Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.953
Filter
1.
J Environ Sci (China) ; 149: 374-385, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181650

ABSTRACT

Electrocatalytic reduction of nitrate to ammonia has been considered a promising and sustainable pathway for pollutant treatment and ammonia has significant potential as a clean energy. Therefore, the method has received much attention. In this work, Cu/Fe 2D bimetallic metal-organic frameworks were synthesized by a facile method applied as cathode materials without high-temperature carbonization. Bimetallic centers (Cu, Fe) with enhanced intrinsic activity demonstrated higher removal efficiency. Meanwhile, the 2D nanosheet reduced the mass transfer barrier between the catalyst and nitrate and increased the reaction kinetics. Therefore, the catalysts with a 2D structure showed much better removal efficiency than other structures (3D MOFs and Bulk MOFs). Under optimal conditions, Cu/Fe-2D MOF exhibited high nitrate removal efficiency (87.8%) and ammonium selectivity (89.3%) simultaneously. The ammonium yielded up to significantly 907.2 µg/(hr·mgcat) (7793.8 µg/(hr·mgmetal)) with Faradaic efficiency of 62.8% at an initial 100 mg N/L. The catalyst was proved to have good stability and was recycled 15 times with excellent effect. DFT simulations confirm the reduced Gibbs free energy of Cu/Fe-2D MOF. This study demonstrates the promising application of Cu/Fe-2D MOF in nitrate reduction to ammonia and provides new insights for the design of efficient electrode materials.


Subject(s)
Ammonia , Copper , Iron , Metal-Organic Frameworks , Nitrates , Water Pollutants, Chemical , Ammonia/chemistry , Copper/chemistry , Nitrates/chemistry , Metal-Organic Frameworks/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Models, Chemical , Oxidation-Reduction , Kinetics
2.
Plant Cell Environ ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39351842

ABSTRACT

Adaptation to abiotic stress is critical for the survival of perennial tree species. Salinity affects plant growth and productivity by interfering with major biosynthetic processes. Detrimental effects of salinity may vary between different plant tissues and cell types. However, spatial molecular mechanisms controlling plant responses to salinity stress are not yet thoroughly understood in perennial trees. We used laser capture microdissection in clones of Populus tremula x alba to isolate palisade and vascular cells of intermediary leaf from plants exposed to 150 mM NaCl for 10 days, followed by a recovery period. Cell-specific changes in proteins and metabolites were determined. Salinity induced a vascular-specific accumulation of proteins associated with photorespiration, and the accumulation of serine, 3-phosphoglycerate and NH4 + suggesting changes in N metabolism. Accumulation of the GLUTAMINE SYNTHETASE 2 protein, and increased GS1.1 gene expression, indicated that NH4 + produced in photorespiration was assimilated to glutamine, the main amino acid translocated in Populus trees. Further analysis of total soluble proteins in stems and roots showed the accumulation of bark storage proteins induced by the salinity treatments. Collectively, our results suggest that the salt-induced photorespiration in vascular cells mediates N-reallocation in Populus, an essential process for the adaptation of trees to adverse conditions.

3.
Water Res ; 266: 122537, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39378696

ABSTRACT

NH4+ is an ion with versatile potential; however, the release of wastewater containing this component, regardless of its high or low concentration, causes severe eutrophication in aquatic systems and contaminates numerous manufacturing processes. Thus, this study developed a sustainable method that can simultaneously remove, recover NH4+, polish water, oxidize organic matter, and yet release a material that can still be used as fertilizer. Regarding NH4+ removal, FeP400 rapidly exhibited an exceptional NH4+ uptake capacity (343.5 mg g-1) within 8 min, even in dairy processing wastewater with high NH4+ concentrations and diverse co-existing components. FeP400 could oxidize organic compounds spontaneously to remove TOC, indirectly enhancing its NH4+ uptake up to 33.5 % through charge balance mechanisms. The adsorption process involved both chemical (i.e., double-salt precipitation) and physical mechanisms (i.e., H-bonding and electrostatic interaction), as confirmed by thermodynamics, FT-IR, and XPS analyses. Regarding recovery, FeP400 can be reused for over 10 cycles with high removal (81 %) and NH4+ recovery (88 %), a significant improvement over conventional options. FeP400 also performed efficiently under flowing conditions using low-range NH4+ and TOC samples over 10 cycles, polishing not only 34.1 L of water with undetected NH4+, neutral pH, and extremely low TOC but also effectively recovering the NH4+ uptake at an economical cost. Lastly, its environmentally friendly nature, which contains essential nutrients for plant growth, further enhances its recyclability after release. Thus, FeP400 is believed to offer a transformative, sustainable, and highly efficacious solution to the NH4+contamination and critical ultrapure water issues that industries urgently address.

4.
Article in English | MEDLINE | ID: mdl-39374865

ABSTRACT

The whiteleg marine shrimp Penaeus vannamei, originally from the Eastern Pacific Ocean, now inhabits tropical waters across Asia and Central and Southern America. This benthic species exhibits rapid growth, wide salinity and temperature tolerance, and disease resistance. These physiological traits have led to extensive research on its osmoregulatory mechanisms, including next-generation sequencing, transcriptomic analyses, and lipidomic responses. In crustaceans, osmotic and ionic homeostasis is primarily maintained by the membrane-bound metalloenzyme (Na+, K+)-ATPase. However, little is known about how various ligands modulate this enzyme in P. vannamei. Here, we examined the kinetic characteristics of the gill (Na+, K+)-ATPase to get biochemical insights into its modulation. A prominent immunoreactive band of ~120 kDa, corresponding to the (Na+, K+)-ATPase alpha-subunit, was identified. The enzyme exhibited two ATP hydrolyzing sites with K0.5 = 0.0003 ±â€¯0.00002 and 0.05 ±â€¯0.003 mmol L-1 and was stimulated by low sodium ion concentrations. Potassium and ammonium ions also stimulated enzyme activity with similar K0.5 values of 0.08 ±â€¯0.004 and 0.06 ±â€¯0.003 mmol L-1, respectively. Ouabain inhibition profile suggested a single enzyme isoform with a KI value of 2.10 ±â€¯0.16 mmol L-1. Our findings showed significant kinetic differences in the (Na+, K+)-ATPase in Penaeus vannamei compared to marine and freshwater crustaceans. We expect our results to enhance understanding of the modulation of gill (Na+, K+)-ATPase in Penaeus vannamei and to provide a valuable tool for studying the shrimp's biochemical acclimation to varying salinity conditions.

5.
Toxicol Sci ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363503

ABSTRACT

Benzalkonium chlorides (BACs) are commonly used disinfectants in a variety of consumer and food-processing settings, and the COVID-19 pandemic has led to increased usage of BACs. The prevalence of BACs raises the concern that BAC exposure could disrupt the gastrointestinal microbiota, thus interfering with the beneficial functions of the microbes. We hypothesize that BAC exposure can alter the gut microbiome diversity and composition, which will disrupt bile acid homeostasis along the gut-liver axis. In this study, male and female mice were exposed orally to d7-C12- and d7-C16-BACs at 120 µg/g/day for one week. UPLC-MS/MS analysis of liver, blood, and fecal samples of BAC-treated mice demonstrated the absorption and metabolism of BACs. Both parent BACs and their metabolites were detected in all exposed samples. Additionally, 16S rRNA sequencing was carried out on the bacterial DNA isolated from the cecum intestinal content. For female mice, and to a lesser extent in males, we found that treatment with either d7-C12- or d7-C16-BAC led to decreased alpha diversity and differential composition of gut bacteria with notably decreased actinobacteria phylum. Lastly, through a targeted bile acid quantitation analysis, we observed decreases in secondary bile acids in BAC-treated mice, which was more pronounced in the female mice. This finding is supported by decreases in bacteria known to metabolize primary bile acids into secondary bile acids, such as the families of Ruminococcaceae and Lachnospiraceae. Together, these data signify the potential impact of BACs on human health through disturbance of the gut microbiome and gut-liver interactions.

6.
Sci Total Environ ; 954: 176699, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366584

ABSTRACT

Electrodialysis (ED) is a cost-effective membrane technology used is a variety of fields for desalination and concentration. This feasibility study explores the potential of ED as an NH4-N recovery technology from anaerobic digestate liquor (ADL), and the use of the concentrate as a nitrogen source in an industrial wastewater treatment plant (WWTP). Three neighboring WWTPs were the focus of this study: Two municipal WWTPs A and B, operating anaerobic sludge stabilization, and a pulp & paper WWTP C, utilizing urea as a nitrogen source. Two-stage bench-scale experiments with the municipal ADL from WWTP A and WWTP B were conducted, and performance indicators were determined. A concentration of approximately 10 g NH4-N/L and 15 g NH4-N/L was obtained in stages 1 and 2, respectively. The NH4-N removal was above 85 % in all experiment, while recovery varied between 25 and 95 %. The specific energy consumption (SEC) was on average 12.9 kWh/kg NH4-N. Moreover, mass and energy balances in a model WWTP demonstrated that an ED side-stream treatment for NH4-N removal coupled with microfiltration (MF) pre-treatment results in a net energy gain, also without the added benefit of the ED concentrate as a nitrogen source.

7.
J Vet Intern Med ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39368059

ABSTRACT

BACKGROUND: Minimally invasive approaches are the standard for treatment of upper urinary tract uroliths in humans. OBJECTIVE: To describe the medical dissolution of upper urinary tract uroliths in a series of dogs and report clinical outcomes. ANIMALS: 6 female dogs (9 kidneys). METHODS: Retrospective case series. A review of medical records in dogs that underwent medical dissolution of upper urinary tract uroliths utilizing diet, administration of antibiotics, and double-pigtail ureteral stent(s) placement, when indicated, was performed. Medical management was generally continued for 4 weeks beyond urolith dissolution. Information on biochemical, microbiological, imaging, and clinical outcomes before and after dissolution were recorded. RESULTS: Six dogs (9 kidneys) were included with bilateral (3) or unilateral (3) nephrolithiasis, ureterolithiasis, or a combination. A ureteral stent(s) was placed endoscopically in 5/6 dogs (6/9 kidneys) for obstructive ureterolithiasis (n = 5) or a nonobstructive massive nephrolith (n = 1). All dogs had a positive urine culture of Staphylococcus pseudintermedius with a median urine pH of 7.25 (range, 6.5-8) and 4/5 had pyonephrosis. All dogs had initial evidence of urolith dissolution at a median of 1.1 months (range, 0.42-5.9), with complete dissolution of ureteroliths at a median of 3.9 months (range, 1.5-7.6), nephroliths at 5.3 months (range, 1.5-7.6), and lower urinary tract uroliths at 0.87 months (range, 0.42-5.9). Stents were removed in 3/6 once dissolution was documented. The median follow-up time was 519 days (range, 177-2492 days). CONCLUSION AND CLINICAL IMPORTANCE: Medical dissolution and decompression of upper urinary tract struvite uroliths should be considered a minimally invasive treatment for dogs before more invasive options.

8.
Water Res ; 267: 122490, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39368186

ABSTRACT

The ammonium (NH4+) removal efficiency in constructed wetlands (CWs) is often limited by insufficient oxygen. In this study, an extract of Eucalyptus robusta Smith leaves was used to prepare multivalent manganese oxides (MVMOs) as substrates, which were used to drive manganese oxide (MnOx) reduction coupled to anaerobic NH4+ oxidation (Mnammox). To investigate the effects and mechanisms of MVMOs on ammonium nitrogen (NH4+-N) removal, four laboratory-scale CWs (0 %/5 %/15 %/25 % volume ratios of MVMOs) were set up and operated as continuous systems. The results showed that compared to controlled C-CW (0 % MVMOs), Mn25-CW (25 % MVMOs) improved the average NH4+-N removal efficiency from 24.31 % to 80.51 %. Furthermore, N2O emissions were reduced by 81.12 % for Mn25-CW. Isotopic tracer incubations provided direct evidence of Mnammox occurrence in Mn-CWs, contributing to 18.05-43.64 % of NH4+-N removal, primarily through the N2-producing pathway (73.54-90.37 %). Notably, batch experiments indicated that Mn(III) played a predominant role in Mnammox. Finally, microbial analysis revealed the highest abundance of the nitrifying bacteria Nitrospira and Mn-cycling bacteria Pseudomonas, Geobacter, Anaeromyxobacter, Geothrix and Novosphingobium in Mn25-CW, corresponding to its superior NH4+-N removal efficiency. The enhancement of NH4+ oxidation, first to hydroxylamine and then to nitrite, in Mn25-CW was attributed to the upregulation of ammonia monooxygenase genes (amoABC and hao). This study enhanced our understanding of Mnammox and provided further support for the use of manganese oxide substrates in CWs for efficient NH4+-N removal.

9.
mBio ; : e0216924, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360821

ABSTRACT

Nitrification is a core process in the global nitrogen (N) cycle mediated by ammonia-oxidizing microorganisms, including ammonia-oxidizing archaea (AOA) as a key player. Although much is known about AOA abundance and diversity across environments, the genetic drivers of the ecophysiological adaptations of the AOA are often less clearly defined. This is especially true for AOA within the genus Nitrosocosmicus, which have several unique physiological traits (e.g., high substrate tolerance, low substrate affinity, and large cell size). To better understand what separates the physiology of Nitrosocosmicus AOA, we performed comparative genomics with genomes from 39 cultured AOA, including five Nitrosocosmicus AOA. The absence of a canonical high-affinity type ammonium transporter and typical S-layer structural genes was found to be conserved across all Nitrosocosmicus AOA. In agreement, cryo-electron tomography confirmed the absence of a visible outermost S-layer structure, which has been observed in other AOA. In contrast to other AOA, the cryo-electron tomography highlighted the possibility that Nitrosocosmicus AOA may possess a glycoprotein or glycolipid-based glycocalyx cell covering outer layer. Together, the genomic, physiological, and metabolic properties revealed in this study provide insight into niche adaptation mechanisms and the overall ecophysiology of members of the Nitrosocosmicus clade in various terrestrial ecosystems. IMPORTANCE: Nitrification is a vital process within the global biogeochemical nitrogen cycle but plays a significant role in the eutrophication of aquatic ecosystems and the production of the greenhouse gas nitrous oxide (N2O) from industrial agriculture ecosystems. While various types of ammonia-oxidizing microorganisms play a critical role in the N cycle, ammonia-oxidizing archaea (AOA) are often the most abundant nitrifiers in natural environments. Members of the genus Nitrosocosmicus are one of the prevalent AOA groups detected in undisturbed terrestrial ecosystems and have previously been reported to possess a range of physiological characteristics that set their physiology apart from other AOA species. This study provides significant progress in understanding these unique physiological traits and their genetic drivers. Our results highlight how physiological studies based on comparative genomics-driven hypotheses can contribute to understanding the unique niche of Nitrosocosmicus AOA.

10.
Sci Total Environ ; : 176711, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366566

ABSTRACT

Electrolytic manganese residue (EMR) and CO2 emissions from the electrolytic manganese metal (EMM) production process present significant challenges to achieving cleaner production within the industry. Given the high capacity for CO2 sequestration and the stability of the sequestered forms, CO2 mineralization methods utilizing minerals or industrial residues have garnered considerable research interest. The efficacy of such methods is fundamentally dependent on the properties of the materials employed. EMR, due to its calcium sulfate dihydrate (CaSO4·2H2O) content, possesses an intrinsic potential for CO2 solidification. In this study, we propose a novel method for CO2 mineralization utilizing EMR, coupled with NH3·H2O recycling. Experimental results indicated that under conditions of a reaction temperature of 55 °C and a pH of approximately 8, each ton of EMR can sequester 0.16 t of CO2, with equilibrium achieved within 10 min. The mineralization mechanism was elucidated using SEM, TG curves, and XRD analyses, which revealed that Ca2+ ions are initially leached from CaSO4·2H2O in the EMR, subsequently precipitating with CO32- ions to form CaCO3. This CaCO3 layer effectively covers the surface of CaSO4·2H2O, inhibiting further Ca2+ release and stabilizing the reaction equilibrium. Furthermore, the ammonia in the solution is regenerated into NH3·H2O, facilitating its reuse and preventing secondary pollution. The utilization of EMR for CO2 mineralization not only mitigates carbon emissions in the EMM production process but also promotes environmentally sustainable practices in the industry. This study highlights a promising pathway towards achieving carbon neutrality and cleaner production in electrolytic manganese production.

11.
Sci Total Environ ; 954: 176674, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368503

ABSTRACT

Ammonium sulfate and dinotefuran are widely used in agricultural practices; however, limited knowledge exists regarding the potential risks associated with their co-exposure. In this study, the impact of ammonium sulfate on the degradation of dinotefuran in four soils was investigated, and the formation of the main metabolites UF, DN, MNG, and NG was also determined. The underlying mechanisms were explored by the impact of ammonium sulfate on soil physicochemical properties as well as soil microorganisms. The half-life of dinotefuran sole exposure in soils were determined between 27.47 and 60.05 days. Co-exposure of ammonium sulfate significantly impeded the degradation of dinotefuran, resulting in 1.70-5.05 times longer half-life, reduced the content of the metabolites and changed their composition. Ammonium sulfate induced significant alterations in the structure and dominance of bacterial communities in the soils. The reduced relative abundance of Bacteroidota, Proteobacteria and Chloroflexi phyla related to dinotefuran degradation. Ammonium sulfate also led to a decrease in soil pH and organic matter content, which were negatively correlated with the degradation. PLS-SEM analysis revealed soil microbial diversity had a significant impact on the degradation of dinotefuran. The findings serve as a cautionary note regarding the risks of co-exposure to fertilizers and pesticides.

12.
Sci Rep ; 14(1): 23175, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369104

ABSTRACT

In this study, experimental reactors for cathodic nitrogen plasma electrolysis were designed by the composition of galvanic (voltaic) and electrolytic cells with wide and narrow connectors filled with tap water and agar solutions. The designed reactor can be used to simultaneously perform and manage nitrification in acidic and alkaline environments. According to the reactor's performance, it can be installed on the irrigation system and used depending on the soil pH of the fields for delivering water and nitrogen species that are effective in growth. The nitrification process was investigated by choosing the optimal reactor with a wide connector based on different changes in oxidation-reduction potential and pH on the anode and cathode sides. The nitrite concentration changed directly with ammonium and nitrate concentrations on the cathode side. It changed inversely and directly with ammonium and nitrate concentrations on the anode side respectively. Nitrite concentration decreased from 5.387 ppm with water connector, to 0.326 ppm with 20% agar solution, and 0.314 ppm with 30% agar solution connectors on the anode side. It increased from 0 ppm to 0.191 ppm with a water connector, 0.405 ppm with 20% agar solution, and 7.454 ppm with 30% agar solution connectors on the cathode side.

13.
Vet Res Commun ; 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365554

ABSTRACT

Didecyl dimethyl ammonium bromide (DDAB) is a quaternary ammonium compound used for the sanitation of drinking water of poultry and water pipelines in farms. There is scarcity of information on the toxicology of DDAB in poultry. This study set out to profile the acute toxicity of DDAB in poultry. Issa brown pullets (n = 34) as experimental birds were orally administered varying doses of DDAB, using a syringe, after 12 h fasting, and observed for toxicity over 14 days. Control birds (n = 10) were similarly given normal saline orally. Toxic signs in the experimental birds were depression, anorexia, adipsia, vocalization with foamy salivation, later emaciation and death. The LD50 was calculated as 458.00 mg/kg. Birds given 2151 mg/kg DDAB died within 24 h, while those treated with 516 mg/kg succumbed on Day 14. At necropsy, grossly, there were necrosis and sloughing of the oesophagus and intestines, pale and friable liver, congested and necrotic lungs, friable popped out kidneys and emaciated carcasses. Microscopically, desquamation and necrosis of the oesophagus, crop, proventriculus and intestines and disruption of the koilin membrane of the gizzard were observed. The lungs, liver and kidneys were congested with mononuclear cellular infiltration plus loss of architecture in the lungs and liver. In conclusion, at high doses, DDAB caused significant toxicity in chickens and these findings provide new information which could serve as a guide in the diagnosis of quaternary ammonium toxicity in chicken. The results could be extrapolated to other quaternary ammonium toxicities in related avian species.

14.
Ecology ; : e4439, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358884

ABSTRACT

The loss of consumers threatens the integrity of ecological systems, but the mechanisms underlying the effects on communities and ecosystems remain difficult to predict. This is, in part, due to the complex roles that consumers play in those systems. Here, we highlight this complexity by quantifying two mechanisms by which molluscan grazers-typically thought of as consumers of their algal resources-facilitate algae on rocky shores. Initial observations in high-zone tide pools revealed that both water-column ammonium concentrations and photosynthetic biomass were higher in pools containing higher densities of grazers, suggesting that local-scale nutrient recycling by the grazers could be enhancing algal biomass. We assessed this possibility by experimentally manipulating grazer abundances at the level of whole tide pools but controlling access of those grazers to experimental plots within each pool. Contrary to predictions that algal biomass inside grazer exclusions would increase as grazer abundances in the pools increased, we found that algal biomass inside grazer-exclusion fences was unaffected by grazer abundances. Instead, the consumptive effects of grazers that were evident at low grazer abundances transitioned to facilitative effects as experimentally manipulated grazer abundances increased. This finding suggested that these positive interactions were associated with the physical presence of grazers and not just grazers' effects on nutrient availability. Subsequent experiments highlighted the potential role of "slime"-the pedal mucous trails left behind as the mollusks crawl on the substratum-in promoting the recruitment of algae and thereby mediating a spatial subsidy of new organic matter into the system. Furthermore, different grazer groups contributed disproportionately to ammonium excretion (i.e., turban snails) versus slime production (i.e., littorine snails), suggesting a potential role for grazer diversity. Our work highlights the complex ways in which consumers affect their resources, including multiple, complementary mechanisms by which these grazers facilitate the algae they consume.

15.
Heliyon ; 10(17): e37397, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39296202

ABSTRACT

Three different ammonium salts, namely diammonium hydrogen phosphate, ammonium bicarbonate, and ammonium carbonate, were added into bread samples as an additive to analyze their effects on bread. The color, texture, deoxyfructosazine of the functional substance, and pyrazine flavor substance, which were closely related to the quality of the bread, were analyzed. The addition of ammonium salts during the preparation of bread led to the darkening and hardening of the bread. Meanwhile, compared with the control group, the Maillard reaction between the ammonium salt and reducing sugar in bread produced functional deoxyfructosazine and pyrazine flavor substances. Among the three ammonium salts, the addition of diammonium hydrogen phosphate at different concentrations had the most substantial effect on the quality of baked bread, including the production of more deoxyfructosazine, and more types of pyrazine flavor substances. Through an analysis of the value of odor activity, it was found that the addition of diammonium hydrogen phosphate had a more remarkable contribution to the flavor of the bread. The maximum total content of deoxyfructosazine reached 1292.23 µg/g, and the value of odor activity reached 39.86 in this study. These results are extremely useful in the production of bread with superior flavor and functional characteristics. Also, they provide a guideline for the selection of ammonium salt as an additive in baked goods.

16.
Front Cell Dev Biol ; 12: 1452824, 2024.
Article in English | MEDLINE | ID: mdl-39324070

ABSTRACT

Ferroptosis, a form of regulated cell death mediated by lipid peroxidation (LPO), has become the subject of intense research due to its potential therapeutic applications in cancer chemotherapy as well as its pathophysiological role in ischemic organ injury. The role of mitochondrial lipid peroxidation (LPO) in ferroptosis remains poorly understood. We show that supplementation of exogenous iron in the form of ferric ammonium citrate (FAC) in combination with buthionine sulfoximine (BSO, an inhibitor of glutathione biosynthesis) induces mitochondrial lipid peroxidation that precedes ferroptosis in normal human fibroblasts. The mitochondrial-targeted antioxidant SkQ1 and the redox mediator methylene blue, which inhibits the production of reactive oxygen species (ROS) in complex I of the mitochondrial electron transport chain, prevent both mitochondrial lipid peroxidation and ferroptosis, but do not affect the cytosolic ROS accumulation. These data indicate that mitochondrial lipid peroxidation is required for ferroptosis induced by exogenous iron. FAC in the absence of BSO stimulates mitochondrial peroxidation without reducing cell viability. Glutathione depletion by BSO does not affect FAC-induced mitochondrial LPO but strongly stimulates the accumulation of ROS in the cytosol. These data allow us to conclude that mitochondrial LPO is not sufficient for ferroptosis and that cytosolic ROS mediates additional oxidative events that stimulate ferroptosis in conjunction with mitochondrial LPO.

17.
Water Res ; 266: 122400, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39260195

ABSTRACT

The iron redox cycle can enhance anammox in treating low-strength ammonia wastewater. However, maintaining an effective iron redox cycle and suppressing nitrite-oxidizing bacteria in a one-stage partial nitritation and anammox (PN/A) process poses challenges during long-term aeration. We proposed a novel and simple strategy to achieve an efficient iron redox cycle in an iron-mediated anoxic-microaerobic (A/O) process by controlling organic matter (OM) at medium-strength levels (30-110 mg COD/L) in microaerobic granular sludge (MGS)-dominated reactor. The developed A/O process consistently achieved >90 % OM removal and >75 % nitrogen removal. Medium-strength OM varied the penetration depths of dissolved oxygen (DO) in MGS, regulating redox conditions and promoting redox reactions across MGS layers, thus activating accumulated inert iron oxides. Ammonia-oxidizing bacteria (Nitrosomonas), iron-reducing bacteria (e.g., Ignavibacterium, Geobacter), and anammox bacteria (Ca. Kuenenia) coexisted harmoniously in MGS. This coexistence ensured high anammox and Feammox rates along with a robust iron redox cycle, thereby mitigating the adverse impacts of fluctuating DO and OM on one-stage PN/A process stability. The identification of iron reduction-associated genes within Ca. Kuenenia, Ignavibacterium, and Geobacter suggests their potential roles in supporting Feammox coupled in one-stage PN/A process. This study introduces an iron-cycle-driven A/O process as an energy-efficient alternative for simultaneous carbon and nitrogen removal from low-strength wastewater.

18.
Bioresour Technol ; : 131470, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39260729

ABSTRACT

Achieving stable and high-rate partial nitrification (PN) remains a worldwide technical conundrum in low-strength mainstream conditions. This study successfully achieved ultrarapid mainstream PN within 8 days under a saturated dissolved oxygen (DO) supply strategy, reaching a record-breaking PN rate of over 1.0 kg N m-3 d-1 treating municipal wastewater. Stable PN was maintained for over 200 days with an ultrahigh nitrite accumulation ratio of 98.5 ±â€¯0.9 %, resilient to seasonal fluctuations in temperature (16.0-25.6 °C) and load (NH4+-N, 40-80 mg N/L). Kinetics revealed a remarkable 159.1-fold increase in the maximum activity ratio of ammonia-oxidizing bacteria (AOB) to nitrite-oxidizing bacteria (NOB). The faster response of AOB to saturated DO stimulated its highest activity difference with NOB, contributing to the AOB (Nitrosomonas oligotropha) boom and the elimination of NOB groups (-99.9 %). Our results highlight the importance of promoting AOB rather than solely focusing on NOB suppression for initiating and stabilizing high-rate mainstream PN.

19.
Water Res ; 266: 122368, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39270503

ABSTRACT

The wide utilization of poly dimethyl diallyl ammonium chloride (polyDADMAC) in industrial conditions leads to its accumulation in waste activated sludge (WAS), thereby affecting subsequent WAS treatment processes. This work investigated the interaction between polyDADMAC and WAS components from the perspective of anaerobic digestion (AD) performance and anaerobes adaptability variation. The results showed that polyDADMAC decreased the content of biodegradable organic substrates (i.e., soluble protein and carbohydrate) by binding with the functional groups and then settling to the solid phase, thus impeding the subsequent utilization. Higher concentrations of polyDADMAC prompted an initial protective response of excreting organic substrates into extracellular environment, but its toxicity to archaea was irreversible. Consequently, polyDADMAC inhibited the processes of AD and induced a 30 % reduction in methane production with 0.05 g polyDADMAC/g total suspended solid (TSS) addition. Changes in microbial community structure indicated that archaea involved in methane production (e.g., Anaerolineaceae sp. and Methanosaeta sp.) were inhibited when exposed to polyDADMAC. However, several adaptive bacteria with the ability of utilizing complex organics and participating in nitrogen cycle (e.g., Aminicenantales sp. and Ellin6067 sp.) were enriched with the above dosage. Specifically, the decreased abundance of genes relevant to methane metabolism pathway (i.e., mer and cdh) and increased abundance of genes involved in metabolism of cofactors and vitamins (e.g., nad and thi) indicated the toxicity of polyDADMAC and the irritant response of microflora. Moreover, polyDADMAC underwent degradation in AD system, resulting in a 12 % reduction in 15 days, accompanied by an increase in the -NO2 functional group. In general, this study provided a thorough understanding of the interaction between polyDADMAC and WAS components, raising concerns regarding the elimination of endogenous pollutants during AD.

20.
Comp Biochem Physiol C Toxicol Pharmacol ; 287: 110036, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251011

ABSTRACT

Herbicide exposure poses a higher risk to reptiles due to their frequent contact with soil. Besides, food restriction is also a common environmental pressure that can seriously affect the survival of reptiles. The adaptive strategies of reptiles in the face of emerging herbicide pollution and food shortage challenges are not yet known. Therefore, Eremias Argus (a kind of small reptile) was selected as the model to simulate the real scenario of food shortage in lizards, aiming to explore the comprehensive impact of glufosinate-ammonium (GLA: an emerging herbicide) and food restriction on lizards. The results revealed that lizards often regulate their physiological and biochemical activities through body thermal selection and tend to choose lower body temperature, reduce digestibility, and actively participate in fat energy mobilization to avoid oxidative damage in the state of hunger, finally in order to achieve homeostasis. However, herbicide GLA disrupted the lizards' efforts to resist the stress of food shortage and interfered with the normal thermoregulation and energy mobilization strategies of lizards facing starvation. The results of this study would improve our understanding of the impacts of Lizards under extreme stresses, help supplement reptile toxicology data and provide scientific basis for the risk assessment of herbicide GLA.

SELECTION OF CITATIONS
SEARCH DETAIL