Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Clin Chim Acta ; 552: 117650, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37956824

ABSTRACT

Schizophrenia is a serious mental disease with unknown etiology that affects approximately 1 % of the population around the world. Altered levels of amino acid neurotransmitters may underlie the physiopathology of schizophrenia (SZ). This study aimed to develop a rapid and robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of glutamate acid (Glu), aspartic acid (Asp), γ-aminobutyric acid (GABA), glycine acid (Gly), and Taurine acid (Tau) in patients with schizophrenia plasma and establish reference intervals for Chinese adult populations, and applied to patients with schizophrenia for a preliminary exploration of changes in their plasma levels of five amino acid neurotransmitters. Sample treatment involved protein precipitation followed by dansyl chloride (DNS-Cl) derivatization and total run time is 5.8 min. The method was validated according to the latest national and international guidelines, which achieved acceptable precision (0.54-14.54 %) and accuracy (97.06-103.82 %). The reference interval for Glu, Asp, Gly, Tau, and GABA were 55.51-189.06, 27.51-92.38, 204.01-574.55, 107.50-227.65, and <1 µmol/L, respectively. Increased Tau levels and decreased Asp and Glu levels were shown in patients with schizophrenia. This method was suitable for clinical routine detection of plasma 5 amino acid neurotransmitters in Chinese adult populations.


Subject(s)
Amino Acids , Schizophrenia , Adult , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Schizophrenia/diagnosis , Neurotransmitter Agents/analysis , Neurotransmitter Agents/chemistry , gamma-Aminobutyric Acid/analysis , Glycine , China , Chromatography, High Pressure Liquid/methods
2.
Am J Clin Nutr ; 118(4): 754-762, 2023 10.
Article in English | MEDLINE | ID: mdl-37793742

ABSTRACT

BACKGROUND: Plasma amino acid neurotransmitter dysregulation is suggested to be implicated in the development of ischemic stroke, but its prognostic value for ischemic stroke remains controversial. OBJECTIVE: We aimed to prospectively investigate the associations between plasma amino acid neurotransmitters levels and adverse outcomes after ischemic stroke in a large-scale multicenter cohort study. METHODS: We measured 4 plasma amino acid neurotransmitters (glutamic acid, aspartic acid, gamma-aminobutyric acid, and glycine) among 3486 patients with ischemic stroke from 26 hospitals across China. The primary outcome is the composite outcome of death or major disability (modified Rankin Scale score ≥3) at 3 mo after ischemic stroke. RESULTS: After multivariate adjustment, the odds ratios of death or major disability for the highest versus the lowest quartile were 2.04 (95% confidence interval [CI]: 1.60,2.59; P-trend < 0.001) for glutamic acid, 2.03 (95% CI: 1.59, 2.59; P-trend < 0.001) for aspartic acid, 1.35 (95% CI: 1.06, 1.71; P-trend = 0.016) for gamma-aminobutyric acid, and 0.54 (95% CI: 0.42, 0.69; P-trend < 0.001) for glycine. Each standard deviation increment of log-transformed glutamic acid, aspartic acid, gamma-aminobutyric acid, and glycine was associated with a 34%, 34%, and 9% increased risk, and a 23% decreased risk of death or major disability, respectively (all P < 0.05), in a linear fashion as indicated by spline regression analyses (all P for linearity < 0.05). Addition of the 4 plasma amino acid neurotransmitters to conventional risk factors significantly improved the risk reclassification, as evidenced by integrated discrimination improvement and net reclassification improvement (all P < 0.05). CONCLUSIONS: Increased glutamic acid, aspartic acid, and gamma-aminobutyric acid and decreased glycine in plasma are associated with adverse outcomes after ischemic stroke, suggesting that plasma amino acid neurotransmitters may be potential intervention targets for improving prognosis of ischemic stroke. The CATIS trial was registered at clinicaltrials.gov (registration number: NCT01840072; URL: ===https://clinicaltrials.gov/ct2/show/NCT01840072?cond=NCT01840072&draw=2&rank=1).


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Aspartic Acid , Biomarkers , Cohort Studies , gamma-Aminobutyric Acid , Glutamic Acid , Glycine , Prognosis , Prospective Studies , Risk Factors
3.
Pharm Biol ; 60(1): 1790-1800, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36102587

ABSTRACT

CONTEXT: Jing-an oral liquid (JA) is a Chinese herbal formula used in the treatment of Tourette syndrome (TS); however, its mechanism is unclear. OBJECTIVE: To investigate the effects of JA on amino acid neurotransmitters and microglia activation in vivo and in vitro. MATERIALS AND METHODS: Sixty male Sprague-Dawley rats were divided into a control group and 5 TS groups. TS was induced in rats with intraperitoneal injection of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (1 mg/kg) and in BV2 cells with lipopolysaccharide. Control and model rats were administered saline, whereas treatment groups were administered JA (5.18, 10.36, or 20.72 g/kg) or tiapride (a benzamide, 23.5 mg/kg) by gavage once daily for 21 days. Stereotypic behaviour was tested. The levels of N-methyl-d-aspartate receptor (NMDAR)/mitogen-activated protein kinase/cAMP response element-binding protein (CREB)-related proteins in striatum and BV2 cells were measured via western blots. CD11b and IBa1 levels were also measured. Ultra-high-performance liquid-chromatography was used to determine γ-aminobutyric acid (GABA), glutamic acid (Glu), and aspartic acid (ASP) levels. RESULTS: JA markedly alleviated the stereotype behaviour (25.92 ± 0.35 to 13.78 ± 0.47) in rats. It also increased NMDAR1 (0.48 ± 0.09 to 0.67 ± 0.08; 0.54 ± 0.07 to 1.19 ± 0.18) expression and down-regulated the expression of p-ERK, p-JNK, p-P38, and p-CREB in BV2 cells and rat striatum. Additionally, Glu, ASP, GABA, CD11b, and IBa1 levels were significantly decreased by JA. DISCUSSION AND CONCLUSIONS: JA suppressed microglia activation and regulated the levels of amino acid neurotransmitters, indicating that it could be a promising therapeutic agent for TS.


Subject(s)
Tourette Syndrome , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Glutamic Acid , Male , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate , Tourette Syndrome/drug therapy , Tourette Syndrome/metabolism , gamma-Aminobutyric Acid
4.
Front Behav Neurosci ; 16: 869526, 2022.
Article in English | MEDLINE | ID: mdl-35874650

ABSTRACT

Background: Vagus nerve is one of the crucial routes in communication between the immune and central nervous systems. The impaired vagal nerve function may intensify peripheral inflammatory processes. This effect subsides along with prolonged recovery after permanent nerve injury. One of the results of such compensation is a normalized plasma concentration of stress hormone corticosterone - a marker of hypothalamic-pituitary-adrenal (HPA) axis activity. In this work, we strive to explain this corticosterone normalization by studying the mechanisms responsible for compensation-related neurochemical alterations in the hypothalamus. Materials and Methods: Using microarrays and high performance liquid chromatography (HPLC), we measured genome-wide gene expression and major amino acid neurotransmitters content in the hypothalamus of bilaterally vagotomized rats, 1 month after surgery. Results: Our results show that, in the long term, vagotomy affects hypothalamic amino acids concentration but not mRNA expression of tested genes. Discussion: We propose an alternative pathway of immune to CNS communication after vagotomy, leading to activation of the HPA axis, by influencing central amino acids and subsequent monoaminergic neurotransmission.

5.
Talanta ; 240: 123183, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34996017

ABSTRACT

It is of great significance to reveal the molecular distribution images in biological tissues, which has led to the bloom of mass spectrometry imaging. Unfortunately, its application is encountering the resistance of high technical barriers and equipment cost, as well as the inability to image substances that cannot be desorbed or ionized, or cannot be separated by their mass-to-charge ratios. Herein presented is a complementary and cost-effective method called capillary array electrophoresis (CAE) imaging. To have the information of molecules and their spatial location, a gridding cutter was fabricated to orderly dissect a tissue section into a leakproof array of micro wells enclosed by the grid-blade arrays. After in situ extraction and fluorophore-labeling of analytes, the samples in the wells were directly subjected to CAE-LIF (laser-induced fluorescence), and the molecular distribution images were depicted with the separated peaks. The practicability was demonstrated by CAE imaging of rat brain tissue sections with amino acid neurotransmitters (e.g., glutamine, 4-aminobutyric acid, alanine, glutamic acid and aspartic acid) as targets. The resultant images showed the global differences of molecular distributions, with a spatial resolution of 1000 µm that was presently determined by the well width but ultimately by the bore size of capillary (down to 10-50 µm). CAE imaging can hence be promising for its low cost, low technical barriers and abundant mechanisms to separate the charged and non-charged, chiral and non-chiral substances.


Subject(s)
Amino Acids , Electrophoresis, Capillary , Animals , Fluorescent Dyes , Glutamic Acid , Neurotransmitter Agents , Rats
6.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4175-4186, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34467730

ABSTRACT

Excitatory toxicity(ET) is an important factor of neuropathic pain(NPP) induced by central sensitization(CS), and the association of pannexin-1(Panx1)-Src-N-methyl-D-aspartate receptor subunit 2 B(NMDAR-2 B) is an important new pathway for ET to initiate CS. The present study confirmed whether the central analgesic effect of Chuanxiong Rhizoma extract(CRE) was achieved through the synchronous regulation of the brain and spinal pathways of Panx1-Src-NMDAR-2 B. In this study, dynamic and simulta-neo-us microdialysis of the brain and spinal cord in vivo combined with behavioristics, high performance liquid chromatography(HPLC)-fluorescence detection, microdialysis analysis(ISCUS~(flex)), ultrasensitive multifactorial electrochemiluminescence immunoassay, ELISA, and Western blot was employed to investigate the protein expression of NMDAR-2 B, Src, and Panx1, extracellular excitatory amino acids, cytokines, energy metabolites, and substance P in spinal dorsal horn(SDH) and anterior cingulate cortex(ACC) after CRE intervention with the rat model of spared sciatic nerve injury(SNI) as the experimental tool. Compared with the sham group, the SNI group exhibited diminished mechanical withdrawal threshold(MWT)(P<0.01), increased cold spray scores(P<0.01), glutamate(Glu), D-serine(D-Ser), and glycine(Gly) in extracellular fluids of ACC, and Glu, D-Ser, interleukin-1ß(IL-1ß), and lactic acid(Lac) in extracellular fluids of SDH(P<0.05), dwindled tumor necrosis factor(TNF-α)(P<0.05), and elevated protein levels of NMDAR-2 B, Src, and Panx1 in ACC(P<0.05). Compared with the SNI model rats, high-and medium-dose CRE(CRE-H/M) could potentiate the analgesic activity as revealed by the MWT test(P<0.05) and CRE-M enabled the decrease in cold spray scores(P<0.05). CRE-H/M could inhibit the levels of Glu, D-Ser and Gly in the extracellular fluids of ACC(P<0.05), and the levels of Glu in the extracellular fluids of SDH(P<0.05) in SNI rats. CRE-M significantly increased the levels of glucose(Gluc), Lac, interferon-gamma(IFN-γ), keratinocyte chemoattractant/human growth-regulated oncogenes(KC/GRO), and IL-4 in extracellular fluids of SDH in SNI rats(P<0.05). CRE-H/M/L could also inhibit the levels of NMDAR-2 B, Src and Panx1 in ACC and SDH in SNI rats(P<0.05). The central analgesic effect of CRE is presumedly related to the inhibited release of excitatory amino acid transmitters(Glu, D-Ser and Gly) in ACC and SDH of SNI rats, decreased protein expression of NMDAR-2 B, Src and Panx1 in the two regions, and the regulation of the Panx1-Src-NMDAR-2 B pathway in the spinal cord and brain. The above findings partially clarified the scientific basis of clinical analgesic effect of Chuanxiong Rhizoma.


Subject(s)
Neuralgia , Receptors, N-Methyl-D-Aspartate , Animals , Central Nervous System Sensitization , Neuralgia/drug therapy , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Spinal Cord/metabolism
7.
Amino Acids ; 53(10): 1597-1607, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34459991

ABSTRACT

Amino acid neurotransmitters are responsible for many physiological and pathological processes, and their cerebral concentrations respond to external influences such as the light-dark cycle and to the synthesis, release, and recapture rhythms and form part of the biochemical relationships derived from excitatory-inhibitory (E/I), glutamine-glutamate sum (GLX), glutamatergic processing (glutamine-glutamate ratio) and excitotoxic indexes. The changes in these variables during a 24-h period (1 day) are important because they allow organisms to adapt to external stimuli and form part of physiological processes. Under pathological conditions, the damage produced by acute events may depend on diurnal variations. Therefore, it is important to analyze the extracellular levels of amino acids as well as the above-mentioned indexes over a 24-h period. We focused on determining the cerebrospinal fluid levels of different amino acid neurotransmitters, and the E/I, GLX, glutamatergic processing and excitotoxic indexes, determined by microdialysis over a 24-h cycle. Our results showed significant changes during the 24-h light/dark cycle. Specifically, we found increments in the levels of glutamate (325%), GABA (550%), glutamine (300%), glycine (194%), alanine (304%) and the GLX index (263%) throughout the day, and the maximum levels of glutamate, glutamine, glycine, and alanine were obtained during the last period of the light period. In conclusion, the concentration of some amino acid neurotransmitters and the GLX index show variations depending on the light-dark cycle.


Subject(s)
Amino Acids/cerebrospinal fluid , Animals , Circadian Rhythm , Male , Microdialysis , Rats , Rats, Wistar
8.
Neurol Sci ; 42(11): 4697-4706, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34431014

ABSTRACT

OBJECTIVE: Iminodipropionitrile (IDPN)-induced dyskinetic syndrome is characterized by abnormal repetitive involuntary movements with abnormalities in the neuro-transmission. This study explored the mechanism of glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic circuit in rat dyskinetic syndrome and the possible regulation mechanism of "tiapride (Tia)." METHODS: Male Wistar rats were assigned to the control group, dyskinetic syndrome group, and Tia group. Dyskinetic syndrome was induced by injecting with 3,3'-iminodipropionitrile for 7 days. Tia group was treated with tiapride, while the control and dyskinetic syndrome groups were gavaged with saline. Eventually the Glu, GABA, and Gln concentrations in striatum were detected using UPLC-3QMS, additionally another amino acid neurotransmitters (aspartate, glycine) were also detected. Expressions of glutamine synthetase (GS), glutamate transporter (EAAT2), glutamate decarboxylase (GAD65/67), and γ-aminobutyric acid transporter protein (GAD-T) were observed using Western blot and real-time polymerase chain reaction. RESULTS: The behavior test scores of dyskinetic syndrome group were increased compared with the control group. Tia group decreased the behavior test scores compared with dyskinetic syndrome group. For amino acid neuro-transmission, dyskinetic syndrome group increased Glu level (p < 0.01), decreased GABA level (p < 0.01), increased Glu/GABA ratio (p < 0.01), and decreased Asp level (p < 0.01) compared with control group. Tia group decreased Glu level (p < 0.01), increased GABA level (p < 0.01), decreased Glu/GABA ratio (p < 0.01), and increased Asp level (p < 0.05) compared with dyskinetic syndrome group. For Glu/GABA-Gln circuit, the protein and mRNA expression of GS and EAAT2 in dyskinetic syndrome group were decreased (p < 0.05). Tia group increased protein and mRNA expression level of GS (p < 0.05) and EAAT2 (p < 0.01). CONCLUSION: The rat dyskinetic syndrome has Glu/GABA-Gln abnormalities. "Tiapride" upregulated the protein expression of GS and EAAT2, reduce Glu levels, increase γ-GABA levels, and eventually improve amino acid neurotransmitter imbalance.


Subject(s)
Dyskinesias , Glutamic Acid , Animals , Glutamine , Male , Rats , Rats, Wistar , gamma-Aminobutyric Acid
9.
Biomed Chromatogr ; 35(6): e5084, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33559223

ABSTRACT

Emerging evidence suggests that amino acid (AA) neurotransmitters play important roles in the pathophysiological processes of cerebral ischemia. In this work, an HPLC with fluorescence detection (HPLC-FLR) method was developed for the simultaneous determination of 18 AAs in the cortex and plasma after cerebral ischemia in mice. The ischemia model was prepared by bilateral common carotid artery occlusion, and then the cortex and plasma of the sham, ischemia, and naringenin groups were collected. Based on the protein precipitation method, a simple and effective sample preparation method was developed. The treated sample contained minimal proteins and lipids. The analysis of the sample was performed by the proposed HPLC-FLR method in combination with o-phthalaldehyde. The results showed a statistically significant increase in excitatory AAs (aspartic acid and glutamic acid), inhibitory AAs (glycine and 4-aminobutyric acid), phenylalanine, citrulline, isoleucine, and leucine levels, and a decrease of glutathione and phenylalanine levels when compared with the sham group in the cortex. Besides, the administration of naringenin had significant effects on excitatory AAs, inhibitory AA (glycine), glutamine, tyrosine, phenylalanine, and leucine levels when compared with the sham group in the cortex. These findings could be utilized in studying and clarifying the mechanisms of ischemia.


Subject(s)
Amino Acids/blood , Brain Ischemia/metabolism , Cerebral Cortex/chemistry , Animals , Biomarkers/blood , Chromatography, High Pressure Liquid , Male , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/blood
10.
Basic Clin Neurosci ; 12(5): 681-692, 2021.
Article in English | MEDLINE | ID: mdl-35173922

ABSTRACT

INTRODUCTION: Caffeine and nicotine are the most widely consumed psychostimulants worldwide. Although the effects of each drug alone on the central nervous system have been studied extensively, the literature on the neurochemical and electrophysiological effects of their combined treatments is scarce. The present study investigated the cortical electrophysiological and neurochemical alterations induced by acute administration of caffeine and nicotine in rats. METHODS: The rats received caffeine and nicotine at a 1-hour interval between the two treatments. RESULTS: Caffeine and nicotine administration resulted in a significant decrease in the concentrations of cortical amino acid neurotransmitters, namely glutamate, aspartate, glycine, and taurine, while γ-aminobutyric acid (GABA) significantly increased. Increased cortical lipid peroxidation and reduced glutathione and nitric oxide levels and acetylcholinesterase and Na+/K+-ATPase activities were also observed. The Electroencephalogram (EEG) showed an increase in delta frequency power band, whereas theta, beta-1, and beta-2 decreased after caffeine and nicotine treatment. CONCLUSION: These findings suggest that caffeine and nicotine adversely exacerbate their stimulant effects manifested by the EEG changes mediated by increasing cholinergic transmission and disturbing the balance between the excitatory and inhibitory amino acids leading to oxidative stress.

11.
Neurobiol Learn Mem ; 177: 107352, 2021 01.
Article in English | MEDLINE | ID: mdl-33253826

ABSTRACT

Impulsive action can be measured using rat's responses on a differential reinforcement of low-rate-response (DRL) task in which performance may be varied between rats. Nevertheless, neurobiological profiles underlying the trait impulsivity of DRL behavior remain largely unknown. Here, in vivo non-invasive proton magnetic resonance spectroscopy (1H-MRS) and Western blot assay were performed to assess neurobiological changes in the dorsal striatum (DS) and nucleus accumbens (NAc) in relation to individual differences in DRL behavior. A cohort of rats was subjected to acquire a DRL task over 14 daily sessions. High impulsive (HI) and low impulsive (LI) rats were screened by behavioral measures displaying a lower response efficiency and performing more nonreinforced responses in HI rats and vice versa. MRS measurements indicated that the HI group had a lower NAc glutamate (Glu) level than did the LI group, whereas no such difference was found in the other five metabolites in this area. Moreover, no intergroup difference was observed in any metabolite in the DS. The results of Western blot assay revealed that protein expressions of GluN1 (but not GluN2B) subunit of N-methyl-D-aspartate receptors in the DS and NAc were higher in the HI group than in the LI group. This inherent timing impulsivity was not attributed to risky behavioral propensity because both Hl and LI rats could acquire a risk-dependent choice. The findings of this study, supported by certain correlations among behavioral, brain imaging, and neuroreceptor indices, provide evidence of the neurobiological changes of striatal Glu underlying trait impulsive action of DRL behavior.


Subject(s)
Corpus Striatum/physiology , Glutamic Acid/physiology , Impulsive Behavior/physiology , Reinforcement, Psychology , Animals , Blotting, Western , Conditioning, Operant/physiology , Corpus Striatum/metabolism , Glutamic Acid/metabolism , Individuality , Male , Maze Learning/physiology , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Proton Magnetic Resonance Spectroscopy , Rats , Rats, Wistar
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-888078

ABSTRACT

Excitatory toxicity(ET) is an important factor of neuropathic pain(NPP) induced by central sensitization(CS), and the association of pannexin-1(Panx1)-Src-N-methyl-D-aspartate receptor subunit 2 B(NMDAR-2 B) is an important new pathway for ET to initiate CS. The present study confirmed whether the central analgesic effect of Chuanxiong Rhizoma extract(CRE) was achieved through the synchronous regulation of the brain and spinal pathways of Panx1-Src-NMDAR-2 B. In this study, dynamic and simulta-neo-us microdialysis of the brain and spinal cord in vivo combined with behavioristics, high performance liquid chromatography(HPLC)-fluorescence detection, microdialysis analysis(ISCUS~(flex)), ultrasensitive multifactorial electrochemiluminescence immunoassay, ELISA, and Western blot was employed to investigate the protein expression of NMDAR-2 B, Src, and Panx1, extracellular excitatory amino acids, cytokines, energy metabolites, and substance P in spinal dorsal horn(SDH) and anterior cingulate cortex(ACC) after CRE intervention with the rat model of spared sciatic nerve injury(SNI) as the experimental tool. Compared with the sham group, the SNI group exhibited diminished mechanical withdrawal threshold(MWT)(P<0.01), increased cold spray scores(P<0.01), glutamate(Glu), D-serine(D-Ser), and glycine(Gly) in extracellular fluids of ACC, and Glu, D-Ser, interleukin-1β(IL-1β), and lactic acid(Lac) in extracellular fluids of SDH(P<0.05), dwindled tumor necrosis factor(TNF-α)(P<0.05), and elevated protein levels of NMDAR-2 B, Src, and Panx1 in ACC(P<0.05). Compared with the SNI model rats, high-and medium-dose CRE(CRE-H/M) could potentiate the analgesic activity as revealed by the MWT test(P<0.05) and CRE-M enabled the decrease in cold spray scores(P<0.05). CRE-H/M could inhibit the levels of Glu, D-Ser and Gly in the extracellular fluids of ACC(P<0.05), and the levels of Glu in the extracellular fluids of SDH(P<0.05) in SNI rats. CRE-M significantly increased the levels of glucose(Gluc), Lac, interferon-gamma(IFN-γ), keratinocyte chemoattractant/human growth-regulated oncogenes(KC/GRO), and IL-4 in extracellular fluids of SDH in SNI rats(P<0.05). CRE-H/M/L could also inhibit the levels of NMDAR-2 B, Src and Panx1 in ACC and SDH in SNI rats(P<0.05). The central analgesic effect of CRE is presumedly related to the inhibited release of excitatory amino acid transmitters(Glu, D-Ser and Gly) in ACC and SDH of SNI rats, decreased protein expression of NMDAR-2 B, Src and Panx1 in the two regions, and the regulation of the Panx1-Src-NMDAR-2 B pathway in the spinal cord and brain. The above findings partially clarified the scientific basis of clinical analgesic effect of Chuanxiong Rhizoma.


Subject(s)
Animals , Rats , Central Nervous System Sensitization , Neuralgia/drug therapy , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Spinal Cord/metabolism
13.
Chinese Pharmacological Bulletin ; (12): 815-822, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1014441

ABSTRACT

Aim To explore the effects of chronic unpredictable mild stress combined with sleep deprivation on the hypothalamic-pituitary-adrenal axis (HPA) and the amino acid and monoamine transmitters in hypothalamus of rats. Methods Chronic unpredictable mild stress combined with modified multi-platform water environment sleep deprivation was used to replicate depression and insomnia rat models. ELISA was used to measure the content of HPA axis related molecules in serum and hypothalamus, the content of amino acid transmitter glutamate (Glu) and GABA in hypothalamus; HPLC-ECD was applied to measure the content of monoamine transmitter NE, 5-HT, DA in hypothalamus; WB and RT-qPCR were employed to measure the expression of GABA related molecules GAD67, GABA

14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(5): 611-617, 2020 Sep.
Article in Chinese | MEDLINE | ID: mdl-32975073

ABSTRACT

OBJECTIVE: To study the effect and mechanism of modified constraint-induced movement therapy (mCIMT) on motor function recovery in cerebral ischemia-reperfusion rats. METHODS: The rats were randomly divided into the control group and the mCIMT group, with 12 rats in each group. The left middle cerebral artery occlusion (MCAO) model was established by the Longa suture method. In the mCIMT group, the rats started continuous training for 14 d on the 7 th day after modeling. The unaffected limb was tied to the chest with elastic bandages, and the affected limb was trained in the compulsory runner equipment. In the control group, rats moved freely in the cage. The body mass of rats was recorded within 20 d after modeling, and behavior was assessed by the foot-fault test. Some of the rats were euthanized 18 d after modeling, and high performance liquid chromatography (HPLC) was used to detect monoamine neurotransmitters (5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIVV), homovanillic acid (HVA) ), and amino acid neurotransmitters (glutamic acid (Glu), asparaginic acid (ASP), glutamine (Gln), glycine (Gly), taurine (Tau), gamma aminobutyric acid (GABA) ) in the motor cortex and striatum, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of total P70 ribosomal protein S6 kinase (p70s6k) and p70s6k phosphorylated protein (p-p70s6k) in motor cortex and striatum, respectively. RESULTS: Compared with the control group, the body mass of rats in the mCIMT group was comparable (P >0.05) within 21 d after modeling, foot-fault rate of the mCIMT group was significantly lower at 17 d after modeling (P<0.05). At 18 d after modeling, compared with the control group, the level of 5-HIVV in the motor cortex increased significantly (P<0.05), and the relative content of amino acid neurotransmitters (the ratio of Glu) in the motor cortex including Gln, Gly, Tau and GABA to Glu increased significantly (P<0.05 or P<0.01) except for decreased ASP/Glu (P<0.05). Moreover, compared with the control group, the expression of p-p70s6k in the motor cortex of the mCIMT was significantly decreased (P<0.05). There were no significant differences in monoamine neurotransmitters and amino acid neurotransmitters in the striatum between two groups (P>0.05). CONCLUSION: mCIMT improved the motor function of MCAO rats, and the mechanism might be related to the increase of amino acid neurotransmitters and 5-HIVV and decrease of p-p70s6k expression in the motor cortex.


Subject(s)
Brain Ischemia , Cerebral Cortex , Exercise Therapy , Motor Cortex , Reperfusion Injury , Animals , Brain Ischemia/therapy , Cerebral Cortex/metabolism , Movement , Neurotransmitter Agents , Rats , Rats, Sprague-Dawley , Reperfusion
15.
Physiol Behav ; 224: 113024, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32579893

ABSTRACT

BACKGROUND: This study aimed to explore the neurobiological effects of "Chinese Traditional Five-Elements Music Therapy" on rats and to determine its effects on amino acid neurotransmitter levels, the excitatory/inhibitory(E/I) balance and the Glu-Gln cycle. METHODS: Male Wistar rats were assigned at random to the experimental groups (Gong/powerful; Shang/sad; Jue/gentle; Zhi/joyful; Yu/serene music group) and the control group(n=8/group).The experimental groups were exposed daily to music(2 hours per day; mild sound pressure levels, between 50 and 60 dB) for 28 consecutive days. Finally, we hypothesized concentrations of Glu and GABA to match the music types and measured additionally Asp, Gly, Gln, and Glu/GABA ratio in striatum by UPLC-3QMS. RESULT: Effects in the predicted direction were observed for Gong (Glu +, GABA -); Shang (Glu -; GABA +); Jue (Glu 0; GABA 0); and Zhi (Glu +; GABA -); but not Yu music (Glu + contrary to hypothesis; GABA + as hypothesized)." In addition, significant difference in Gln levels were also present in the zhi, Gong and Yu music groups compared to the controls. CONCLUSION: Our study showed that different melodic music produced different effects on amino acid neurotransmitter levels. "Chinese Traditional Five-Elements Music Therapy" affected the amino acid neurotransmitter levels, the E/I balance and the Glu-Gln cycle in the striatum of rats, which may reflect altered glutamatergic and GABAergic system.


Subject(s)
Amino Acids , Music Therapy , Animals , Glutamic Acid , Humans , Male , Neurotransmitter Agents , Rats , Rats, Wistar , gamma-Aminobutyric Acid
16.
Zhongguo Zhong Yao Za Zhi ; 45(1): 14-19, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-32237406

ABSTRACT

Anxiety disorders are a common mental illness that seriously endangered physical and mental health of human beings. The etiology of anxiety disorders is closely related to the abnormality of monoamines neurotransmitters, amino acids neurotransmitters and neuropeptides. The long-term use of anti-anxiety chemical drugs has some adverse effects, such as constipation, muscle relaxation, lethargy, tolerance and withdrawal symptoms. However, traditional Chinese medicines have advantages of multi-component, multi-target coordination, with less adverse reactions. Therefore, it is a promising prospect to develop novel anti-anxiety drugs from traditional Chinese medicines and formulas. This article reviewed some traditional Chinese medicines and formulas that can relieve anxiety symptoms. These include traditional Chinese medicines(Panax ginseng, Lycium ruthenium, Morus alba, Bupleurum plus dragon bone oyster soup, Chailong Jieyu Pills, and Naogongtai Formulas) with the effect on monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine; traditional Chinese medicines(Rehmannia glutinosa, Ziziphus jujuba Mill. var. spinosa, Jielv Anshen Decoction, Baixiangdan Capsules, Antianxietic Compound Prescription Capsules) with the effect on amino acid neurotransmitters, such as glutamic acid, γ-aminobutyrc acid; and traditional Chinese medicines(P. ginseng, Xiaoyao San, Shuyu Ningxin Decoction)with the effect on neuropeptide Y pathway, with the aim to provide theoretical basis for the further development of some novel and more effective anti-anxiety therapeutics from traditional Chinese medicine and formulas.


Subject(s)
Anti-Anxiety Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Neurotransmitter Agents , Humans , Medicine, Chinese Traditional , Norepinephrine , Serotonin
17.
Magn Reson Med ; 84(3): 1140-1151, 2020 09.
Article in English | MEDLINE | ID: mdl-32003052

ABSTRACT

PURPOSE: In 2004, Boumezbeur et al proposed a simple yet powerful approach to detect the metabolism of 13 C-enriched substrates in the brain. Their approach consisted of dynamic 1 H-MRS, without a 13 C radiofrequency (RF) channel, and its successful application was demonstrated in monkeys. Since then, this promising method has yet to be applied rigorously in humans. In this study, we revisit the use of dynamic 1 H-MRS to measure the metabolism of 13 C-enriched substrates and demonstrate its application in the human brain. METHODS: In healthy participants, 1 H-MRS data were acquired dynamically before and following a bolus infusion of [1-13 C] glucose. Data were acquired on a 3T clinical MRI scanner using a short-TE SPECIAL sequence, with regions of interest in both anterior and posterior cingulate cortex. Using simulated basis spectra to model signal changes in both 12 C-bonded and 13 C-coupled resonances, the acquired spectra were fit in LCModel to obtain labeling time courses for glutmate and glutamine at both C4 and C3 positions. RESULTS: Presence of the 13 C label was clearly detectable, owing to the pronounced effect of heteronuclear (13 C-1 H) scalar coupling on the observed 1 H spectra. A decrease in signal from 12 C-bonded protons and an increase in signal from 13 C-coupled protons were observed. The fractional enrichment of Glu-C4, (Glu+Gln)-C4, and (Glu+Gln)-C3 at 30 minutes following infusion of [1-13 C] glucose was similar in both regions: 11% to 13%, 9% to 12% and 3% to 5%, respectively. CONCLUSION: These preliminary results confirm the feasibility of the use of dynamic 1 H-MRS to monitor 13 C labeling in the human brain, without a 13 C RF channel.


Subject(s)
Brain , Glutamine , Brain/diagnostic imaging , Glucose , Glutamic Acid , Humans , Protons , Radio Waves
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008432

ABSTRACT

Anxiety disorders are a common mental illness that seriously endangered physical and mental health of human beings. The etiology of anxiety disorders is closely related to the abnormality of monoamines neurotransmitters, amino acids neurotransmitters and neuropeptides. The long-term use of anti-anxiety chemical drugs has some adverse effects, such as constipation, muscle relaxation, lethargy, tolerance and withdrawal symptoms. However, traditional Chinese medicines have advantages of multi-component, multi-target coordination, with less adverse reactions. Therefore, it is a promising prospect to develop novel anti-anxiety drugs from traditional Chinese medicines and formulas. This article reviewed some traditional Chinese medicines and formulas that can relieve anxiety symptoms. These include traditional Chinese medicines(Panax ginseng, Lycium ruthenium, Morus alba, Bupleurum plus dragon bone oyster soup, Chailong Jieyu Pills, and Naogongtai Formulas) with the effect on monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine; traditional Chinese medicines(Rehmannia glutinosa, Ziziphus jujuba Mill. var. spinosa, Jielv Anshen Decoction, Baixiangdan Capsules, Antianxietic Compound Prescription Capsules) with the effect on amino acid neurotransmitters, such as glutamic acid, γ-aminobutyrc acid; and traditional Chinese medicines(P. ginseng, Xiaoyao San, Shuyu Ningxin Decoction)with the effect on neuropeptide Y pathway, with the aim to provide theoretical basis for the further development of some novel and more effective anti-anxiety therapeutics from traditional Chinese medicine and formulas.


Subject(s)
Humans , Anti-Anxiety Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Neurotransmitter Agents , Norepinephrine , Serotonin
19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-751523

ABSTRACT

Objective To investigate the expression of excitatory neurotransmitter glutamate (Glu),inhibitory neurotransmitter gamma-aminobutyric acid (GABA),glutamate receptor R1 (GluR1) and gammaaminobutyric acid receptor A (γ-aminobutyric acid A receptor,GABAA) in the brain of rats with intrauterine growth retardation.Methods Thirty-two healthy Wistar female virgin rats and eight healthy Wistar male rats were purchased from the Laboratory Animal Center of China Medical University.The pregnant rats were randomly divided into IUGR group and control group according to the order of conception.The control group was fed with normal diet,while the IUGR group was fed with low-protein diet.The offspring were named IUGR group and control group respectively.The expressions of positive cells of Glu,GluR1,GABA and GABAA in cerebral cortex of normal offspring and IUGR offspring were observed by immunohistochemistry.Results Immunohistochemical staining showed that the glutamate positive field of vision in IUGR group was more than that in control group (x2 =82.69,P < 0.05).The glutamate receptor GluR1 positive field of vision in IUGR group was more than that in control group (x2 =76.91,P <0.05),while the gamma-aminobutyric acid and its receptors in IUGR group were lower than those in control group (x2 =91.51,x2 =24.05,respectively).The difference was statistically significant (P < 0.05).Conclusion Intrauterine growth retardation can increase the expression of excitatory amino acids and receptors while decrease the expression of inhibitory amino acids and their receptors.Increased expression of excitatory amino acids and receptors and decreased expression of inhibitory amino acids and their receptors may be one of the mechanisms of epilepsy in patients with intrauterine growth retardation.

20.
Toxicol Ind Health ; 34(12): 860-872, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30345898

ABSTRACT

The extensive use of mobile phones worldwide has raised increasing concerns about the effects of electromagnetic radiation (EMR) on the brain due to the proximity of the mobile phone to the head and the appearance of several adverse neurological effects after mobile phone use. It has been hypothesized that the EMR-induced neurological effects may be mediated by amino acid neurotransmitters. Thus, the present study investigated the effect of EMR (frequency 1800 MHz, specific absorption rate 0.843 W/kg, power density 0.02 mW/cm2, modulated at 217 Hz) on the concentrations of amino acid neurotransmitters (glutamic acid, aspartic acid, gamma aminobutyric acid, glycine, taurine, and the amide glutamine) in the hippocampus, striatum, and hypothalamus of juvenile and young adult rats. The juvenile and young adult animals were each divided into two groups: control rats and rats exposed to EMR 1 h daily for 1, 2, and 4 months. A subgroup of rats were exposed daily to EMR for 4 months and then left without exposure for 1 month to study the recovery from EMR exposure. Amino acid neurotransmitters were measured in the hippocampus, striatum, and hypothalamus using high-performance liquid chromatography. Exposure to EMR induced significant changes in amino acid neurotransmitters in the studied brain areas of juvenile and young adult rats, being more prominent in juvenile animals. It could be concluded that the alterations in amino acid neurotransmitters induced by EMR exposure of juvenile and young adult rats may underlie many of the neurological effects reported after EMR exposure including cognitive and memory impairment and sleep disorders. Some of these effects may persist for some time after stopping exposure.


Subject(s)
Amino Acids/radiation effects , Brain/radiation effects , Electromagnetic Radiation , Neurotransmitter Agents/radiation effects , Age Factors , Animals , Cell Phone , Chromatography, High Pressure Liquid , Electromagnetic Fields/adverse effects , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...