integrity as a result of microbiologically influenced corrosion (MIC). Regular monitoring for microbial contamination in these fuel systems is essential for mitigating MIC risks. However, the frequency of monitoring remains a challenge due to the complex environmental conditions encountered in fuel systems. To investigate the impact of environmental variables such as water content, oxygen levels, and temperature on the MIC of aluminum alloy in aircraft fuel systems, orthogonal experiments with various combinations of these variables were conducted in the presence of sulfate-reducing bacteria. Among these variables, water content in the fuel oil demonstrated the most substantial influence on the corrosion rate of aluminum alloys, surpassing the effects of oxygen and temperature. Notably, the corrosion rate of aluminum alloys was the highest in an environment characterized by a 1:1 water/oil ratio, 0% oxygen, and a temperature of 35 °C. Within this challenging environment, conducive to accelerated corrosion, changes in the corrosion behavior of aluminum alloys over time were analyzed to identify the time point at which MIC intensified. Observations revealed a marked increase in the depth and width of corrosion pits, as well as in the corrosion weight-loss rate, starting from the 7th day. These findings offer valuable insights for determining the optimal frequency of microbial contamination detection in aircraft fuel systems.

11.
Materials (Basel) ; 17(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063851

ABSTRACT

Laser-based direct energy deposition (DED-LB/M) has been a promising option for the surface repair of structural aluminum alloys due to the advantages it offers, including a small heat-affected zone, high forming accuracy, and adjustable deposition materials. However, the unequal powder particle size during powder-based DED-LB/M can cause unstable flow and an uneven material flow rate per unit of time, resulting in defects such as pores, uneven deposition layers, and cracks. This paper presents a multiscale, multiphysics numerical model to investigate the underlying mechanism during the powder-based DED-LB/M surface repair process. First, the worn surfaces of aluminum alloy components with different flaw shapes and sizes were characterized and modeled. The fluid flow of the molten pool during material deposition on the worn surfaces was then investigated using a model that coupled the mesoscale discrete element method (DEM) and the finite volume method (FVM). The effect of flaw size and powder supply quantity on the evolution of the molten pool temperature, morphology, and dynamics was evaluated. The rapid heat transfer and variation in thermal stress during the multilayer DED-LB/M process were further illustrated using a macroscale thermomechanical model. The maximum stress was observed and compared with the yield stress of the adopted material, and no relative sliding was observed between deposited layers and substrate components.

12.
Materials (Basel) ; 17(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063855

ABSTRACT

Due to the intricate and volatile nature of the service environment surrounding prestressing anchoring materials, stress corrosion poses a significant challenge to the sustained stability of underground reinforcement systems. Consequently, it is imperative to identify effective countermeasures against stress corrosion failure in cable bolts within deep underground environments, thereby ensuring the safety of deep resource extraction processes. In this study, the influence of various coatings on the stress corrosion resistance of cable bolts was meticulously examined and evaluated using specifically designed stress-corrosion-testing systems. The specimens were subjected to loading using four-point bending frames and exposed to simulated underground corrosive environments. A detailed analysis and comparison of the failure patterns and mechanisms of specimens coated with different materials were conducted through the meticulous observation of fractographic features. The results revealed stark differences in the stress corrosion behavior of coated and uncoated bolts. Notably, epoxy coatings and chlorinated rubber coatings exhibited superior anti-corrosion capabilities. Conversely, galvanized layers demonstrated the weakest effect due to their sacrificial anti-corrosion mechanism. Furthermore, the effectiveness of the coatings was found to be closely linked to the curing agent and additives used. The findings provide valuable insights for the design and selection of coatings that can enhance the durability and reliability of cable bolts in deep underground environments.

13.
Materials (Basel) ; 17(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063903

ABSTRACT

Addressing the issue that the Bayer process is not suitable for low-grade bauxite, carbochlorination was proposed to recover aluminum and silicon from low-grade bauxite. This study focused on the behavior of aluminum and silicon during the carbochlorination process of low-grade bauxite. The impact of various process parameters on the chlorination efficiency was investigated, and the chlorination mechanism and kinetics of aluminum and silicon chlorination in bauxite were analyzed and discussed. Under optimal experimental conditions, the chlorination efficiency of Al2O3 and SiO2 reached 94.93% and 86.32%, respectively. The carbochlorination of aluminum and silicon in bauxite adhered to a shrinking, unreacted core model governed by gas diffusion within the product layer. This process can be bifurcated into two stages. Additionally, calculations were conducted to determine the apparent activation energy and reaction order of the chlorination processes involving Al2O3 and SiO2. Examining the chlorination mechanism revealed that the bauxite carbochlorination encompasses transformations among various minerals. Notably, the aluminum component prefers to participate in the carbothermal chlorination reaction over silicon.

14.
Micromachines (Basel) ; 15(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39064400

ABSTRACT

This paper address the performance optimization of the battery heat sink module by analyzing the lattice structure of the battery heat sink module through in-depth modeling and simulation, and combining the laser powder bed fusion (LPBF)-forming technology with mechanical and corrosion resistance experiments for a comprehensive study. It is found that the introduction of the lattice skeleton significantly improves the thermal conductivity of the phase change material (PCM), realizing the efficient distribution and fast transfer of heat in the system. At the same time, the lattice skeleton makes the heat distribution in the heat exchanger more uniform, improves the utilization rate of the PCM, and helps to maintain the stability of the cell temperature. In addition, the melting of PCM in the lattice heat exchanger is more uniform, thus maximizing its latent heat capacity. In summary, by optimizing the lattice structure and introducing the lattice skeleton, this study successfully improves the performance of the battery heat dissipation system, which provides a strong guarantee for the high efficiency and stable operation of the battery, and provides new ideas and references for the development of the battery heat dissipation technology.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124726, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38950477

ABSTRACT

Industrial waste contaimnation of water sources is a serious environmental problem. As a result, it's critical to identify metallic contamination in water with precision, sensitivity, and accuracy. In acetonitrile, the fluorimetric parameters of N,N-'bis(2,5-dihydroxybenzylidene)-4,4'-diamino diphenyl ether (DHDPE) and aluminum complex were determined. In the acetonitrile medium, the best fluorescence intensity of the DHDPE-Al complex was observed at λex = 280 nm, λem = 391 nm (excitation and emission wavelengths). For optimum complex formation, the ideal pH, duration, and temperature were 4.5, 20 min, and 25 °C, respectively. Within the ranges of 0.027-0.27 and 0.27-2.70 ppm aluminum concentrations, [Al3+]-F.I. Calibration graphs were linear. The fluorimetric aluminum measurement method was applied to diverse water sources using the newly synthesized macro molecular Schiff base DHDPE as the ligand. The aluminum concentration in water inflow to KOSKI (Konya Water and Sewerage Administration) was doubled as a result of the examination when compared to other samples of water.

16.
Calcif Tissue Int ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951179

ABSTRACT

This systematic review was performed to understand better the myriad presentations, various therapeutic options, response to therapy, and its clinical outcomes in hyperphosphatemic tumoral calcinosis (HTC). Full texts were selected according to strict inclusion criteria. All case reports of HTC wherein baseline phosphate was measured, treatment offered was mentioned, and information on follow-up and response to therapy that were available were included. A total of 43 of 188 eligible studies (N = 63 patients) met the inclusion criteria. A list of desired data was extracted and graded for methodological quality. A total of 63 individuals (Males = 33) were included from the 43 eligible case studies. The median age of the patients was 18 (IQR 8-32) years. The most frequently involved sites were the hip/gluteal region (34/63; 53.9%) followed by the elbow/forearm (26/63; 41.2%), and the shoulder (18/63; 28.5%). Three patients had conjunctival calcific deposits. The mean (SD) phosphate was 6.9 (1.1) mg/dL. Among the subjects, 36/63 (57.1%) underwent surgical excision with some form of medical therapy. Two patients underwent only surgical excision (2.1%). One patient was maintained on follow-up (1.6%) and 24/63 (38.1%) patients were treated with medical measures. The median (IQR) follow-up duration was 3 (1-9) years. Regression or reduction in lesion size was reported in 19/63 (30.2%) subjects; 20/63 (31.7%) showed progression, 24/63 (38.1%) had features of stable disease, and mortality was reported in 3 patients (4.7%). We report for the first time a detailed description of the clinical and therapeutic response of HTC. A combination of medical measures aimed at lowering serum phosphate appears to be the cornerstone of treatment, although clinical responses may vary.

17.
Lasers Med Sci ; 39(1): 167, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954050

ABSTRACT

Nowadays, lasers are used in various medical fields. Ophthalmology was the first medical specialty to utilize lasers in patient treatment and still remains the leading medical field that uses laser energy for both therapeutic and diagnostic purposes. The neodymium: yttrium-aluminum-garnet (Nd: YAG) laser is one of the most common lasers used in ophthalmology. It is a solid-state laser with a wavelength of 1064 nm that works on the principle of photodisruption. Since its introduction in ophthalmology over 40 years ago, it has found various applications, mainly for procedures where cutting or disruption of ocular tissue is required. Compared to surgical alternatives, the use of Nd: YAG lasers on ocular tissue is minimally invasive. In this review, we focus on the two most common ophthalmic applications of Nd: YAG laser - laser peripheral iridotomy and posterior capsulotomy. The history of the techniques, current trends, potential complications, and the prognosis for future use is discussed.


Subject(s)
Lasers, Solid-State , Humans , Lasers, Solid-State/therapeutic use , Laser Therapy/methods , Laser Therapy/instrumentation , Posterior Capsulotomy/methods , Iridectomy/methods , Ophthalmology , Iris/surgery
18.
Heliyon ; 10(12): e33038, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39027442

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is the main bacterial cause of diarrhea in weaned piglets. Baicalin-aluminum (BA) complex is the main active ingredient of Scutellaria baicalensis Georgi extracted-aluminum complex, which has been used to treat diarrhea in weaning piglets, however the underlying mechanism remains unclear. To investigate the effects of the BA complex on the regulation of porcine intestinal epithelial (IPEC-1) cells infected with ETEC, IPEC-1 cells were incubated with an ETEC bacterial strain at a multiplicity of infection of 1 for 6 h and then treated with different concentrations of the BA complex for 6 h. ETEC infection increased the levels of cAMP and cGMP, upregulated CFTR (cystic fibrosis transmembrane conductance regulator) mRNA, and downregulated NHE4 mRNA in IPEC-1 cells. Treatment with the BA complex inhibited ETEC adhesion and the production of cAMP and cGMP, reduced CFTR mRNA expression, and increased NHE4 mRNA expression. Overall, the BA complex weakened the adhesion of ETEC to IPEC-1 cells, and inhibited cAMP/cGMP-CFTR signaling in IPEC-1 cells.

19.
Cureus ; 16(6): e63021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39050311

ABSTRACT

In this report, we present the case of a 20-year-old male with childhood-onset hyperhidrosis affecting his fingers and palm flexor surfaces. Dermatological examination revealed café-au-lait macules, palm and sole involvement, and axillary freckling. A starch-iodine test confirmed localized sweating. Neuroimaging identified neurofibromatosis type 1 (NF1) with subcutaneous nodules and dural ectasia in the thoracic spine. The patient was diagnosed with hyperhidrosis and NF1 based on diagnostic criteria, and he responded well to 20% aluminum chloride for treatment of hyperhidrosis. This case represents a unique occurrence of hyperhidrosis with NF1 in Saudi Arabia. Comprehensive evaluation, including systemic assessment, radiology, and starch-iodine testing, aids in diagnosis and understanding of the underlying mechanisms of this disorder, which remains unexplained.

20.
J Colloid Interface Sci ; 676: 715-725, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39059278

ABSTRACT

Organic molecular electrode materials are promising candidates in batteries. However, direct application of small molecule materials usually suffers from drastic capacity decay and inefficient utilization of active materials because of their high solubility in organic electrolytes and low electrical conductivity. Herein, a simple strategy is found to address the above issues through coating the small-molecule organic materials on a commercialized carbon-coated aluminum foil (CCAF) as the enhanced electrode. Both the experimental and calculation results confirm that the relatively rough carbon coating on the aluminum foil not only exhibits superior adsorption capacity of small-molecule organic electrode materials with a tight contact interface but also provides continuous electronic conduction channels for the facilitated charge transfer and accelerated reaction kinetics. In addition, the carbon coating also inhibits Al corrosion in electrochemical process. As a result, by using the tetrahydroxy quinone-fused aza-phenazine (THQAP) molecule as an example, the THQAP-CCAF electrode exhibits an excellent rate performance with a high capacity of 220 and 180 mAh g-1 at 0.1 and 2 A/g, respectively, and also a remarkable cyclability with a capacity retention of 77.3% even after 1700 cycles in sodium-ion batteries. These performances are much more superior than that of batteries with the THQAP on bare aluminum foil (THQAP-AF). This work provides a substantial step in the practical application of the small-molecule organic electrode materials for future sustainable batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...