Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.286
Filter
1.
Sci Rep ; 14(1): 16395, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013879

ABSTRACT

The concept of a standardized reference diet (SRD) is used in laboratory model organisms to ensure nutritional control between studies and laboratories. Although models using the genetically identical, all female parthenogenetic marbled crayfish (Procambarus virginalis) are growing in popularity, research into nutrition in this species still has many knowledge gaps. To fast track the development of a SRD in terms of protein and amino acids (SRDprotein) for this species, we first analyzed the composition of its body amino acids to determine the ideal protein concept (IPC) of indispensable amino acids in wild-caught P. virginalis (which had an unusually high preponderance of leucine and arginine). Then, we strategically evaluated three common clusters of types of fish feed: (1) ornamental fish feed (SER) fortified with a naturally occurring alga (Spirulina). This type of feed was protein-high in arginine and leucine (SER + SPI) that fulfils the species' IPC for iso-protein (~ 40%), iso-phosphorus (~ 0.8%) and near iso-energetic (~ 475 kcal 100 g-1); (2) freeze-dried live feed consisting of chironomid larvae (CHI) fortified with Spirulina (CHI + SPI) that fulfils the IPC for iso-protein (~ 46%), iso-phosphorus (~ 0.7%) and near iso-energetic (~ 405 kcal 100 g-1); and (3) a commercially standardized 'starter diet' for carnivorous fish larvae (FISH) and post-larval shrimps (SHRIMP) with iso-protein (~ 56%) and iso-phosphorus (~ 1.6%). A total of six diets, embracing a diverse range of proteinaceous feeds, were used in a 100-day ad libitum feeding and growth trial. The FISH group outperformed all the other groups (p < 0.05) and our exploratory multivariate analysis revealed an ideal demand of > 44% protein (tailored to deliver high arginine 3% and leucine 4%, followed by the usual lysine > 3.5% and methionine 1.2%) but also the lowest carbohydrate level (21%). For SRDprotein, our findings show that the FISH diet is ideal and suggest the possibilities of using a CHI + SPI diet for further optimization (more economic use of protein and phosphorus).


Subject(s)
Amino Acids , Animal Feed , Astacoidea , Animals , Astacoidea/physiology , Amino Acids/metabolism , Animal Feed/analysis , Female , Diet/veterinary , Dietary Proteins/metabolism , Animal Nutritional Physiological Phenomena , Parthenogenesis
2.
J Endod ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019323

ABSTRACT

INTRODUCTION: The aim of this study was to test the hypothesis that a combination of D-amino acids (DAA) and trans-cinnamaldehyde (TC) demonstrates superior antibiofilm activity to calcium hydroxide (CH) and untreated controls. METHODS: In this 3-part in vitro study, the concentration of DAAs (D-methionine, D-leucine, D-tyrosine, and D-tryptophan) that would significantly decrease Enterococcus faecalis and Actinomyces naeslundii biofilm biomass was first determined. Then, the effect of TC + selected DAAs on polymicrobial biofilms was characterized by quantifying the biomass and biofilm viability. Finally, the antibiofilm effects of TC+DAA was compared with CH and untreated controls by (i) determining bacterial viability and (ii) quantifying biofilm matrix composition using selective fluorescence-binding analysis. Statistical analysis was performed using one-way ANOVA and appropriate multiple comparisons test, with P<.05 considered as statistically significant. RESULTS: TC (0.06%) + D-tyrosine (1 mM) + D-tryptophan (25 mM) significantly reduced the biomass and biofilm viability compared to the control (P<.05). While no significant difference was observed between TC+DAA and CH in the cultivable bacterial counts (P>.05), confocal microscopy demonstrated a significantly greater percentage of dead bacteria in TC+DAA-treated biofilms compared to CH and the control (P<.05). TC+DAA significantly decreased the biovolume and all the examined components of the biofilm matrix quantity compared to the control, while CH significantly reduced only the exopolysaccharide quantity (P<.05). CONCLUSION: TC + D-tyrosine + D-tryptophan demonstrated superior antibiofilm activity (biofilm bacterial killing and reduction of matrix quantity) to CH and has potential to be developed as an intracanal medicament.

3.
J Stroke Cerebrovasc Dis ; 33(9): 107870, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004238

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the prospective associations between plasma branched-chain amino acids (BCAAs) and the risk of ischemic stroke in men and women. METHODS: We conducted a nested case-control study within a community-based cohort in China. The cohort consisted of 15,926 participants in 2013-2018. A total of 321 ischemic stroke cases were identified during the follow up and individually matched with 321 controls by date of birth (±1 year) and sex. Females accounted for 55.8% (n = 358, 179 cases vs 179 controls) of the study population. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the association between plasma BCAAs and ischemic stroke risk by conditional logistic regression. RESULTS: Elevated plasma isoleucine was associated with a higher risk of ischemic stroke in women. The OR for the highest compared to the lowest quartile was 2.22 (95% CI: 1.11-4.44, P trend = 0.005) after adjustment for body mass index, education attainment, smoking, hypertension, renal function, menopause and physical activity. A similar association was found for total BCAAs (adjusted OR = 2.03, 95% CI: 1.05-3.95, P trend = 0.04). In contrast, no significant association of plasma BCAAs with ischemic stroke risk was observed in men. CONCLUSIONS: Plasma isoleucine and total BCAAs were significantly associated with ischemic stroke risk in women, but not in men, highlighting sex differences in BCAAs metabolism and stroke pathogenesis.

4.
Food Chem X ; 23: 101569, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39007113

ABSTRACT

A twelve week feeding experiment was conducted to evaluate the replacement of fishmeal (FM) with poultry by-product meal (PBM) in practical diets for European sea bass, Dicentrarchus labrax with an average initial weight of 0.89 g. Five isocaloric (5.1 kcal lipid g-1) and isonitrogenous (451 g protein kg-1) diets were formulated with PBM replacing FM at levels of 0% (control), 25%, 50%, 75%, and 100%. The experiment was carried out in 30-in. nylon mesh net cages (hapas). At the termination of the trial, growth performance including final body weight, weight gain, specific growth rate, and protein growth rate of diets containing up to 75% PBM were comparable to those of the control group, whereas the diet with 100% PBM resulted in a significantly lower values (p < 0.05). Feed utilization exhibited variation among the treatments (p < 0.05). Whole body composition also showed significant differences across the dietary treatments. Essential amino acid (EAA) contents specifically arginine (Arg), histidine (His), methionine (Met), and threonine (Thr) in the whole body of fish fed diets with up to 50% PBM replacement were not significantly different from those in the control group. Furthermore, the intestinal microvilli length, width and absorption area increased significantly (p < 0.05) with PBM replacement levels up to 50%. Histological analysis of the liver revealed mild vacuolation of hepatocytes in fish fed up to 50% PBM,while pre-pancreatic fatty degeneration of hepatocytes was observed in fish fed diets with 75% and 100% PBM. Therefore, this study demonstrates that PBM can replace up to 50% of FM in the diets of European sea bass without adverse effects on growth performance, body composition, or liver and intestine morphology.

5.
Wiad Lek ; 77(5): 957-964, 2024.
Article in English | MEDLINE | ID: mdl-39008583

ABSTRACT

OBJECTIVE: Aim: To check the relationships between platelet characteristics and Holter ECG monitoring results in patients with atrial fibrillation (AF) and coronary artery disease (CAD). PATIENTS AND METHODS: Materials and Methods: 300 investigated patients were separated into three groups: I (CAD) - 149 patients with CAD without arrhythmias, II (CAD and AF) - 124 patients with CAD and AF paroxysm, and the control group (CG) - 27 patients without CAD and arrhythmias. RESULTS: Results: In the II group was detected an increase in mean platelet volume (MPV) (9.30%) and platelet-to-leucocyte ratio (PLR) (41.12%) and a decrease in platelet count (PC) (12.20%) in comparison with the I group, P<0.05. Also, in the II group was found an increase in platelet leucine (12.63%), isoleucine (10.73%), and a decrease in serine (5.06%), threonine (23.05%), valine (30.83%), glycine (32.21%) levels in comparison with the I group, P<0.05. PC, MPV, and PLR ratios were correlated with supraventricular extrasystoles per hour (r=-0.352, r=0.308, and r=0.359, consequently), P<0.05. Platelets distribution width (PDW) was correlated with ST-segment changes (r=0.371), P<0.05. Platelet threonine, serine, glycine, alanine, and valine levels were correlated with total supraventricular extrasystoles (r=-0.374, r=-0.358, r=-0.402, r=-0.307, r=-0.312, consequently) and supraventricular extrasystoles per hour (r=-0.374, r=-0.358, r=-0.402, r=-0.307, r=-0.312, consequently), P<0.05. Platelet lysine, taurine, cysteine, and phenylalanine levels were correlated with ST-segment changes (r=-0.319, r=-0.344, r=-0.376, and r=0.317, consequently), P<0.05. CONCLUSION: Conclusions: Platelet features (PC, MPV, PDW, PLR, and amino acid spectrum) are significantly correlated with supraventricular arrhythmias and ST-segment episodes, which shows their role in AF and CAD pathogenesis.


Subject(s)
Atrial Fibrillation , Blood Platelets , Coronary Artery Disease , Electrocardiography, Ambulatory , Humans , Atrial Fibrillation/blood , Atrial Fibrillation/physiopathology , Female , Male , Coronary Artery Disease/blood , Coronary Artery Disease/physiopathology , Middle Aged , Aged , Platelet Count , Mean Platelet Volume
6.
Article in English | MEDLINE | ID: mdl-38953505

ABSTRACT

Eight geldings weighing 544 ± 16 kg were used to evaluate feeding a postexercise protein meal on plasma amino acids during recovery. Horses were fed sweet feed, corn, grass hay and equal amounts of a protein pellet (32% CP) with meals (MP group) or postexercise (EP group). Horses exercised 1-2 h/day, 5 days/week, for 12 weeks. A pre and poststudy 4 days total urine and feces collection was conducted. Urine and fecal samples were analyzed for nitrogen (N) to calculate N balance. Blood samples were drawn immediately after and at 1 and 3 h postexercise at the start and end of the study for plasma amino acid concentrations. Absorbed N and N retention were greater for the MP group compared to the EP group (p = 0.038, 0.033 respectively). An interaction revealed an increase in fecal N (p = 0.01) and decreased N digestibility for the MP group compared to the EP group at the end of the study. Plasma concentrations for 8 out of 14 amino acids were less for the EP group immediately after exercise compared to the MP group (p < 0.02). Plasma concentrations of lysine and arginine were greater for the EP group compared to the MP group at 1 and 3 h after exercise (p < 0.05 and 0.04 respectively). Changes were different for 8 out of the 14 amino acids immediately post exercise, 7 out of 14 amino acids at 1 h postexercise and 10 out of 14 amino acids at 3 h postexercise with positive changes for the EP group and negative changes for the MP group. The EP group had improved supply of plasma amino acids in the recovery period that sustained for 3 h postexercise and are indicative of better amino acid supply supporting muscle development.

7.
Proc Biol Sci ; 291(2026): 20240804, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955230

ABSTRACT

The evolution of nuptial gifts has traditionally been considered a harmonious affair, providing benefits to both mating partners. There is growing evidence, however, that receiving a nuptial gift can be actively detrimental to the female. In decorated crickets (Gryllodes sigillatus), males produce a gelatinous spermatophylax that enhances sperm transfer but provides little nutritional benefit and hinders female post-copulatory mate choice. Here, we examine the sexually antagonistic coevolution of the spermatophylax and the female feeding response to this gift in G. sigillatus maintained in experimental populations with either a male-biased or female-biased adult sex ratio. After 25 generations, males evolving in male-biased populations produced heavier spermatophylaxes with a more manipulative combination of free amino acids than those evolving in female-biased populations. Moreover, when the spermatophylax originated from the same selection regime, females evolving in male-biased populations always had shorter feeding durations than those evolving in female-biased populations, indicating the evolution of greater resistance. Across populations, female feeding duration increased with the mass and manipulative combination of free amino acids in the spermatophylax, suggesting sexually antagonistic coevolution. Collectively, our work demonstrates a key role for interlocus sexual conflict and sexually antagonistic coevolution in the mating system of G. sigillatus.


Subject(s)
Feeding Behavior , Gryllidae , Sexual Behavior, Animal , Animals , Gryllidae/physiology , Male , Female , Biological Coevolution , Biological Evolution , Sex Ratio
8.
Food Chem X ; 23: 101528, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38947340

ABSTRACT

Differences in main nutritional components in relation to biomarkers of metabolites in purple rice grains at different fillings stages have not been determined previously. This study measured the contents of amino acids, several nutritional indicators, and mineral elements in purple rice grains at five stages following the filling stage. The results revealed that the amino acid, ascorbic acid, total sugar, carotenoid, vitamin B9, cyanidin-3-O-glucoside, peonidin 3-glucoside and seven minerals were highest in the final stage of grain filling. Citric acid, L-isoleucine, trigonelline, and L-glutamate are key metabolites in the metabolic pathway and exhibit strong correlations with various nutritional indicators. Hence, this research preliminarily suggested that trigonelline, L-isoleucine, L-glutamate, and citric acid could be potential biomarkers of nutritional components in purple rice grains during various postfilling stages.

9.
World J Clin Pediatr ; 13(2): 92737, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38947988

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social communication and repetitive behaviors. Metabolomic profiling has emerged as a valuable tool for understanding the underlying metabolic dysregulations associated with ASD. AIM: To comprehensively explore metabolomic changes in children with ASD, integrating findings from various research articles, reviews, systematic reviews, meta-analyses, case reports, editorials, and a book chapter. METHODS: A systematic search was conducted in electronic databases, including PubMed, PubMed Central, Cochrane Library, Embase, Web of Science, CINAHL, Scopus, LISA, and NLM catalog up until January 2024. Inclusion criteria encompassed research articles (83), review articles (145), meta-analyses (6), systematic reviews (6), case reports (2), editorials (2), and a book chapter (1) related to metabolomic changes in children with ASD. Exclusion criteria were applied to ensure the relevance and quality of included studies. RESULTS: The systematic review identified specific metabolites and metabolic pathways showing consistent differences in children with ASD compared to typically developing individuals. These metabolic biomarkers may serve as objective measures to support clinical assessments, improve diagnostic accuracy, and inform personalized treatment approaches. Metabolomic profiling also offers insights into the metabolic alterations associated with comorbid conditions commonly observed in individuals with ASD. CONCLUSION: Integration of metabolomic changes in children with ASD holds promise for enhancing diagnostic accuracy, guiding personalized treatment approaches, monitoring treatment response, and improving outcomes. Further research is needed to validate findings, establish standardized protocols, and overcome technical challenges in metabolomic analysis. By advancing our understanding of metabolic dysregulations in ASD, clinicians can improve the lives of affected individuals and their families.

10.
ACS Infect Dis ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950147

ABSTRACT

Millions of people worldwide are affected by leishmaniasis, caused by the Leishmania parasite. Effective treatment is challenging due to the biological complexity of the parasite, drug toxicity, and increasing resistance to conventional drugs. To combat this disease, the development of specific strategies to target and selectively eliminate the parasite is crucial. This Review highlights the importance of amino acids in the developmental stages of Leishmania as a factor determining whether the infection progresses or is suppressed. It also explores the use of peptides as alternatives in parasite control and the development of novel targeted treatments. While these strategies show promise for more effective and targeted treatment, further studies to address the remaining challenges are imperative.

11.
Food Chem ; 459: 140334, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981379

ABSTRACT

Avocado ripening entails intricate physicochemical transformations resulting in desirable characteristics for consumption; however, its impact on specific metabolites and its cultivar dependence remains largely unexplored. This study employed LC-MS to quantitatively monitor 30 avocado pulp metabolites, including phenolic compounds, amino acids, nucleosides, vitamins, phytohormones, and related compounds, from unripe to overripe stages, in three commercial varieties (Hass, Fuerte, and Bacon). Multivariate statistical analysis revealed significant metabolic variations between cultivars, leading to the identification of potential varietal markers. Most monitored metabolites exhibited dynamic quantitative changes. Although phenolic compounds generally increased during ripening, exceptions such as epicatechin and chlorogenic acid were noted. Amino acids and derivatives displayed a highly cultivar-dependent evolution, with Fuerte demonstrating the highest concentrations and most pronounced fluctuations. In contrast to penstemide, uridine and abscisic acid levels consistently increased during ripening. Several compounds characteristic of the Bacon variety were delineated but require further research for identification and role elucidation.

12.
Biochem Biophys Res Commun ; 729: 150372, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981400

ABSTRACT

The development of lipid nanoparticles (LNPs) has enabled the clinical application of small interfering ribonucleic acid (siRNA)-based therapies. Accordingly, various unique ionizable lipids have been explored for efficient siRNA delivery. However, safety concerns related to the structure of ionizable lipids have been raised. Here, we developed a pH-responsive dipeptide-conjugated lipid (DPL) for efficient, high safety siRNA delivery. We synthesized a DPL library by varying the dipeptide sequence and established a strong correlation between the knockdown efficiency of the DPL-based LNPs and the dipeptide sequence. The LNPs prepared with a DPL containing arginine (R) and glutamic acid (E) (DPL-ER) exhibited the highest knockdown efficiency. In addition, the DPL-ER-based LNPs with relatively long lipid tails (DPL-ER-C22:C22) exhibited a higher knockdown efficiency than those with short ones (DPL-ER-18:C18). The zeta potential of the DPL-ER-C22:C22-based LNPs increased as the pH decreased from 7.4 (physiological condition) to 5.5 (endosomal condition). Importantly, the DPL-ER-C22:C22-based LNPs exhibited a higher knockdown efficiency than the LNPs prepared using commercially available ionizable lipids. These results suggest that the DPL-based LNPs are safe and efficient siRNA delivery carriers.

13.
J Sep Sci ; 47(13): e2400318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982556

ABSTRACT

Monitoring the levels of amino acids (AAs) in biological cell cultures provides key information to understand the regulation of cell growth and metabolism. Saccharomyces cerevisiae can naturally excrete AAs, making accurate detection and determination of amino acid levels within the cultivation medium pivotal for gaining insights into this still poorly known process. Given that most AAs lack ultraviolet (UV) chromophores or fluorophores necessary for UV and fluorescence detection, derivatization is commonly utilized to enhance amino acid detectability via UV absorption. Unfortunately, this can lead to drawbacks such as derivative instability, labor intensiveness, and poor reproducibility. Hence, this study aimed to develop an accurate and stable hydrophilic interaction liquid chromatography-tandem mass spectrometry analytical method for the separation of all 20 AAs within a short 17-min run time. The method provides satisfactory linearity and sensitivity for all analytes. The method has been validated for intra- and inter-day precision, accuracy, recovery, matrix effect, and stability. It has been successfully applied to quantify 20 AAs in samples of yeast cultivation medium. This endeavor seeks to enhance our comprehension of amino acid profiles in the context of cell growth and metabolism within yeast cultivation media.


Subject(s)
Amino Acids , Hydrophobic and Hydrophilic Interactions , Saccharomyces cerevisiae , Tandem Mass Spectrometry , Amino Acids/metabolism , Amino Acids/analysis , Tandem Mass Spectrometry/methods , Saccharomyces cerevisiae/metabolism , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
14.
Biochem Soc Trans ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984866

ABSTRACT

Metabolic factors are essential for developmental biology of an organism. In plants, roots fulfill important functions, in part due to the development of specific epidermal cells, called hair cells that form root hairs (RHs) responsible for water and mineral uptake. RH development consists in (a) patterning processes involved in formation of hair and non-hair cells developed from trichoblasts and atrichoblasts; (b) RH initiation; and (c) apical (tip) growth of the RH. Here we review how these processes depend on pools of different amino acids and what is known about RH phenotypes of mutants disrupted in amino acid biosynthesis. This analysis shows that some amino acids, particularly aromatic ones, are required for RH apical (tip) growth, and that not much is known about the role of amino acids at earlier stages of RH formation. We also address the role of amino acids in rhizosphere, inhibitory and stimulating effects of amino acids on RH growth, amino acids as N source in plant nutrition, and amino acid transporters and their expression in the RHs. Amino acids form conjugates with auxin, a hormone essential for RH growth, and respective genes are overviewed. Finally, we outline missing links and envision some perspectives in the field.

15.
Plant J ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990624

ABSTRACT

Enhancing maize kernel oil is vital for improving the bioavailability of fat-soluble vitamins. Here, we combined favourable alleles of dgat1-2 and fatb into parental lines of four multi-nutrient-rich maize hybrids (APTQH1, APTQH4, APTQH5 and APTQH7) using marker-assisted selection (MAS). Parental lines possessed favourable alleles of crtRB1, lcyE, vte4 and opaque2 genes. Gene-specific markers enabled successful foreground selection in BC1F1, BC2F1 and BC2F2, while background selection using genome-wide microsatellite markers (127-132) achieved 93% recurrent parent genome recovery. Resulting inbreds exhibited significantly higher oil (6.93%) and oleic acid (OA, 40.49%) and lower palmitic acid (PA, 14.23%) compared to original inbreds with elevated provitamin A (11.77 ppm), vitamin E (16.01 ppm), lysine (0.331%) and tryptophan (0.085%). Oil content significantly increased from 4.80% in original hybrids to 6.73% in reconstituted hybrids, making them high-oil maize hybrids. These hybrids displayed 35.70% increment in oil content and 51.56% increase in OA with 36.32% reduction in PA compared to original hybrids, while maintaining higher provitamin A (two-fold), vitamin E (nine-fold), lysine (two-fold) and tryptophan (two-fold) compared to normal hybrids. Lipid health indices showed improved atherogenicity, thrombogenicity, cholesterolaemic, oxidability, peroxidizability and nutritive values in MAS-derived genotypes over original versions. Besides, the MAS-derived inbreds and hybrids exhibited comparable grain yield and phenotypic characteristics to the original versions. The maize hybrids developed in the study possessed high-yielding ability with high kernel oil and OA, low PA, better fatty acid health and nutritional properties, higher multi-vitamins and balanced amino acids, which hold immense significance to address malnutrition and rising demand for oil sustainably in a fast-track manner.

16.
J Pharm Pharm Sci ; 27: 13210, 2024.
Article in English | MEDLINE | ID: mdl-38988822

ABSTRACT

Recent literature extensively investigates the crucial role of energy metabolism in determining the inflammatory response and polarization status of macrophages. This rapidly expanding area of research highlights the importance of understanding the link between energy metabolism and macrophage function. The metabolic pathways in macrophages are intricate and interdependent, and they can affect the polarization of macrophages. Previous studies suggested that glucose flux through cytosolic glycolysis is necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty acid oxidation is crucial to support anti-inflammatory responses. However, recent studies demonstrated that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully understood yet. How the metabolic flux through different metabolic pathways (glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin resistance is also not fully defined. This mini-review focuses on the impact of insulin resistance in obesity and T2D on the metabolic flux through the main metabolic pathways in macrophages, which might be linked to changes in their inflammatory responses. We closely evaluated the experimental studies and methodologies used in the published research and highlighted priority research areas for future investigations.


Subject(s)
Diabetes Mellitus, Type 2 , Macrophages , Obesity , Humans , Obesity/metabolism , Diabetes Mellitus, Type 2/metabolism , Macrophages/metabolism , Animals , Insulin Resistance , Energy Metabolism
17.
Food Chem ; 458: 140222, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39002506

ABSTRACT

This comprehensive study aimed to determine the level of nutritional compounds (20 amino acids, 11 phenolic acids, and 8 vitamins) and hazard compounds (14 mycotoxins) in ten types of conventional and ecological nuts from 25 countries. Moreover, chronic and acute toxicological risk assessment of mycotoxins was performed. Examined constituents were determined using LC-MS/MS. Ecological pine nuts showed the highest level of amino acids (233.87 g kg-1) compared to conventional (207 g kg-1), pecans-phenolic acids (816.6 mg kg-1 in ecological and 761 mg kg-1 in conventional), while pistachios-vitamins (3471.4 mg kg-1 in ecological and 3098.4 mg kg-1 in conventional). Increased concentration of mycotoxins was determined in conventional peanuts (54 µg kg-1) and walnuts (49.9 µg kg-1). Children were the most exposed population to acute intoxication with HT-2 toxin in conventional pistachios (20.66% ARfD). The results confirmed the nutritional importance of ecological nuts and emphasized the need for continuous screening of mycotoxins.

18.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001024

ABSTRACT

Exploring new methodologies for simple and on-demand methods of manipulating the emission and sensing ability of fluorescence sensor devices with solid-state emission molecular systems is important for realizing on-site sensing platforms. In this regard, although conjugated polymers (CPs) are some of the best candidates for preparing molecular sensor devices owing to their luminescent and molecular recognition properties, the development of CP-based sensor devices is still in its early stages. In this study, we herein propose a novel strategy for preparing a chemical stimuli-responsive solid-state emission system based on supramacromolecular assembly-induced emission enhancement (SmAIEE). The system was spontaneously developed by mixing only the component polymers (i.e., polythiophene and a transient cross-linking polymer). The proposed strategy can be applied to the facile preparation of molecular sensor devices. The analyte-induced fluorescent response of polythiophene originated from the dynamic displacement of the transient cross-linker in the polythiophene ensemble and the generation of the polythiophene-analyte complex. Our successful demonstration of the spontaneous preparation of the fluorescence sensor system by mixing two component polymers could lead to the development of on-site molecular analyzers including the determination of multiple analytes.

19.
Animals (Basel) ; 14(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38997990

ABSTRACT

The present experiment aimed to evaluate the partial or complete substitution of soybean meal (SBM) with Nigella sativa seed meal (NSM) on chemical composition, in vitro ruminal fermentation, and the growth performance and economic efficiency of growing lambs. Thirty-two male Ossimi lambs weighing 41 ± 0.4 kg at 195 ± 5 d were divided randomly into four experimental groups of eight lambs each. Lambs were fed four diets containing 40% berseem clover and 60% concentrate feed mixture. Soybean meal was replaced with NSM at 0% (NSM0; control), 50% (NSM50), 75% (NSM75), or 100% (NSM100). The experiment lasted for 105 d, consisting of 15 d for adaptation and 90 days for measurements. Higher concentrations of crude protein (CP) and nonstructural carbohydrates were observed with SBM; however, NSM contained more fibers and gross energy. Moreover, SBM contained higher concentrations of individual amino acids and lower concentrations of polyphenols. The replacement did not affect in vitro gas production and decreased (p < 0.05) methane production and CP degradability. Treatments did not affect feed intake, nutrient digestibility, and diet's nutritive value measured as starch value, total digestible nutrient, digestible energy, and apparent digestible crude protein. The NSM50 and NSM75 treatments increased (p < 0.001) total weight gain and daily gain compared to the control treatment, with lower feed conversion values associated with the NSM75 treatment. Treatments decreased cholesterol (p = 0.028) and high-density lipoprotein (p = 0.029) and increased antioxidant activity. Higher economic efficiencies were observed with the NSM75 followed by NSM50 and then NSM100 treatments. It is concluded that replacing 75% of SBM with NSM enhanced feed conversion and economic efficiency.

20.
Animals (Basel) ; 14(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998099

ABSTRACT

The study determined the impacts of dietary fermented residues' (FBR) inclusion on growth, nutrient utilization, carcass characteristics, and meat properties in fattening pigs. Seventy-two robust pigs were randomly assigned to two experimental groups (Duroc × Landrace × Yorkshire, thirty-six pigs each). Each group was subjected to a 52-day trial, during which they received either a corn-soybean meal-based diet or diet enhanced with a 10% addition of FBR. Consequently, adding 10% FBR caused a significant decrease in the digestive utilization of crude dietary components in fattening pigs (p < 0.05) but showed no significant impact on the growth performance. Additionally, FBR inclusion increased the marbling scores (p < 0.05) and total antioxidant functions (p < 0.05) of muscle tissues, indicating improved meat quality. Gender affected backfat depth, with barrows showing thicker backfat depth. In conclusion, dietary supplementation with 10% FBR in finishing pigs influenced the meat quality by improving the marbling score and antioxidant performance while reducing digestibility without compromising growth performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...