Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.753
Filter
1.
Nano Lett ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990690

ABSTRACT

Environmentally friendly InP-based quantum dots (QDs) are promising for light-emitting diodes (LEDs) and display applications. So far, the synthesis of highly emitting InP-based QDs via safe and economically viable amine-phosphine remains a challenge. Herein, we report the synthesis of amine-phosphine based InP/ZnSe/ZnS QDs by introducing an alloyed oxidation-free In-ZnSe transition layer (TL) at the core-shell interface. The TL not only has the essential function of preventing oxidation of the core and relieving interfacial strain but also results in oriented epitaxial growth of shell. The alloyed TL significantly mitigates the nonradiative recombination at core-shell interfacial trap states, thereby boosting the photoluminescence (PL) efficiency of the QDs up to 98%. Also, the Auger recombination is suppressed, extending the biexciton lifetime from 60 to 100 ps. The electroluminescence device based on the InP-based QDs shows a high external quantum efficiency over 10%, further demonstrating high quality QDs synthesized by this process.

2.
N Biotechnol ; 83: 46-55, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960020

ABSTRACT

Process intensification is crucial for industrial implementation of biocatalysis and can be achieved by continuous process operation in miniaturized reactors with efficiently immobilized biocatalysts, enabling their long-term use. Due to their extremely large surface-to-volume ratio, nanomaterials are promising supports for enzyme immobilization. In this work, different functionalized nanofibrous nonwoven membranes were embedded in a two-plate microreactor to enable immobilization of hexahistidine (His6)-tagged amine transaminases (ATAs) in flow. A membrane coated with Cu2+ ions gave the best results regarding His6-tagged ATAs immobilization among the membranes tested yielding an immobilization yield of up to 95.3 % for the purified N-His6-ATA-wt enzyme. Moreover, an efficient one-step enzyme immobilization process from overproduced enzyme in Escherichia coli cell lysate was developed and yielded enzyme loads up to 1088 U mL-1. High enzyme loads resulted in up to 80 % yields of acetophenone produced from 40 mM (S)-α-methylbenzylamine in less than 4 min using a continuously operated microreactor. Up to 81 % of the initial activity was maintained in a 5-day continuous microreactor operation with immobilized His6-tagged ATA constructs. The highest turnover number within the indicated time was 7.23·106, which indicates that this immobilization approach using advanced material and reactor system is highly relevant for industrial implementation.

3.
Environ Technol ; : 1-15, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972301

ABSTRACT

Carbon capture and storage (CCS) is crucial in mitigating greenhouse gas emissions. Solid adsorbents, notable for their reusability and corrosion resistance, are gaining attention in CO2 gas separation. This study uses Silica fume as an adsorbent and silica source for SiO2 and MCM-41 silica-based adsorbents. Silica was extracted via an alkaline dissolution method, and adsorbents were synthesized using a CO2-induced precipitation method, chosen for its shorter synthesis time and CO2 utilization. The effects of pore volume, average pore diameter, and specific surface area on amine loading and CO2 adsorption capacity were investigated using CTAB surfactant in SiO2 synthesis, resulting in MCM-41. The synthesized adsorbents were modified with TEPA and DEA amines due to their high affinity for CO2. After determining optimal amine loading, the impact of combining TEPA with DEA was examined. The highest CO2 adsorption capacity under simulated flue gas conditions (15% volume CO2 and 85% volume N2) was 198 milligrams per gram of adsorbent for the SiO2 adsorbent functionalized with 50% by weight amine (28% TEPA and 22% DEA). Variations in CO2 adsorption over time, the influence of adsorbent quantity on adsorption capacity, the affinity of the adsorbent for N2 adsorption, and the adsorption-desorption cycle were investigated. The 28%TEPA-22%DEA-SiO2 adsorbent emerged as the optimal choice due to its large total volume and average pore diameter, absence of a template in its structure, excellent performance in CO2 adsorption, lack of affinity for N2, and robust adsorption-desorption stability.

4.
Food Chem ; 458: 140169, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38968713

ABSTRACT

This study was aimed to investigate the effectiveness of activated carbon on reduction in biogenic amines (BAs) via two-stage adsorption process at industrial scale, and the consequent effect was evaluated by the taste and aroma of anchovy fish sauce. Through reaction surface methodology, the optimal working paratmeters were determined to adsorbent composition of 2% activated carbon and 0.9% diatomite under temperature of 27 °C for 97 min. Upon optimized settings at industrial scale, there were effective reductions in tryptamine (by 100%), cadaverine (by 10%), histamine (by 61%), and tyramine (by 96%), while the changes in taste-related amino nitrogen, total nitrogen, free amino acids, and color were minimum. In addition, off-flavor-causing compounds, such as alcohols and acids, were removed by the developed method. From the obtained results, the activated carbon-based two-stage adsorption approach can provide the framework for control of BAs contents in fish-based sauces or stocks at commercial and industrial scales.

5.
Angew Chem Int Ed Engl ; : e202410483, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953245

ABSTRACT

Compared to modifications at the molecular periphery, skeletal adjustments present greater challenges. Within this context, skeletal rearrangement technology stands out for its significant advantages in rapidly achieving structural diversity. Yet, the development of this technology for ring contraction of saturated cyclic amines remains exceedingly rare. While most existing methods rely on specific substitution patterns to achieve ring contraction, there is a persistent demand for a more general strategy for substitution-free cyclic amines. To address this issue, we report a B(C6F5)3-catalyzed skeletal rearrangement of hydroxylamines with hydrosilanes. This methodology, when combined with the N-hydroxylation of amines, enables the regioselective ring contraction of cyclic amines and proves equally effective for rapid reorganization of acyclic amine skeletons. By this, the direct scaffold hopping of drug molecules and the strategic deletion of carbon atoms are achieved in a mild manner. Based on mechanistic experiments and density functional theory calculations, a possible mechanism for this process is proposed.

6.
Angew Chem Int Ed Engl ; : e202407970, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962950

ABSTRACT

Combining simple amines with the bench-stable sulfinylamine Tr-NSO allows in situ preparation of reactive alkyl sulfinylamines, which when combined with alkyl radicals generated by photocatalytic decarboxylation, provides N-alkyl sulfinamides. The reactions are broad in scope and tolerate a wide variety of functional groups on both the acid and amine components. The sulfinamide products are used to prepare a selection of challenging S(VI) products. The method provides a convenient way to use reactive and unstable alkyl sulfinylamines.

7.
Sci Rep ; 14(1): 15441, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965246

ABSTRACT

A very practical method for the synthesis of unsymmetrical carbamide derivatives in good to excellent yield was presented, without the need for any catalyst and at room temperature. Using a facile and robust protocol, fifteen unsymmetrical carbamide derivatives (9-23) bearing different aliphatic amine moieties were designed and synthesized by the reaction of secondary aliphatic amines with isocyanate derivatives in the presence of acetonitrile as an appropriate solvent in good to excellent yields. Trusted instruments like IR, mass spectrometry, NMR spectra, and elemental analyses were employed to validate the purity and chemical structures of the synthesized compounds. All the synthesized compounds were tested as antimicrobial agents against some clinically bacterial pathogens such as Salmonella typhimurium, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compounds 15, 16, 17, 19 and 22 showed potent antimicrobial activity with promising MIC values compared to the positive controls. Moreover, compounds 15 and 22 provide a potent lipid peroxidation (LPO) of the bacterial cell wall. On the other hand, we investigated the anti-proliferative activity of compounds 9-23 against selected human cancerous cell lines of breast (MCF-7), colon (HCT-116), and lung (A549) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and pro-apoptotic protein markers. The results of MTT assay revealed that compounds 10, 13, 21, 22 and 23 possessed highly cytotoxic effects. Out of these, three synthesized compounds 13, 21 and 22 showed cytotoxicity with IC50 values (13, IC50 = 62.4 ± 0.128 and 22, IC50 = 91.6 ± 0.112 µM, respectively, on MCF-7), (13, IC50 = 43.5 ± 0.15 and 21, IC50 = 38.5 ± 0.17 µM, respectively, on HCT-116). Cell cycle and apoptosis/necrosis assays demonstrated that compounds 13 and 22 induced S and G2/M phase cell cycle arrest in MCF-7 cells, while only compound 13 had this effect on HCT-116 cells. Furthermore, compound 13 exhibited the greatest potency in inducing apoptosis in both cell lines compared to compounds 21 and 22. Docking studies indicated that compounds 10, 13, 21 and 23 could potentially inhibit enzymes and exert promising antimicrobial effects, as evidenced by their lower binding energies and various types of interactions observed at the active sites of key enzymes such as Sterol 14-demethylase of C. albicans, Dihydropteroate synthase of S. aureus, LasR of P. aeruginosa, Glucosamine-6-phosphate synthase of K. pneumenia and Gyrase B of B. subtilis. Moreover, 13, 21, and 22 demonstrated minimal binding energy and favorable affinity towards the active pocket of anticancer receptor proteins, including CDK2, EGFR, Erα, Topoisomerase II and VEGFFR. Physicochemical properties, drug-likeness, and ADME (absorption, distribution, metabolism, excretion, and toxicity) parameters of the selected compounds were also computed.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Microbial Sensitivity Tests , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Cell Line, Tumor , Apoptosis/drug effects , Green Chemistry Technology/methods , Cell Proliferation/drug effects , Candida albicans/drug effects , Molecular Docking Simulation , MCF-7 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Bacteria/drug effects , Pseudomonas aeruginosa/drug effects
8.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 738-741, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38974162

ABSTRACT

This study presents the synthesis, characterization and Hirshfeld surface analysis of a small organic ammonium salt, C2H7BrN+·Br-. Small cations like the one in the title compound are considered promising components of hybrid perovskites, crucial for optoelectronic and photovoltaic applications. While the incorporation of this organic cation into various hybrid perovskite structures has been explored, its halide salt counterpart remains largely uninvestigated. The obtained structural results are valuable for the synthesis and phase analysis of hybrid perovskites. The title compound crystallizes in the solvent-free form in the centrosymmetric monoclinic space group P21/c, featuring one organic cation and one bromide anion in its asymmetric unit, with a torsion angle of -64.8 (2)° between the ammonium group and the bromine substituent, positioned in a gauche conformation. The crystal packing is predominantly governed by Br⋯H inter-actions, which constitute 62.6% of the overall close atom contacts.

9.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 742-745, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38974165

ABSTRACT

The title compound, [Re(C17H22N3O2S)(CO)3] is a net neutral fac-Re(I)(CO)3 complex of the 4-methyl-biphenyl sulfonamide derivatized di-ethyl-enetri-amine ligand. The NNN-donor monoanionic ligand coordinates with the Re core in tridentate fashion, establishing an inner coordination sphere resulting in a net neutral complex. The complex possesses pseudo-octa-hedral geometry where one face of the octa-hedron is occupied by three carbonyl ligands and the other faces are occupied by one sp 2 nitro-gen atom of the sulfonamide group and two sp 3 nitro-gen atoms of the dien backbone. The Re-Nsp 2 bond distance, 2.173 (4) Å, is shorter than the Re-Nsp 3 bond distances, 2.217 (5) and 2.228 (6) Å, and is similar to the range reported for typical Re-Nsp 2 bond lengths (2.14 to 2.18 Å).

10.
Front Bioeng Biotechnol ; 12: 1390513, 2024.
Article in English | MEDLINE | ID: mdl-38978720

ABSTRACT

UV-stabilizers are a class of additives that provide extended polymer resistance to UV-degradation, but have also been suggested to have antimicrobial activity, potentially preventing the spread of pathogens, and inhibiting microbial-induced biodegradation. In this work, we incorporated different UV-stabilizers, a hindered amine light stabilizer (HALS), Tinuvin 770 DF and Tinuvin PA 123, or a hybrid HALS/UV-absorber, Tinuvin 5151, in polyurethane formulations to produce lacquer-films, and tested their antimicrobial activity against Staphylococcus aureus (methicillin-resistant and -sensitive strains), Escherichia coli and Candida albicans. Lacquer-films incorporated with Tinuvin 770 DF showed strong antimicrobial performance against bacteria and fungi, while maintaining cytocompatibility. The mechanism of action revealed a positive relationship between Tinuvin 770 DF concentration, microbial death, and reactive nitrogen species (RNS), suggesting that RNS produced during autoxidation of Tinuvin 770 DF is responsible for the antimicrobial properties of this UV-stabilizer. Conversely, lacquer-films incorporated with Tinuvin 5151 or Tinuvin PA 123 exhibited no antimicrobial properties. Collectively, these results highlight the commercial potential of Tinuvin 770 DF to prevent photo- and biodegradation of polymers, while also inhibiting the spread of potentially harmful pathogens. Furthermore, we provide a better understanding of the mechanism underlying the biocidal activity of HALS associated to autooxidation of the amine group.

11.
Beilstein J Org Chem ; 20: 1468-1475, 2024.
Article in English | MEDLINE | ID: mdl-38978743

ABSTRACT

A catalyst- and additive-free synthesis of 2-benzyl N-substituted anilines from (E)-2-arylidene-3-cyclohexenones and primary amines has been reported. The reaction proceeds smoothly through a sequential imine condensation-isoaromatization pathway, affording a series of synthetically useful aniline derivatives in acceptable to high yields. Mild reaction conditions, no requirement of metal catalysts, operational simplicity and the potential for scale-up production are some of the highlighted advantages of this transformation.

12.
IUCrdata ; 9(Pt 6): x240489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974854

ABSTRACT

In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O} n or {[Co(dmtb)(dpa)]·0.5DMF·H2O} n (dmtb2- = 5-[(di-meth-yl-amino)-thioxometh-oxy]-1,3-benzene-dicarboxyl-ate and dpa = 4,4'-di-pyridyl-amine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)] n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octa-hedra, which are connected through the µ 2-coordination modes of both dmtb2- and dpa ligands. Occupationally disordered water and di-meth-yl-formamide (DMF) solvent mol-ecules are located in the voids of the network to which they are connected through hydrogen-bonding inter-actions.

13.
Appl Environ Microbiol ; : e0054324, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864627

ABSTRACT

In the field of chiral amine synthesis, ω-amine transaminase (ω-ATA) is one of the most established enzymes capable of asymmetric amination under optimal conditions. However, the applicability of ω-ATA toward more non-natural complex molecules remains limited due to its low transamination activity, thermostability, and narrow substrate scope. Here, by employing a combined approach of computational virtual screening strategy and combinatorial active-site saturation test/iterative saturation mutagenesis strategy, we have constructed the best variant M14C3-V5 (M14C3-V62A-V116S-E117I-L118I-V147F) with improved ω-ATA from Aspergillus terreus (AtATA) activity and thermostability toward non-natural substrate 1-acetylnaphthalene, which is the ketone precursor for producing the intermediate (R)-(+)-1-(1-naphthyl)ethylamine [(R)-NEA] of cinacalcet hydrochloride, showing activity enhancement of up to 3.4-fold compared to parent enzyme M14C3 (AtATA-F115L-M150C-H210N-M280C-V149A-L182F-L187F). The computational tools YASARA, Discovery Studio, Amber, and FoldX were applied for predicting mutation hotspots based on substrate-enzyme binding free energies and to show the possible mechanism with features related to AtATA structure, catalytic activity, and stability in silico analyses. M14C3-V5 achieved 71.8% conversion toward 50 mM 1-acetylnaphthalene in a 50 mL preparative-scale reaction for preparing (R)-NEA. Moreover, M14C3-V5 expanded the substrate scope toward aromatic ketone compounds. The generated virtual screening strategy based on the changes in binding free energies has successfully predicted the AtATA activity toward 1-acetylnaphthalene and related substrates. Together with experimental data, these approaches can serve as a gateway to explore desirable performances, expand enzyme-substrate scope, and accelerate biocatalysis.IMPORTANCEChiral amine is a crucial compound with many valuable applications. Their asymmetric synthesis employing ω-amine transaminases (ω-ATAs) is considered an attractive method. However, most ω-ATAs exhibit low activity and stability toward various non-natural substrates, which limits their industrial application. In this work, protein engineering strategy and computer-aided design are performed to evolve the activity and stability of ω-ATA from Aspergillus terreus toward non-natural substrates. After five rounds of mutations, the best variant, M14C3-V5, is obtained, showing better catalytic efficiency toward 1-acetylnaphthalene and higher thermostability than the original enzyme, M14C3. The robust combinational variant acquired displayed significant application value for pushing the asymmetric synthesis of aromatic chiral amines to a higher level.

14.
J Colloid Interface Sci ; 674: 225-237, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38936079

ABSTRACT

The rational design of Z-scheme heterojunction hybrid photocatalysts is considered a promising way to achieve high photocatalytic activity. In this study, a dual Z-scheme heterojunction with bismuth sulfide (Bi2S3) nanorods and bismuth oxide (Bi2O3) nanoparticles anchored Sulfur-doped carbon nitride (S-CN) nanotubes (Bi2S3/S-CN/Bi2O3) is designed and fabricated through the ordinal metal ion adsorption, pyrolysis, and sulfidation processes using supramolecular rods as precursor. Compared with pristine Bi2S3, Bi2O3, and CN, the dual Z-scheme tube-shaped Bi2S3/S-CN/Bi2O3 catalyst exhibited a significantly improved photocatalytic activity in amine oxidation. The optimized Bi2S3/S-CN/Bi2O3 nanostructure exhibits a 97.6 % benzylamine conversion and 99.4 % imine selectivity within 4 h under simulated solar light irradiation. The excellent activity of Bi2S3/S-CN/Bi2O3 nanotubes can be attributed to the characteristic hollow defect band structure and efficient charge separation and transfer achieved by the dual Z-scheme charge transfer mechanism, which was systematically studied using electron spin resonance spectroscopy, Kelvin probe force microscope, and other techniques. The optimized dual Z-scheme heterojunction hybrid photocatalyst maintains the high oxidizing ability of Bi2S3 and Bi2O3 and the excellent reducing ability of CN, thereby significantly enhancing the photocatalytic activity. This research provides a facile and feasible synthesis strategy for designing dual Z-scheme heterojunctions with defect band structure to improve the photocatalytic activity.

15.
Chemistry ; : e202401781, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923708

ABSTRACT

Small molecular kinase inhibitors play a key role in modern cancer therapy. Protein kinases are essential mediators in the growth and progression of cancerous tumors, rendering involved kinases an increasingly important target for therapy. However, kinase inhibitors are almost insoluble in water because of their hydrophobic aromatic nature, often lowering their availability and pharmacological efficacy. Direct drug functionalization with polar groups represents a simple strategy to improve the drug solubility, availability, and performance. Here, we present a strategy to functionalize secondary amines with oligoethylene glycol (OEG) phosphate using a one-step synthesis in three exemplary kinase inhibiting drugs Ceritinib, Crizotinib, and Palbociclib. These OEG-prodrug conjugates demonstrate superior solubility in water compared to the native drugs, with the solubility increasing up to 190-fold. The kinase inhibition potential is only slightly decreased for the conjugates compared to the native drugs. We further show pH dependent hydrolysis of the OEG-prodrugs which releases the native drug. We observe a slow release at pH 3, while the conjugates remain stable over 96 h under physiological conditions (pH 7.4). Using confocal microscopy, we verify improved cell uptake of the drug-OEG conjugates into the cytoplasm of HeLa cells, further supporting our universal solubility approach.

16.
Chemistry ; : e202402137, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924754

ABSTRACT

A supramolecular complexation approach is developed to improve the CO2 chemisorption performance of solvent-lean amine sorbents. Operando spectroscopy techniques reveal the formation of carbamic acid in the presence of a crown ether. The reaction pathway is confirmed by theoretical simulation, in which the crown ether acts as proton acceptor and shuttle to drive the formation and stabilization of carbamic acid. Improved CO2 capacity and diminished energy consumption in sorbent regeneration was achieved.

17.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930779

ABSTRACT

7-Bromo-4-chloro-1H-indazol-3-amine is a heterocyclic fragment used in the synthesis of Lenacapavir, a potent capsid inhibitor for the treatment of HIV-1 infections. In this manuscript, we describe a new approach to synthesizing 7-bromo-4-chloro-1H-indazol-3-amine from inexpensive 2,6-dichlorobenzonitrile. This synthetic method utilizes a two-step sequence including regioselective bromination and heterocycle formation with hydrazine to give the desired product in an overall isolated yield of 38-45%. The new protocol has been successfully demonstrated on hundred-gram scales without the need for column chromatography purification. This new synthesis provides a potential economical route to the large-scale production of this heterocyclic fragment of Lenacapavir.

18.
Molecules ; 29(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38930916

ABSTRACT

With the growing significance of green chemistry in organic synthesis, electrochemical oxidation has seen rapid development. Compounds undergo oxidation-reduction reactions through electron transfer at the electrode surface. This article proposes the use of electrochemical methods to achieve cleavage of the benzyl C-N bond. This method selectively oxidatively cleaves the C-N bond without the need for metal catalysts or external oxidants. Additionally, primary, secondary, and tertiary amines exhibit good adaptability under these conditions, utilizing water as the sole source of oxygen.

19.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928512

ABSTRACT

Hexaazamacrocyclic Schiff bases have been extensively combined with lanthanoid (Ln) ions to obtain complexes with a highly axial geometry. However, the use of flexible hexaazatetraamine macrocycles containing two pyridines and acyclic spacers is rather uncommon. Accordingly, we obtained [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O, where L and LMe2 are the 18-membered macrocycles 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane and 3,10-dimethyl-3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane, respectively, which contain ethylene and methylethylene spacers between their N3 moieties. [DyL(OAc)2]OAc·7H2O·EtOH represents the first crystallographically characterized lanthanoid complex of L, while [DyLMe2(Cl)2]Cl·2H2O contributes to increasing the scarce number of LnIII compounds containing LMe2. Furthermore, the crystal structure of L·12H2O was solved, and it was compared with those of other related macrocycles previously published. Likewise, the crystal structures of the DyIII complexes were compared with those of the lanthanoid and d-metal complexes of other 18-membered N6 donor macrocycles. This comparison showed some effect of the spacers employed, as well as the influence of the size of the ancillary ligands and the metal ion. Additionally, the distinct folding behaviors of these macrocycles influenced their coordination geometries. Moreover, the luminescent properties of [DyL(OAc)2]OAc·7H2O·EtOH and [DyLMe2(Cl)2]Cl·2H2O were also investigated, showing that both complexes are fluorescent, with the emission being sensitized by the ligands.


Subject(s)
Coordination Complexes , Macrocyclic Compounds , Macrocyclic Compounds/chemistry , Ligands , Coordination Complexes/chemistry , Lanthanoid Series Elements/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure
20.
Int J Hematol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896335

ABSTRACT

Autoimmune factor XIII (FXIII) deficiency (AiF13D) is a rare hemorrhagic disease. The anti-FXIII autoantibodies that cause this disease are classified into three types: type Aa inhibits the heterotetramer assembly and activation of FXIII, type Ab inhibits the enzymatic activity of activated FXIII, and type B enhances the elimination of FXIII from the blood. The former two are FXIII inhibitors and may be lethal if overlooked by conventional functional assays. To reliably detect both types of FXIII inhibitors, a new assay was developed by incorporating 5-(biotinamido)pentylamine (BAPA) into α2-plasmin inhibitor (PI-BAPA assay). This assay was tested on plasma samples from 128 participants, including 60 healthy controls, 35 patients with non-immune acquired FXIII deficiency, and 33 patients with AiF13D (29 with type Aa inhibitors and 4 with type Ab inhibitors). The PI-BAPA assay successfully detected type Aa and Ab inhibitors in 5-step dilution cross-mixing tests between patient and normal plasma. This assay also showed comparable or superior inhibition rates in the 1:1 mixing test compared to conventional ammonia release and amine incorporation assays. Receiver operating characteristic curve analysis confirmed the excellent specificity and sensitivity of this assay for determining inhibition rates, and the assay has already been used for AiF13D diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...