Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 688
Filter
1.
Arch Gynecol Obstet ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955819

ABSTRACT

PURPOSE: This is a retrospective comparative study. We aimed to analyze the results of karyotype and chromosomal microarray analysis (CMA) of amniotic fluid across different gestational weeks and evaluate the clinical value in prenatal diagnosis, particularly in the late pregnancies. METHODS: Samples from 580 pregnant women of 18-23 weeks of gestation (mid-gestation group) and 196 pregnant women of 24-32 weeks of gestation (late group) were performed both standard G-band karyotype analysis and CMA. RESULTS: Among the 580 pregnant women in the routine group, the most common indications were positive Down's screening (213/580, 36.7%), followed by advanced maternal age (196/580, 33.8%); while fetal structural anomalies on ultrasonography were the top reason for amniocentesis in the late group (56/196, 28.6%). In the routine group, the total detection rate was 12.1% (70/580), of which 4.1% (24/580) were identified by karyotype analysis and 11.2% (65/580) by CMA. The total detection rate was 15.3% (30/196) in the late group, of which 5.1% (10/196) were detected by karyotype analysis, and 14.3% (28/196) by CMA. CONCLUSION: Karyotype analysis and CMA are complementary in detecting chromosomal abnormalities. Amniotic cavity puncture in the karyotype analysis in 18-23 weeks of gestation and 24-32 weeks of gestation is safe and effective, more obvious effect on the latter.

2.
Am J Obstet Gynecol ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914189

ABSTRACT

BACKGROUND: Amniocentesis for genetic diagnosis is most commonly done between 15 and 22 weeks of gestation, but can be performed at later gestational ages. The safety and genetic diagnostic accuracy of amniocentesis have been well-established through numerous large-scale, multicenter studies for procedures before 24 weeks, but comprehensive data on late amniocentesis remain sparse. OBJECTIVES: To evaluate the indications, diagnostic yield, safety, and maternal and fetal outcomes associated with amniocentesis performed at or beyond 24 weeks of gestation. STUDY DESIGN: We conducted an international, multicenter retrospective cohort study examining pregnant individuals who underwent amniocentesis for prenatal diagnostic testing at gestational ages between 24w0d and 36w6d. The study, spanning from 2011 to 2022, involved nine referral centers. We included singleton or twin pregnancies with documented outcomes, excluding cases where other invasive procedures were performed during pregnancy or if amniocentesis was conducted for obstetric indications. We analyzed indications for late amniocentesis, types of genetic tests performed, their results, and the diagnostic yield, along with pregnancy outcomes and post-procedure complications. RESULTS: Of the 752 pregnant individuals included in our study, late amniocentesis was primarily performed for the prenatal diagnosis of structural anomalies (91.6%), followed by suspected fetal infection (2.3%) and high-risk findings from cell-free DNA screening (1.9%). The median gestational age at the time of the procedure was 28w5d, and 98.3% of pregnant individuals received results of genetic testing before birth or pregnancy termination. The diagnostic yield was 22.9%, and a diagnosis was made 2.4 times more often for fetuses with anomalies in multiple organ systems (36.4%) compared to those with anomalies in a single organ system (15.3%). Additionally, the diagnostic yield varied depending on the specific organ system involved, with the highest yield for musculoskeletal anomalies (36.7%) and hydrops fetalis (36.4%) when a single organ system or entity was affected. The most prevalent genetic diagnoses were aneuploidies (46.8%), followed by copy number variants (26.3%) and monogenic disorders (22.2%). The median gestational age at delivery was 38w3d, with an average of 59 days between the procedure and delivery date. The overall complication rate within two weeks post-procedure was 1.2%. We found no significant difference in the rate of preterm delivery between pregnant individuals undergoing amniocentesis between 24-28 weeks and those between 28-32 weeks, reinforcing the procedure's safety across these gestational periods. CONCLUSIONS: Late amniocentesis, at or after 24 weeks gestation, especially for pregnancies complicated by multiple congenital anomalies, has a high diagnostic yield and a low complication rate, underscoring its clinical utility. It provides pregnant individuals and their providers with a comprehensive diagnostic evaluation and results before delivery, enabling informed counseling and optimized perinatal and neonatal care planning.

3.
Cureus ; 16(6): e61654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841293

ABSTRACT

Aim This study aims to assess the effect of implementing an enhanced prenatal genetic checklist to guide the provider's discussion on both screening and diagnostic options for fetal aneuploidy testing at the initial prenatal visit. Methods A retrospective quality improvement (QI) project was performed at a single, large, urban academic medical center. The implementation of this project was prospective; however, data was examined retrospectively after the QI initiative was implemented for three months. Patients were included if they were less than 24 weeks gestational age with a live intrauterine gestation at their initial obstetric (OB) visit. Patients less than 18 years old at the initial OB visit were excluded. The results were analyzed using the statistical software R. Chi-squared tests were used to examine proportional differences between the pre- and post-intervention groups with respect to demographic and clinical characteristics and documented genetic counseling discussions. Results A total of 416 patients were included in the final cohort. As measured by documentation, the rate of discussion of diagnostic prenatal genetic testing increased significantly from the pre-intervention proportion of 54% to the post-intervention proportion of 72% (p < 0.001). In the subgroup analysis of patients with advanced maternal age, the rate of discussion of diagnostic prenatal genetic testing increased significantly from the pre-intervention proportion of 53% to the post-intervention proportion of 83% (p = 0.003), and the rate of genetics counseling referrals made at the initial prenatal visit increased significantly from 4% pre-intervention to 38% post-intervention (p < 0.001). Conclusions The use of an enhanced prenatal genetic checklist led to increased discussion of diagnostic fetal aneuploidy testing and increased rates of referral to genetics counseling.

4.
Taiwan J Obstet Gynecol ; 63(3): 391-393, 2024 May.
Article in English | MEDLINE | ID: mdl-38802204

ABSTRACT

OBJECTIVE: We present low-level mosaic trisomy 21 at amniocentesis and cordocentesis in a pregnancy associated with a favorable fetal outcome. CASE REPORT: A 26-year-old, primigravid woman underwent amniocentesis at 17 weeks of gestation because of positive non-invasive prenatal testing (NIPT) for trisomy 21 at 16 weeks of gestation. Amniocentesis revealed a karyotype of 47,XX,+21[3]/46,XX[17], and multiplex ligation-dependent probe amplification (MLPA) on uncultured amniocytes revealed rsa X(P095) × 2, (13, 18, 21) × 2. She underwent cordocentesis (cord blood sampling) at 21 weeks of gestation which revealed a karyotype of 47,XX,+21[2]/46,XX[48]. At 27 weeks of gestation, she was referred to our hospital for genetic counseling, and repeat amniocentesis revealed a karyotype of 46,XX in 20/20 colonies. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis on the DNA extracted from uncultured amniocytes and parental bloods excluded uniparental disomy (UPD) 21. Array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed arr (1-22,X) × 2, Y × 0 with no genomic imbalance. Interphase fluorescence in situ hybridization (FISH) analysis on 104 uncultured amniocytes detected one cell (1/104 = 0.9%) with trisomy 21, while the rest cells were disomy 21, compared with 0% (0/100) in the normal control. The woman was encouraged to continue the pregnancy. The pregnancy was carried to 38 weeks of gestation, and a 2771-g female baby was delivered no phenotypic abnormality. aCGH analysis on the cord blood showed arr (1-22,X) × 2, Y × 0 with no genomic imbalance. The umbilical cord had a karyotype of 47,XX,+21[3]/46,XX[37]. The placenta had a karyotype of 46,XX. When follow-up at age 3½ months, the neonate was phenotypically normal and had normal development. The peripheral blood had a karyotype of 46,XX in 40/40 cells. Interphase FISH analysis on buccal mucosal cells detected normal disomy 21 cells in 100/100 cells. CONCLUSION: Low-level mosaic trisomy 21 at amniocentesis and cordocentesis in the second trimester can be associated with perinatal progressive decrease of the trisomy 21 cell line and a favorable fetal outcome.


Subject(s)
Amniocentesis , Cordocentesis , Down Syndrome , Mosaicism , Pregnancy Trimester, Second , Humans , Female , Pregnancy , Adult , Down Syndrome/diagnosis , Down Syndrome/genetics , Mosaicism/embryology , Infant, Newborn , Live Birth/genetics , Noninvasive Prenatal Testing/methods , Karyotyping , Pregnancy Outcome
5.
Taiwan J Obstet Gynecol ; 63(3): 394-397, 2024 May.
Article in English | MEDLINE | ID: mdl-38802205

ABSTRACT

OBJECTIVE: We present low-level mosaic trisomy 21 at amniocentesis in a pregnancy with a favorable fetal outcome. CASE REPORT: A 38-year-old, gravida 2, para 1, woman underwent amniocentesis at 17 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 47,XY,+21[4]/46,XY[34]. Prenatal ultrasound findings were normal. At 27 weeks of gestation, she was referred for genetic counseling, and the cultured amniocytes had a karyotype of 47,XY,+21[2]/46,XY[26]. Quantitative fluorescent polymerase chain reaction (QF-PCR) analysis on the DNA extracted from uncultured amniocytes and parental bloods excluded uniparental disomy (UPD) 21. Interphase fluorescence in situ hybridization (FISH) analysis on uncultured amniocytes revealed 30% (30/100 cells) mosaicism for trisomy 21. Array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes revealed the result of arr 21q11.2q22.3 × 2.25, consistent with 20%-30% mosaicism for trisomy 21. The parental karyotypes were normal. The woman was advised to continue the pregnancy, and a 3510-g phenotypically normal male baby was delivered at 39 weeks of gestation. Cytogenetic analysis of the cord blood, umbilical cord and placenta revealed the karyotypes of 47,XY,+21[1]/46,XY[39], 47,XY,+21[2]/46,XY[38] and 46,XY in 40/40 cells, respectively. When follow-up at age 1 year and 2 months, the neonate was normal in phenotype and development. The peripheral blood had a karyotype of 46,XY in 40/40 cells, and interphase FISH analysis on uncultured buccal mucosal cells showed 6.4% (7/109 cells) mosaicism for trisomy 21. CONCLUSION: Low-level mosaic trisomy 21 at amniocentesis can be associated with cytogenetic discrepancy between cultured amniocytes and uncultured amniocytes, perinatal progressive decrease of the trisomy 21 cell line and a favorable fetal outcome.


Subject(s)
Amniocentesis , Comparative Genomic Hybridization , Down Syndrome , In Situ Hybridization, Fluorescence , Mosaicism , Humans , Pregnancy , Female , Mosaicism/embryology , Adult , Down Syndrome/genetics , Down Syndrome/diagnosis , Infant, Newborn , Cell Line , Cells, Cultured , Karyotyping/methods , Amnion/cytology , Male
6.
Taiwan J Obstet Gynecol ; 63(3): 398-401, 2024 May.
Article in English | MEDLINE | ID: mdl-38802206

ABSTRACT

OBJECTIVE: We present mosaic distal 10q deletion at prenatal diagnosis in a pregnancy associated with a favorable fetal outcome. CASE REPORT: A 40-year-old, gravida 2, para 0, woman underwent amniocentesis at 16 weeks of gestation because of advanced maternal age. Amniocentesis revealed a karyotype of 46,XY, del(10) (q26.13)[6]/46,XY[17]. Simultaneous array comparative genomic hybridization (aCGH) analysis on the DNA extracted from uncultured amniocytes showed 35% mosaicism for the 10q26.13q26.3 deletion. At 22 weeks of gestation, she underwent cordocentesis which revealed a karyotype of 46,XY,del(10) (q26.13)[16]/46,XY[24]. Prenatal ultrasound findings were normal. At 24 weeks of gestation, she was referred for genetic counseling, and repeat amniocentesis revealed a karyotype of 46,XY,del(10) (q26.13)[4]/46,XY[22]. The parental karyotypes were normal. Molecular genetic analysis on uncultured amniocytes revealed no uniparental disomy (UPD) 10 by quantitative fluorescence polymerase chain reaction (QF-PCR), arr 10q26.13q26.3 × 1.6 (40% mosaicism) by aCGH, and 29.8% (31/104 cells) mosaicism for the distal 10q deletion by interphase fluorescence in situ hybridization (FISH). The woman was advised to continue the pregnancy, and a phenotypically normal 2,900-g male baby was delivered at 39 weeks of gestation. The cord blood had a karyotype of 46,XY,del(10) (q26.13)[6]/46,XY[34], and both the umbilical cord and the placenta had the karyotype of 46,XY. When follow-up at age four months, the neonate was normal in phenotype and development. The peripheral blood had a karyotype of 46,XY,del(10) (q26.13)[5]/46,XY[35], and interphase FISH analysis on buccal mucosal cells showed 8% (8/102 cells) mosaicism for distal 10q deletion. CONCLUSION: Mosaic distal 10q deletion with a normal cell line at prenatal diagnosis can be associated with a favorable fetal outcome and perinatal progressive decrease of the aneuploid cell line.


Subject(s)
Amniocentesis , Comparative Genomic Hybridization , Cordocentesis , Mosaicism , Humans , Pregnancy , Female , Mosaicism/embryology , Adult , Chromosomes, Human, Pair 10/genetics , Chromosome Deletion , Infant, Newborn , Aneuploidy , Karyotyping
7.
Birth Defects Res ; 116(5): e2348, 2024 May.
Article in English | MEDLINE | ID: mdl-38801241

ABSTRACT

BACKGROUND: Absent or hypoplastic nasal bone (AHNB) on first or second-trimester ultrasonography (USG) is an important soft marker of Down syndrome. However, due to its varied incidence in euploid and aneuploid fetuses, there is always a dilemma of whether to go for invasive fetal testing for isolated AHNB. This study aims to assess outcomes specifically within the context of Indian ethnicity women. MATERIALS AND METHODS: This was a prospective observational study. All patients who reported with AHNB in the first- or second-trimester USG were included. Genetic counseling was done, and noninvasive and invasive testing was offered. Chromosomal anomalies were meticulously recorded, and pregnancy was monitored. RESULTS: The incidence of AHNB in our study was 1.16% (47/4051). Out of 47 women with AHNB, the isolated condition was seen in 32 (0.78%) cases, while AHNB with structural anomalies was seen in nine cases (0.22%). Thirty-nine women opted for invasive testing. Six out of 47 had aneuploidy (12.7%), while two euploid cases (4.25%) developed nonimmune hydrops. The prevalence of Down syndrome in fetuses with AHNB was 8.5% (4/47) and 0.42% (17/4004) in fetuses with nasal bone present. This difference was statistically significant (p = .001). CONCLUSION: The results indicate that isolated AHNB cases should be followed by a comprehensive anomaly scan rather than immediately recommending invasive testing. However, invasive testing is required when AHNB is associated with other soft markers or abnormalities. As chromosomal microarray is more sensitive than standard karyotype in detecting chromosomal aberrations, it should be chosen over karyotype.


Subject(s)
Down Syndrome , Nasal Bone , Ultrasonography, Prenatal , Humans , Female , Nasal Bone/abnormalities , Nasal Bone/diagnostic imaging , Pregnancy , Prospective Studies , Down Syndrome/genetics , Adult , Ultrasonography, Prenatal/methods , Aneuploidy , India , Genetic Counseling , Prenatal Diagnosis/methods , Parents , Pregnancy Trimester, Second , Chromosome Aberrations
8.
Am J Obstet Gynecol ; 2024 04 27.
Article in English | MEDLINE | ID: mdl-38685550

ABSTRACT

BACKGROUND: Brain injury and poor neurodevelopment have been consistently reported in infants and adults born before term. These changes occur, at least in part, prenatally and are associated with intra-amniotic inflammation. The pattern of brain changes has been partially documented by magnetic resonance imaging but not by neurosonography along with amniotic fluid brain injury biomarkers. OBJECTIVE: This study aimed to evaluate the prenatal features of brain remodeling and injury in fetuses from patients with preterm labor with intact membranes or preterm premature rupture of membranes and to investigate the potential influence of intra-amniotic inflammation as a risk mediator. STUDY DESIGN: In this prospective cohort study, fetal brain remodeling and injury were evaluated using neurosonography and amniocentesis in singleton pregnant patients with preterm labor with intact membranes or preterm premature rupture of membranes between 24.0 and 34.0 weeks of gestation, with (n=41) and without (n=54) intra-amniotic inflammation. The controls for neurosonography were outpatient pregnant patients without preterm labor or preterm premature rupture of membranes matched 2:1 by gestational age at ultrasound. Amniotic fluid controls were patients with an amniocentesis performed for indications other than preterm labor or preterm premature rupture of membranes without brain or genetic defects whose amniotic fluid was collected in our biobank for research purposes matched by gestational age at amniocentesis. The group with intra-amniotic inflammation included those with intra-amniotic infection (microbial invasion of the amniotic cavity and intra-amniotic inflammation) and those with sterile inflammation. Microbial invasion of the amniotic cavity was defined as a positive amniotic fluid culture and/or positive 16S ribosomal RNA gene. Inflammation was defined by amniotic fluid interleukin 6 concentrations of >13.4 ng/mL in preterm labor and >1.43 ng/mL in preterm premature rupture of membranes. Neurosonography included the evaluation of brain structure biometric parameters and cortical development. Neuron-specific enolase, protein S100B, and glial fibrillary acidic protein were selected as amniotic fluid brain injury biomarkers. Data were adjusted for cephalic biometrics, fetal growth percentile, fetal sex, noncephalic presentation, and preterm premature rupture of membranes at admission. RESULTS: Fetuses from mothers with preterm labor with intact membranes or preterm premature rupture of membranes showed signs of brain remodeling and injury. First, they had a smaller cerebellum. Thus, in the intra-amniotic inflammation, non-intra-amniotic inflammation, and control groups, the transcerebellar diameter measurements were 32.7 mm (interquartile range, 29.8-37.6), 35.3 mm (interquartile range, 31.2-39.6), and 35.0 mm (interquartile range, 31.3-38.3), respectively (P=.019), and the vermian height measurements were 16.9 mm (interquartile range, 15.5-19.6), 17.2 mm (interquartile range, 16.0-18.9), and 17.1 mm (interquartile range, 15.7-19.0), respectively (P=.041). Second, they presented a lower corpus callosum area (0.72 mm2 [interquartile range, 0.59-0.81], 0.71 mm2 [interquartile range, 0.63-0.82], and 0.78 mm2 [interquartile range, 0.71-0.91], respectively; P=.006). Third, they showed delayed cortical maturation (the Sylvian fissure depth-to-biparietal diameter ratios were 0.14 [interquartile range, 0.12-0.16], 0.14 [interquartile range, 0.13-0.16], and 0.16 [interquartile range, 0.15-0.17], respectively [P<.001], and the right parieto-occipital sulci depth ratios were 0.09 [interquartile range, 0.07-0.12], 0.11 [interquartile range, 0.09-0.14], and 0.11 [interquartile range, 0.09-0.14], respectively [P=.012]). Finally, regarding amniotic fluid brain injury biomarkers, fetuses from mothers with preterm labor with intact membranes or preterm premature rupture of membranes had higher concentrations of neuron-specific enolase (11,804.6 pg/mL [interquartile range, 6213.4-21,098.8], 8397.7 pg/mL [interquartile range, 3682.1-17,398.3], and 2393.7 pg/mL [interquartile range, 1717.1-3209.3], respectively; P<.001), protein S100B (2030.6 pg/mL [interquartile range, 993.0-4883.5], 1070.3 pg/mL [interquartile range, 365.1-1463.2], and 74.8 pg/mL [interquartile range, 44.7-93.7], respectively; P<.001), and glial fibrillary acidic protein (1.01 ng/mL [interquartile range, 0.54-3.88], 0.965 ng/mL [interquartile range, 0.59-2.07], and 0.24 mg/mL [interquartile range, 0.20-0.28], respectively; P=.002). CONCLUSION: Fetuses with preterm labor with intact membranes or preterm premature rupture of membranes had prenatal signs of brain remodeling and injury at the time of clinical presentation. These changes were more pronounced in fetuses with intra-amniotic inflammation.

9.
J Clin Virol ; 172: 105675, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38640886

ABSTRACT

BACKGROUND: Congenital CMV infection is the most common congenital infection worldwide and a major cause of neurological impairment and sensorineural hearing loss. Fetal CMV infection is confirmed by a positive PCR test in the amniotic fluid (amniocentesis performed after 18-20 weeks of gestation and at least 8 weeks after maternal infection). However, despite a negative antenatal CMV PCR result, some newborns can be tested positive at birth. Although not widely documented, the prognosis for these babies appears to be good. OBJECTIVES: The aim of this study is to evaluate the long-term prognosis of fetuses with a false-negative AFS for cCMV, with a minimum follow-up period of 6 years. STUDY DESIGN: This is a retrospective cohort study of false-negative amniocentesis reported at the CUB-Hôpital Erasme and Hôpital CHIREC in Brussels between 1985 and 2017. RESULTS: Of the 712 negative CMV PCR amniocenteses, 24 had a CMV PCR positive at birth. The false negative rate was 8.6 %. Of the 24 cases, 9 primary maternal infections occurred in the first trimester, 14 in the second trimester and 1 in the third trimester. Among the 24 children, 2 had symptoms at birth (hyperbilirubinemia and left paraventricular cysts), but all had normal follow-up (minimum 4 years, mean 16,6 years). DISCUSSION: Only 2 cases could be explained by early amniocentesis. Among the others, the false-negative results could be attributed to a low viral load, a delayed infection or, less likely, to a sample degradation. CONCLUSION: Despite the false-negative results, all 24 children had a normal long-term follow-up.


Subject(s)
Amniocentesis , Cytomegalovirus Infections , Pregnancy Complications, Infectious , Humans , Female , Pregnancy , Retrospective Studies , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/congenital , False Negative Reactions , Infant, Newborn , Follow-Up Studies , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/diagnosis , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Amniotic Fluid/virology , Male , Adult , Prognosis , Infectious Disease Transmission, Vertical , Polymerase Chain Reaction/methods
10.
Best Pract Res Clin Obstet Gynaecol ; : 102470, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38637254

ABSTRACT

Obesity rates are increasing world-wide with most of the increase in women of the reproductive age group. While recognised as an important contributor to non-communicable diseases, pregnant women with obesity are particularly at risk of not only maternal and pregnant complications but also have an increased risk of congenital malformations. Furthermore, pregnant obese women are more likely to be older and therefore at a greater risk of aneuploidy. Prenatal diagnosis in these women especially those who are morbidly obese is challenging due not only to their weight but the implications of the increase adiposity on biochemical markers of aneuploidy. In this review we discuss the current challenges in providing prenatal diagnosis for these women including those related to the ergonomics of ultrasound and those inherent in them because of their obesity. Appropriate counselling for these women should include the lower sensitivity of the tests, the difficulties in performing some of the procedures (imaging and invasive testing) as well as the increased risk of structural abnormalities related to their obesity.

12.
Front Genet ; 15: 1371166, 2024.
Article in English | MEDLINE | ID: mdl-38482384
13.
Ann Pediatr Endocrinol Metab ; 29(1): 54-59, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38461806

ABSTRACT

PURPOSE: Deficiency of 21-hydroxylase (21-OHD) is an autosomal recessively inherited disorder that is characterized by adrenal insufficiency and androgen excess. This study was performed to investigate the clinical utility of prenatal diagnosis of 21-OHD using molecular genetic testing in families at risk. METHODS: This study included 27 pregnant women who had previously borne a child with 21-OHD. Fetal tissues were obtained using chorionic villus sampling (CVS) or amniocentesis. After the genomic DNA was isolated, Sanger sequencing of CYP21A2 and multiplex ligation-dependent probe amplification were performed. The clinical and endocrinological findings were reviewed retrospectively. RESULTS: A total of 39 prenatal genetic tests was performed on 27 pregnant women and their fetal tissues. The mean gestational age at the time of testing was 11.7 weeks for CVS and 17.5 weeks for amniocentesis. Eleven fetuses (28.2%) were diagnosed with 21-OHD. Among them, 10 fetuses (90.9%) harbored the same mutation as siblings who were previously diagnosed with 21-OHD. Among these, 4 fetuses (3 males and 1 female) identified as affected were born alive. All 4 patients have been treated with hydrocortisone, 9α-fludrocortisone, and sodium chloride since a mean of 3.7 days of life. The male patients did not show hyponatremia and dehydration, although they harbored pathogenic variants associated with the salt-wasting type of 21-OHD. CONCLUSION: This study demonstrated the diagnostic efficacy and clinical consequences of diagnosis by prenatal genetic testing in families at risk for 21-OHD. All patients identified as affected were treated with hydrocortisone and 9α-fludrocortisone early after birth, which can prevent a life-threatening adrenal crisis.

14.
J Clin Med ; 13(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38337548

ABSTRACT

Background: During the early stages of human fetal development, the fetal skeleton system is chiefly made up of cartilage, which is gradually replaced by bone. Fetal bone development is mainly regulated by the parathyroid hormone parathormone (PTH) and PTH-related protein, with specific calprotectin playing a substantial role in cell adhesion and chemotaxis while exhibiting antimicrobial activity during the inflammatory osteogenesis process. The aim of our study was to measure the levels of PTH and calprotectin in early second trimester amniotic fluid and to carry out a comparison between the levels observed among normal full-term pregnancies (control group) and those of the groups of embryos exhibiting impaired or enhanced growth. Methods: For the present prospective study, we collected amniotic fluid samples from pregnancies that underwent amniocentesis at 15 to 22 weeks of gestational age during the period 2021-2023. Subsequently, we followed up on all pregnancies closely until delivery. Having recorded fetal birthweights, we then divided the neonates into three groups: small for gestational age (SGA), appropriate for gestational age (AGA), and large for gestational age (LGA). Results: In total, 64 pregnancies, including 14 SGA, 10 LGA, and 40 AGA fetuses, were included in our study. Both substances were detected in early second trimester amniotic fluid in both groups. Concentrations of calprotectin differed significantly among the three groups (p = 0.033). AGA fetuses had a lower mean value of 4.195 (2.415-6.425) IU/mL, whereas LGA fetuses had a higher mean value of 6.055 (4.887-13.950) IU/mL, while SGA fetuses had a mean value of 5.475 (3.400-9.177) IU/mL. Further analysis revealed that only LGA fetuses had significantly higher calprotectin concentrations compared to AGA fetuses (p = 0.018). PTH concentration was similar between the groups, with LGA fetuses having a mean value of 13.18 (9.51-15.52) IU/mL, while SGA fetuses had a mean value of 14.18 (9.02-16.00) IU/mL, and AGA fetuses had similar concentrations of 13.35 (9.05-15.81) IU/mL. The differences in PTH concentration among the three groups were not statistically significant (p = 0.513). Conclusions: Calprotectin values in the amniotic fluid in the early second trimester were higher in LGA fetuses compared to those in the SGA and AGA categories. LGA fetuses can possibly be in a state of low-grade chronic inflammation due to excessive fat deposition, causing oxidative stress in LGA fetuses and, eventually, the release of calprotectin. Moreover, PTH concentrations in the amniotic fluid of early second trimester pregnancies were not found to be statistically correlated with fetal growth abnormalities in either LGA or SGA fetuses. However, the early time of collection and the small number of patients in our study should be taken into account.

15.
Taiwan J Obstet Gynecol ; 63(1): 81-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38216276

ABSTRACT

OBJECTIVE: We present a prenatal diagnosis strategy of using Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA) for the detection of maternal uniparental disomy 15/trisomy 15 (UPD(15) mat/T15) mosaicism. CASE REPORT: A 43-year-old woman underwent amniocentesis at 19 weeks of gestation due to a high risk of trisomy 15 (T15) as indicated by non-invasive prenatal testing (NIPT). Cytogenetic analysis revealed a karyotype of 46, XX of cultured amniocytes. Further analysis using copy number variation sequencing (CNV-seq) analysis showed 55 % T15 mosaicism. The second amniocentesis was performed and showed a karyotype of 46, XX and 26 % T15 mosaicism by interphase fluorescence in situ hybridization (FISH). MS-MLPA analysis of uncultured amniocytes showed that the copy number ratio of 15q11-13 ranged from 1.3 to 1.5, and the percentage of methylation was between 70 % and 100 %. MS-MLPA assay of cultured amniocytes showed a copy number ratio of 1 and a methylation percentage of 100 %. Therefore, this fetus was identified to be an UPD(15) mat/T15 mosaicism. The parents decided to terminate the pregnancy. CONCLUSION: MS-MLPA can be used in combination with karyotype and CNV-seq for prenatal diagnosis of NIPT high-risk T15 to avoid missed diagnosis of UPD(15) mat/T15 mosaicism.


Subject(s)
Prader-Willi Syndrome , Uniparental Disomy , Pregnancy , Female , Humans , Adult , In Situ Hybridization, Fluorescence , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/genetics , Multiplex Polymerase Chain Reaction , Trisomy/diagnosis , Trisomy/genetics , DNA Copy Number Variations , Prenatal Diagnosis , Amniocentesis , Mosaicism , Comparative Genomic Hybridization , Chromosomes, Human, Pair 15
16.
Fetal Pediatr Pathol ; 43(2): 157-175, 2024.
Article in English | MEDLINE | ID: mdl-38204144

ABSTRACT

INTRODUCTION: Congenital ichthyosis represents a wide spectrum of diseases. This article reviews prenatal testing for ichthyosis. METHODS: We used pubmed.ncbi.nlm.nih.gov to search for 38 types of congenital ichthyosis combined with 17 words related to prenatal testing. RESULTS: Search resulted in 408 publications covering 13 types of ichthyoses and four types of tests. DISCUSSION: Biochemical testing is diagnostic in trichothiodystrophy, but nonspecific in X-linked ichthyosis and Refsum syndrome. Except in X-linked ichthyosis, biochemical testing requires invasive procedures to obtain fetal skin biopsy, amniocytes, or chorionic villus samples. It is superior to histological and cytological examination of fetal skin biopsy or amniocytes because keratinization occurs later in pregnancy and microscopy cannot differentiate between ichthyosis types. Imaging is more acceptable due to noninvasiveness and routine use, although ultrasonography is operator-dependent, nonspecific, and captures abnormalities at late stage. Molecular tests are described in at-risk pregnancies but testing of free fetal DNA was not described.


Subject(s)
Ichthyosis , Prenatal Diagnosis , Pregnancy , Female , Humans , Prenatal Diagnosis/methods , Chorionic Villi Sampling , Ichthyosis/diagnosis , Ichthyosis/genetics , Ichthyosis/pathology , Skin/pathology , Biopsy
17.
Mol Genet Genomic Med ; 12(3): e2349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263869

ABSTRACT

BACKGROUND: Chromosomal microarray (CMA) is commonly utilized in the obstetrics setting. CMA is recommended when one or more fetal structural abnormalities is identified. CMA is also commonly used to determine genetic etiologies for miscarriages, fetal demise, and confirming positive prenatal cell-free DNA screening results. METHODS: In this study, we retrospectively examined 523 prenatal and 319 products-of-conception (POC) CMA cases tested at Nationwide Children's Hospital from 2011 to 2020. We reviewed the referral indications, the diagnostic yield, and the reported copy number variants (CNV) findings. RESULTS: In our cohort, the diagnostic yield of clinically significant CNV findings for prenatal testing was 7.8% (n = 41/523) compared to POC testing (16.3%, n = 52/319). Abnormal ultrasound findings were the most common indication present in 81% of prenatal samples. Intrauterine fetal demise was the common indication identified in POC samples. The most common pathogenic finding observed in all samples was isolated trisomy 21, detected in seven samples. CONCLUSION: Our CMA study supports the clinical utility of prenatal CMA for clinical management and identifying genetic etiology in POC arrays. In addition, it provides insight to the spectrum of prenatal and POC CMA results as detected in an academic hospital clinical laboratory setting that serves as a reference laboratory.


Subject(s)
Chromosome Disorders , Down Syndrome , Female , Humans , Pregnancy , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Fetal Death , Prenatal Diagnosis/methods , Retrospective Studies
18.
Am J Obstet Gynecol ; 230(6): 665.e1-665.e30, 2024 06.
Article in English | MEDLINE | ID: mdl-38290925

ABSTRACT

BACKGROUND: Preterm delivery is associated with cardiovascular remodeling and dysfunction in children and adults. However, it is unknown whether these effects are caused by the neonatal consequences of preterm birth or if these are already present in utero. OBJECTIVE: We evaluated fetal cardiac morphology and function in fetuses of mothers admitted for preterm labor or preterm prelabor rupture of membranes and the association of these changes with the presence of intra-amniotic infection and/or inflammation. STUDY DESIGN: In this prospective cohort study, fetal echocardiography and amniocentesis were performed at admission in singleton pregnant women with preterm labor and/or preterm prelabor rupture of membranes between 24.0 and 34.0 weeks' gestation with (intra-amniotic infection and/or inflammation group, n=41) and without intra-amniotic infection and/or inflammation (non-intra-amniotic infection and/or inflammation, n=54). Controls (n=48) were outpatient pregnant women without preterm labor or preterm prelabor rupture of membranes. Intra-amniotic infection was defined by a positive amniotic fluid culture or positive 16S ribosomal RNA gene. Intra-amniotic inflammation was defined by using the amniotic fluid interleukin-6 cutoff levels previously reported by our group being >1.43 ng/mL in preterm prelabor rupture of membranes and >13.4 ng/mL in preterm labor. Fetal cardiac morphology and function was evaluated using echocardiography, and troponin-I and N-terminal pro-brain natriuretic peptide concentrations were measured in amniotic fluid from women with preterm labor or preterm prelabor rupture of membranes and compared with 20 amniotic fluid Biobank samples obtained for reasons other than preterm labor or preterm prelabor rupture of membranes or cardiac pathology. The data were adjusted for the estimated fetal weight below the 10th percentile and for preterm prelabor rupture of membranes at admission and also for gestational age at amniocentesis when amniotic fluid biomarkers were compared. RESULTS: From 2018 to 2021, 143 fetuses were included; 95 fetuses were from mothers admitted with a diagnosis of preterm labor or preterm prelabor rupture of membranes, and among those, 41 (28.7%) were in the intra-amniotic infection and/or inflammation group and 54 (37.8%) were in the non-intra-amniotic infection and/or inflammation group. A total of 48 (33.6%) fetuses were included in the control group. Fetuses with preterm labor and/or preterm prelabor rupture of membranes had signs of subclinical cardiac concentric hypertrophy (median left wall thickness of 0.93 [interquartile range, 0.72-1.16] in the intra-amniotic infection and/or inflammation group; 0.79 [0.66-0.92] in the non-intra-amniotic infection and/or inflammation group; and 0.69 [0.56-0.83] in controls; P<.001) and diastolic dysfunction (tricuspid A duration 0.23 seconds [0.21-0.25], 0.24 [0.22-0.25], and 0.21 [0.2-0.23]; P=.007). Systolic function was similar among groups. Higher values of amniotic fluid troponin I (1413 pg/mL [927-2334], 1190 [829-1636], and 841 [671-959]; P<.001) and N-terminal pro-brain natriuretic peptide were detected (35.0%, 17%, and 0%; P=.005) in fetuses with preterm labor or preterm prelabor rupture of membranes when compared with the control group. The highest N-terminal pro-brain natriuretic peptide concentrations were found in the intra-amniotic infection and/or inflammation group. CONCLUSION: Fetuses with preterm labor or preterm prelabor rupture of membranes showed signs of cardiac remodeling and subclinical dysfunction, which were more pronounced in those exposed to intra-amniotic infection and/or inflammation. These findings support that the cardiovascular effects observed in children and adults born preterm have, at least in part, a prenatal origin.


Subject(s)
Amniocentesis , Amniotic Fluid , Chorioamnionitis , Fetal Membranes, Premature Rupture , Obstetric Labor, Premature , Humans , Female , Pregnancy , Adult , Prospective Studies , Echocardiography , Natriuretic Peptide, Brain/blood , Natriuretic Peptide, Brain/metabolism , Cardiomegaly/diagnostic imaging , Case-Control Studies , Peptide Fragments/metabolism , Interleukin-6/metabolism , Pregnancy Complications, Infectious , Fetal Heart/diagnostic imaging , Fetal Heart/physiopathology , Diastole , Cohort Studies
19.
Am J Obstet Gynecol ; 230(3S): S807-S840, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233317

ABSTRACT

Clinical chorioamnionitis, the most common infection-related diagnosis in labor and delivery units, is an antecedent of puerperal infection and neonatal sepsis. The condition is suspected when intrapartum fever is associated with two other maternal and fetal signs of local or systemic inflammation (eg, maternal tachycardia, uterine tenderness, maternal leukocytosis, malodorous vaginal discharge or amniotic fluid, and fetal tachycardia). Clinical chorioamnionitis is a syndrome caused by intraamniotic infection, sterile intraamniotic inflammation (inflammation without bacteria), or systemic maternal inflammation induced by epidural analgesia. In cases of uncertainty, a definitive diagnosis can be made by analyzing amniotic fluid with methods to detect bacteria (Gram stain, culture, or microbial nucleic acid) and inflammation (white blood cell count, glucose concentration, interleukin-6, interleukin-8, matrix metalloproteinase-8). The most common microorganisms are Ureaplasma species, and polymicrobial infections occur in 70% of cases. The fetal attack rate is low, and the rate of positive neonatal blood cultures ranges between 0.2% and 4%. Intrapartum antibiotic administration is the standard treatment to reduce neonatal sepsis. Treatment with ampicillin and gentamicin have been recommended by professional societies, although other antibiotic regimens, eg, cephalosporins, have been used. Given the importance of Ureaplasma species as a cause of intraamniotic infection, consideration needs to be given to the administration of antimicrobial agents effective against these microorganisms such as azithromycin or clarithromycin. We have used the combination of ceftriaxone, clarithromycin, and metronidazole, which has been shown to eradicate intraamniotic infection with microbiologic studies. Routine testing of neonates born to affected mothers for genital mycoplasmas could improve the detection of neonatal sepsis. Clinical chorioamnionitis is associated with decreased uterine activity, failure to progress in labor, and postpartum hemorrhage; however, clinical chorioamnionitis by itself is not an indication for cesarean delivery. Oxytocin is often administered for labor augmentation, and it is prudent to have uterotonic agents at hand to manage postpartum hemorrhage. Infants born to mothers with clinical chorioamnionitis near term are at risk for early-onset neonatal sepsis and for long-term disability such as cerebral palsy. A frontier is the noninvasive assessment of amniotic fluid to diagnose intraamniotic inflammation with a transcervical amniotic fluid collector and a rapid bedside test for IL-8 for patients with ruptured membranes. This approach promises to improve diagnostic accuracy and to provide a basis for antimicrobial administration.


Subject(s)
Chorioamnionitis , Neonatal Sepsis , Postpartum Hemorrhage , Female , Infant, Newborn , Pregnancy , Humans , Chorioamnionitis/diagnosis , Chorioamnionitis/drug therapy , Chorioamnionitis/etiology , Clarithromycin/therapeutic use , Postpartum Hemorrhage/drug therapy , Neonatal Sepsis/diagnosis , Neonatal Sepsis/drug therapy , Anti-Bacterial Agents/therapeutic use , Amniotic Fluid/microbiology , Inflammation/metabolism , Tachycardia
20.
Am J Obstet Gynecol ; 230(2): 109-117.e2, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37473793

ABSTRACT

OBJECTIVE: Recent studies have shown that a dosage of 8 g/d of oral valacyclovir reduces substantially the vertical transmission rate of cytomegalovirus in women with primary cytomegalovirus infection acquired periconceptionally or during the first trimester of pregnancy. This individual patient data meta-analysis aimed to assess the effectiveness and safety of valacyclovir treatment in the secondary prevention of congenital cytomegalovirus infection. DATA SOURCES: MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, the US registry of clinical trials (www. CLINICALTRIALS: gov), and gray literature sources were searched from inception to March 2023. STUDY ELIGIBILITY CRITERIA: Randomized controlled trials and quasi-randomized studies administering 8 g/d of oral valacyclovir in pregnant women with primary cytomegalovirus infection acquired periconceptionally or during the first trimester of pregnancy were included. METHODS: All corresponding authors of the eligible studies were contacted. Cochrane's Risk of Bias 2 and Risk Of Bias In Non-randomised Studies - of Interventions tools were used for the risk of bias assessment. The result of amniocentesis was the primary outcome of interest. A 1-stage individual patient data meta-analysis was performed, using a generalized linear mixed model, clustered by the different trials. A subgroup analysis was performed, assessing separately the effect of valacyclovir in the periconceptional period and first trimester of pregnancy. RESULTS: Overall, 3 studies were included in the analysis (n=527 women). Valacyclovir reduced the vertical transmission rate of cytomegalovirus (adjusted odds ratio, 0.34; 95% confidence interval, 0.18-0.61). This reduction was apparent for both periconceptional period (adjusted odds ratio, 0.34; 95% confidence interval, 0.12-0.96) and first-trimester (adjusted odds ratio, 0.35; 95% confidence interval, 0.16-0.76) infections. Moreover, valacyclovir reduced the rate of neonatal infection (adjusted odds ratio, 0.30; 95% confidence interval, 0.19-0.47), in both periconceptional period (adjusted odds ratio, 0.30; 95% confidence interval, 0.14-0.61) and first-trimester (adjusted odds ratio, 0.30; 95% confidence interval, 0.17-0.54) infections. Furthermore, valacyclovir reduced the rate of termination of pregnancy because of cytomegalovirus-associated severe fetal findings (adjusted odds ratio, 0.23; 95% confidence interval, 0.22-0.24). The gestational age at the initiation of treatment has a positive correlation with all outcomes. The overall prevalence of severe side effects was 2.1%. CONCLUSION: A dosage of 8 g/d of oral valacyclovir reduced the vertical transmission rates of cytomegalovirus following primary maternal infection acquired periconceptionally or in the first trimester of pregnancy, with a low incidence of side effects.


Subject(s)
Cytomegalovirus Infections , Pregnancy Complications, Infectious , Infant, Newborn , Pregnancy , Female , Humans , Valacyclovir/therapeutic use , Pregnancy Trimester, First , Secondary Prevention , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Infections/congenital , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/prevention & control , Pregnancy Complications, Infectious/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...