Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 624
Filter
1.
Front Mol Biosci ; 11: 1376411, 2024.
Article in English | MEDLINE | ID: mdl-38948077

ABSTRACT

Introduction: Alzheimer's disease (AD) is a progressive debilitating neurological disorder representing the most common neurodegenerative disease worldwide. Although the exact pathogenic mechanisms of AD remain unresolved, the presence of extracellular amyloid-ß peptide 1-42 (Aß1-42) plaques in the parenchymal and cortical brain is considered one of the hallmarks of the disease. Methods: In this work, we investigated the Aß1-42 fibrillogenesis timeline up to 48 h of incubation, providing morphological and chemo-structural characterization of the main assemblies formed during the aggregation process of Aß1-42, by atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS), respectively. Results: AFM topography evidenced the presence of characteristic protofibrils at early-stages of aggregation, which form peculiar macromolecular networks over time. SERS allowed to track the progressive variation in the secondary structure of the aggregation species involved in the fibrillogenesis and to determine when the ß-sheet starts to prevail over the random coil conformation in the aggregation process. Discussion: Our research highlights the significance of investigating the early phases of fibrillogenesis to better understand the molecular pathophysiology of AD and identify potential therapeutic targets that may prevent or slow down the aggregation process.

2.
Alzheimers Res Ther ; 16(1): 123, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849926

ABSTRACT

BACKGROUND: Recent reports suggest that amyloid beta (Aß) peptides can exhibit prion-like pathogenic properties. Transmission of Aß peptide and the development of associated pathologies after surgeries with contaminated instruments and intravenous or intracerebral inoculations have now been reported across fish, rodents, primates, and humans. This raises a worrying prospect of Aß peptides also having other characteristics typical of prions, such as evasion of the digestive process. We asked if such transmission of Aß aggregates via ingestion was possible. METHODS: We made use of a transgenic Drosophila melanogaster line expressing human Aß peptide prone to aggregation. Fly larvae were fed to adult zebrafish under two feeding schemes. The first was a short-term, high-intensity scheme over 48 h to determine transmission and retention in the gut. The second, long-term scheme specifically examined retention and accumulation in the brain. The gut and brain tissues were examined by histology, western blotting, and mass spectrometric analyses. RESULTS: None of the analyses could detect Aß aggregates in the guts of zebrafish following ingestion, despite being easily detectable in the feed. Additionally, there was no detectable accumulation of Aß in the brain tissue or development of associated pathologies after prolonged feeding. CONCLUSIONS: While human Aß aggregates do not appear to be readily transmissible by ingestion across species, two prospects remain open. First, this mode of transmission, if occurring, may stay below a detectable threshold and may take much longer to manifest. A second possibility is that the human Aß peptide is not able to trigger self-propagation or aggregation in other species. Either possibility requires further investigation, taking into account the possibility of such transmission from agricultural species used in the food industry.


Subject(s)
Amyloid beta-Peptides , Animals, Genetically Modified , Brain , Drosophila melanogaster , Zebrafish , Animals , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Eating/physiology , Larva , Protein Aggregates
3.
Chemistry ; : e202400277, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888453

ABSTRACT

Amyloid plaques are a major pathological hallmark involved in Alzheimer's disease and consist of deposits of the amyloid-ß peptide (Aß). The aggregation process of Aß is highly complex, which leads to polymorphous aggregates with different structures. In addition to aberrant aggregation, Aß oligomers can undergo liquid-liquid phase separation and form dynamic condensates. It has been hypothesized that these amyloid liquid droplets affect and modulate amyloid fibril formation. In this review, we briefly introduce the relationship between stress granules and amyloid protein aggregation that is associated with neurodegenerative diseases. Then we highlight the regulatory role of liquid-liquid phase separation in Aß aggregation and discuss the potential relationship between Aß phase transition and aggregation. Furthermore, we summarize the current structures of Aß oligomers and amyloid fibrils, which have been determined using nuclear magnetic resonance and cryo-electron microscopy. The structural variations of Aß aggregates provide an explanation for the different levels of toxicity, shed light on the aggregation mechanism and may pave the way towards structure-based drug design for both clinical diagnosis and treatment.

4.
Cureus ; 16(4): e58416, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38756263

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative condition and a form of dementia encountered in medical practice. Despite many proposed and attempted treatments, this disease remains a major puzzle in the public health systems worldwide. The initial part of this article provides an overview and illustration of the primary mechanisms responsible for neuronal damage in AD. Subsequently, it offers a critical evaluation of the most noteworthy studies on pharmacological therapy for AD and outlines recent advancements and novel approaches to managing this condition. Main properties, categorization, Food and Drug Administration (FDA) status, mechanisms of action, benefits, and common side effects of the classical and the most recently proposed pharmacological treatments for AD are described. The conventional pharmacological agents revised comprise cholinesterase inhibitors, monoclonal antibodies, and other therapies, such as memantine, valproic acid, and rosiglitazone. The innovative reviewed pharmacological agents comprise the monoclonal antibodies: donanemab, gantenerumab, solanezumab, bapineuzumab, crenezumab, and semorinemab. Nutritional supplements such as alpha-tocopherol (vitamin E) and caprylidene are also revised. Tau and amyloid-targeting treatments include methylthioninium moiety (MT), leuco-methylthioninium bis (LMTM), an oxidized form of MT, and tramiprosate, which inhibits the beta-amyloid (Aß) monomer aggregation into toxic oligomers. Antidiabetic and anti-neuroinflammation drugs recently proposed for AD treatment are discussed. The antidiabetic drugs include NE3107, an anti-inflammatory and insulin sensitizer, and the diabetes mainstream drug metformin. The anti-neuroinflammatory AD therapies include the use of sodium oligomannate (GV-971), infusions with intravenous immunoglobulin aiming to decrease plasma levels of the constituents of Aß plaques, and masitinib, a tyrosine kinase inhibitor that impacts mast and microglia cells. Additional anti-inflammatory agents being currently tested in phase-2 clinical trials, such as atomoxetine (selective norepinephrine reuptake inhibitor), losartan (angiotensin 2 receptor agonist), genistein (anti-inflammatory isoflavone neuroprotective agent), trans-resveratrol (polyphenol antioxidant plant estrogen), and benfotiamine (synthetic thiamine precursor), were reviewed. Lastly, drugs targeting Alzheimer's-associated symptoms, such as brexpiprazole (serotonin dopamine activity modulator) and suvorexant (orexin receptor antagonist), respectively, used for agitation and insomnia in AD patients, are reviewed. As experimental investigations and clinical research progress, there is a possibility that a combination of newly tested medications and traditional ones may emerge as a promising treatment option for AD in the future.

5.
Small ; : e2400879, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751069

ABSTRACT

Misfolding and aggregation of amyloid peptides into ß-structure-rich fibrils represent pivotal pathological features in various neurodegenerative diseases, including Alzheimer's disease (AD), type II diabetes (T2D), and medullary thyroid carcinoma (MTC). The development of effective amyloid detectors and inhibitors for probing and preventing amyloid aggregation is crucial for diagnosing and treating debilitating diseases, yet it poses significant challenges. Here, an aggregation-induced emission (AIE) molecule of ROF2 with multifaceted functionalities as an amyloid probe and a screening tool for amyloid inhibitors using different biophysical, cellular, and worm assays, are reported. As an amyloid probe, ROF2 outperformed ThT, demonstrating its superior sensing capability in monitoring, detecting, and distinguishing amyloid aggregates of different sequences (Amyloid-ß, human islet amyloid polypeptide, or human calcitonin) and sizes (monomers, oligomers, or fibrils). More importantly, the utilization of ROF2 as a screening molecule to identify and repurpose cardiovascular drugs as amyloid inhibitors is introduced. These drugs exhibit potent amyloid inhibition properties, effectively preventing amyloid aggregation and reducing amyloid-induced cytotoxicity both in cells and nematode. The findings present a novel strategy to discovery AIE-based amyloid probes and to be used to repurpose amyloid inhibitors, expanding diagnostic and therapeutic options for neurodegenerative diseases while addressing vascular congestion and amyloid aggregation risks.

6.
J Struct Biol ; 216(2): 108092, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615725

ABSTRACT

Cerebral amyloid angiopathy (CAA) is associated with the accumulation of fibrillar Aß peptides upon and within the cerebral vasculature, which leads to loss of vascular integrity and contributes to disease progression in Alzheimer's disease (AD). We investigate the structure of human-derived Aß40 fibrils obtained from patients diagnosed with sporadic or familial Dutch-type (E22Q) CAA. Using cryo-EM, two primary structures are identified containing elements that have not been observed in in vitro Aß40 fibril structures. One population has an ordered N-terminal fold comprised of two ß-strands stabilized by electrostatic interactions involving D1, E22, D23 and K28. This charged cluster is disrupted in the second population, which exhibits a disordered N-terminus and is favored in fibrils derived from the familial Dutch-type CAA patient. These results illustrate differences between human-derived CAA and AD fibrils, and how familial CAA mutations can guide fibril formation.


Subject(s)
Amyloid beta-Peptides , Cerebral Amyloid Angiopathy , Static Electricity , Humans , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/chemistry , Cerebral Amyloid Angiopathy/pathology , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/metabolism , Cryoelectron Microscopy/methods , Amyloid/metabolism , Amyloid/chemistry , Amyloid/genetics , Peptide Fragments/genetics , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Mutation , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/metabolism
7.
Curr Top Med Chem ; 24(13): 1120-1133, 2024.
Article in English | MEDLINE | ID: mdl-38591203

ABSTRACT

Biomarkers are the most significant diagnosis tools tending towards unique approaches and solutions for the prevention and cure of Alzheimer's Disease (AD). The current report provides a clear perception of the concept of various biomarkers and their prominent features through analysis to provide a possible solution for the inhibition of events in AD. Scientists around the world truly believe that crucial hallmarks can serve as critical tools in the early diagnosis, cure, and prevention, as well as the future of medicine. The awareness and understanding of such biomarkers would provide solutions to the puzzled mechanism of this neuronal disorder. Some of the argued biomarkers in the present article are still in an experimental phase as they need to undergo specific clinical trials before they can be considered for treatment.


Subject(s)
Alzheimer Disease , Biomarkers , Alzheimer Disease/drug therapy , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Humans , Biomarkers/analysis , Biomarkers/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , tau Proteins/metabolism , tau Proteins/antagonists & inhibitors
8.
Neurol Res ; 46(5): 416-425, 2024 May.
Article in English | MEDLINE | ID: mdl-38577889

ABSTRACT

OBJECTIVE: Previous studies have revealed that Propane-2-sulfonic acid octadec-9-enyl-amide(N15) exerts a protective role in the inflammatory response after ischemic stroke and in neuronal damage. However, little is known about N15 in Alzheimer's disease (AD). The aim of this study was to investigate the effects of N15 on AD and explore the underlying molecular mechanism. METHODS: AD mice model was established by lateral ventricular injection with Aß25-35. N15 was daily intraperitoneal administered for 28 days. Morris Water Maze was used to evaluate the neurocognitive function of the mice. The expression of PPARα/γ, brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT3), ADAM10, PS1 and BACE1 were measured by qPCR. Aß amyloid in the hippocampus was measured by Congo red assay. Toluidine blue staining was used to detect the neuronal apoptosis. Protein levels of ADAM10, PS1 and BACE1 were determined using immunoblotting. RESULTS: N15 treatment significantly reduced neurocognitive dysfunction, which also significantly activated the expression of PPARα/γ at an optimal dose of 200 mg/kg. Administration of N15 alleviated the formation of Aß amyloid in the hippocampus of AD mice, enhanced the BDNF mRNA expression, decreased the mRNA and protein levels of PS1 and BACE1, upregulated ADAM10 mRNA and protein levels. CONCLUSION: N15 exerts its neuroprotective effects through the activation of PPARα/γ and may be a potential drug for the treatment of AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , PPAR alpha , Sulfonic Acids , Animals , Male , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/drug effects , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Maze Learning/drug effects , Memory/drug effects , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Peptide Fragments , PPAR alpha/agonists , PPAR alpha/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Sulfonic Acids/pharmacology , PPAR-gamma Agonists/pharmacology
9.
Eur J Med Chem ; 269: 116359, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38537514

ABSTRACT

Alzheimer's disease (AD) is a detrimental neurodegenerative disease affecting the elderly. Clinically, it is characterized by progressive memory decline and subsequent loss of broader cognitive functions. Current drugs provide only symptomatic relief but do not have profound disease-modifying effects. There is an unmet need to identify novel pharmacological agents for AD therapy. Neuropathologically, the characteristic hallmarks of the disease are extracellular senile plaques containing amyloid ß-peptides and intracellular neurofibrillary tangles containing hyperphosphorylated microtubule-associated protein tau. Simultaneously, oxidative stress, neuroinflammation and mitochondrial dysfunction in specific brain regions are early events during the process of AD pathologic changes and are associated with Aß/tau toxicity. Here, we first summarized probable pathogenic mechanisms leading to neurodegeneration and hopefully identify pathways that serve as specific targets to improve therapy for AD. We then reviewed the mechanisms that underlie disease-modifying effects of natural polyphenols, with a focus on nuclear factor erythroid 2-related factor 2 activators for AD treatment. Lastly, we discussed challenges in the preclinical to clinical translation of natural polyphenols. In conclusion, there is evidence that natural polyphenols can be therapeutically useful in AD through their multifaceted mechanism of action. However, more clinical studies are needed to confirm these effects.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Aged , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neurodegenerative Diseases/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use , Neurofibrillary Tangles/metabolism , tau Proteins/metabolism
10.
ACS Chem Neurosci ; 15(6): 1125-1134, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38416693

ABSTRACT

Oligomeric assemblies of the amyloid ß peptide (Aß) have been investigated for over two decades as possible neurotoxic agents in Alzheimer's disease. However, due to their heterogeneous and transient nature, it is not yet fully established which of the structural features of these oligomers may generate cellular damage. Here, we study distinct oligomer species formed by Aß40 (the 40-residue form of Aß) in the presence of four different metal ions (Al3+, Cu2+, Fe2+, and Zn2+) and show that they differ in their structure and toxicity in human neuroblastoma cells. We then describe a correlation between the size of the oligomers and their neurotoxic activity, which provides a type of structure-toxicity relationship for these Aß40 oligomer species. These results provide insight into the possible role of metal ions in Alzheimer's disease by the stabilization of Aß oligomers.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Metals , Ions , Peptide Fragments/chemistry
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382624

ABSTRACT

Accumulation of insoluble deposits of amyloid ß-peptide (Aß), derived from amyloid precursor protein (APP) processing, represents one of the major pathological hallmarks of Alzheimer's disease (AD). Perturbations in APP transport and hydrolysis could lead to increased Aß production. However, the precise mechanisms underlying APP transport remain elusive. The GDP dissociation inhibitor2 (GDI2), a crucial regulator of Rab GTPase activity and intracellular vesicle and membrane trafficking, was investigated for its impact on AD pathogenesis through neuron-specific knockout of GDI2 in 5xFAD mice. Notably, deficiency of GDI2 significantly ameliorated cognitive impairment, prevented neuronal loss in the subiculum and cortical layer V, reduced senile plaques as well as astrocyte activation in 5xFAD mice. Conversely, increased activated microglia and phagocytosis were observed in GDI2 ko mice. Further investigation revealed that GDI2 knockout led to more APP co-localized with the ER rather than the Golgi apparatus and endosomes in SH-SY5Y cells, resulting in decreased Aß production. Collectively, these findings suggest that GDI2 may regulate Aß production by modulating APP intracellular transport and localization dynamics. In summary, our study identifies GDI2 as a pivotal regulator governing APP transport and process implicated in AD pathology; thus highlighting its potential as an attractive pharmacological target for future drug development against AD.


Subject(s)
Alzheimer Disease , Guanine Nucleotide Dissociation Inhibitors , Neuroblastoma , Animals , Humans , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Memory Disorders/genetics , Neurons/metabolism
12.
Biochim Biophys Acta Biomembr ; 1866(1): 184234, 2024 01.
Article in English | MEDLINE | ID: mdl-37741307

ABSTRACT

The behavior of amphiphilic molecules such as lipids, peptides and their mixtures at the air/water interface allow us to evaluate and visualize the arrangement formed in a confined and controlled surface area. We have studied the surface properties of the zwitterionic DPPC lipid and Aß(1-40) amyloid peptide in mixed films at different temperatures (from 15 to 40 °C). In this range of temperature the surface properties of pure Aß(1-40) peptide remained unchanged, whereas DPPC undergoes its characteristic liquid-expanded â†’ liquid-condensed bidimensional phase transition that depends on the temperature and lateral pressure. This particular property of DPPC makes it possible to dynamically study the influence of the lipid phase state on amyloid structure formation at the interface in a continuous, isothermal and abrupt change on the environmental condition. As the mixed film is compressed the fibril-like structure of Aß(1-40) is triggered specifically in the liquid-expanded region, independently of temperature, and it is selectively excluded from the well-visible liquid condensed domains of DPPC. The Aß amyloid fibers were visualized by using BAM and AFM and they were Thio T positive. In mixed DPPC/Aß(1-40) films the condensed domains (in between 11 mN/m to 20 mN/m) become irregular probably due to the fibril-like structures is imposing additional lateral stress sequestering lipid molecules in the surrounding liquid-expanded phase to self-organize into amyloids.


Subject(s)
Amyloid beta-Peptides , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Amyloid/chemistry , Phase Transition , Surface Properties , Amyloid beta-Peptides/chemistry , Lipids/chemistry
13.
Adv Healthc Mater ; 13(9): e2303278, 2024 04.
Article in English | MEDLINE | ID: mdl-38112336

ABSTRACT

Aberrant ß-amyloid (Aß) fibrillation is the key event in Alzheimer's disease (AD), the inhibition and degradation of which are recognized as a promising therapeutic strategy to alleviate the nerve damage of AD. Photodynamic therapy (PDT) holds great potential for modulation of Aß self-assembly, which is nevertheless limited by the inefficient utilization of reactive oxygen species (ROS). Herein, an erythrocyte membrane (EM)-modified core-shell upconversion nanoparticle (UCNP/Cur@EM) is designed and fabricated as a biomimetic nanobait to improve the PDT efficiency in AD. The UCNP with the outlayer of mesoporous silica is synthesized to load a high amount of the photosensitizer (curcumin), the unique optical feature of which can trigger curcumin to generate ROS upon near-infrared light (NIR) irradiation. Integration of EM enables the biomimetic nanobait to attract Aß peptides trapped in the phospholipid bilayer, restraining the growth of Aß monomers to form aggregates and improving the utilization rate of ROS to degrade the preformed Aß aggregates. In vivo studies demonstrate that UCNP/Cur@EM irradiated by NIR enables to decrease Aß deposits, ameliorates memory deficits, and rescues cognitive functions in the APP/PS1 transgenic mouse model. A biocompatible and controllable way is provided here to inhibit the amyloid protein-associated pathological process of AD.


Subject(s)
Alzheimer Disease , Curcumin , Photochemotherapy , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Reactive Oxygen Species/metabolism , Curcumin/therapeutic use , Biomimetics , Amyloid beta-Peptides , Mice, Transgenic
14.
Article in English | MEDLINE | ID: mdl-38053575

ABSTRACT

Background: Echinometra lucunter is a sea urchin commonly found on America's rocky shores. Its coelomic fluid contains molecules used for defense and biological processes, which may have therapeutic potential for the treatment of amyloid-based neurodegenerative diseases, such as Alzheimer's, that currently have few drug options available. Methods: In this study, we incubated E. lucunter coelomic fluid (ELCF) and fractions obtained by solid phase extraction in SH-SY5Y neuron-like cells to evaluate their effect on cell viability caused by the oligomerized amyloid peptide 42 (Aß42o). Moreover, the Aß42o was quantified after the incubation with ELCF fractions in the presence or not of cells, to evaluate if samples could cause amyloid peptide disaggregation. Antioxidant activity was determined in ELCF fractions, and cells were evaluated to check the oxidative stress after incubation with samples. The most relevant fraction was analyzed by mass spectrometry for identification of molecules. Results: ELCF and certain fractions could prevent and treat the reduction of cell viability caused by Aß42o in SH-SY5Y neuron-like cells. We found that one fraction (El50) reduced the oligomerized Aß42 and the oxidative stress caused by the amyloid peptide through its antioxidant molecules, which in turn reduced cell death. Mass spectrometry analysis revealed that El50 comprises small molecules containing flavonoid antioxidants, such as phenylpyridazine and dihydroquercetin, and two peptides. Conclusion: Our results suggest that sea urchin molecules may interact with Aß42o and oxidative stress, preventing or treating neurotoxicity, which may be useful in treating dementia.

15.
Front Neurosci ; 17: 1244022, 2023.
Article in English | MEDLINE | ID: mdl-38027497

ABSTRACT

Parkinson's disease (PD) is a predominantly idiopathic pathological condition characterized by protein aggregation phenomena, whose main component is alpha-synuclein. Although the main risk factor is ageing, numerous evidence points to the role of type 2 diabetes mellitus (T2DM) as an etiological factor. Systemic alterations classically associated with T2DM like insulin resistance and hyperglycemia modify biological processes such as autophagy and mitochondrial homeostasis. High glucose levels also compromise protein stability through the formation of advanced glycation end products, promoting protein aggregation processes. The ability of antidiabetic drugs to act on pathways impaired in both T2DM and PD suggests that they may represent a useful tool to counteract the neurodegeneration process. Several clinical studies now in advanced stages are looking for confirmation in this regard.

16.
J Alzheimers Dis ; 96(3): 979-1010, 2023.
Article in English | MEDLINE | ID: mdl-37927257

ABSTRACT

BACKGROUND: The negative effects of periodontitis on systemic diseases, including diabetes, cardiovascular diseases, and Alzheimer's disease (AD), have been widely described. OBJECTIVE: This systematic review aimed to gather the current understanding of the pathophysiological mechanisms linking periodontitis to AD. METHODS: An electronic systematic search of the PubMed/MEDLINE, Scopus, and Embase databases was performed using the following PECO question: How can periodontitis or periodontal bacteria influence Alzheimer's disease features?". Only preclinical studies exploring the biological links between periodontitis and AD pathology were included. This study was registered at the International Prospective Register of Systematic Reviews (PROSPERO), and the Syrcle and Camarades protocols were used to assess the risk of bias. RESULTS: After a systematic screening of titles and abstracts (n = 3,307), thirty-six titles were selected for abstract reading, of which 13 were excluded (k = 1), resulting in the inclusion of 23 articles. Oral or systemic exposure to periodontopathogens or their byproducts is responsible for both in situ brain manifestations and systemic effects. Significant elevated rates of cytokines and amyloid peptides (Aß) and derivate products were found in both serum and brain. Additionally, in infected animals, hyperphosphorylation of tau protein, hippocampal microgliosis, and neuronal death were observed. Exposure to periodontal infection negatively impairs cognitive behavior, leading to memory decline. CONCLUSIONS: Systemic inflammation and brain metastatic infections induced by periodontal pathogens contribute to neuroinflammation, amyloidosis, and tau phosphorylation, leading to brain damage and subsequent cognitive impairment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Periodontitis , Animals , Alzheimer Disease/pathology , Systematic Reviews as Topic , Periodontitis/complications , Periodontitis/microbiology , Inflammation
17.
Int J Mol Sci ; 24(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958934

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and the main cause of dementia which is characterized by a progressive cognitive decline that severely interferes with daily activities of personal life. At a pathological level, it is characterized by the accumulation of abnormal protein structures in the brain-ß-amyloid (Aß) plaques and Tau tangles-which interfere with communication between neurons and lead to their dysfunction and death. In recent years, research on AD has highlighted the critical involvement of mitochondria-the primary energy suppliers for our cells-in the onset and progression of the disease, since mitochondrial bioenergetic deficits precede the beginning of the disease and mitochondria are very sensitive to Aß toxicity. On the other hand, if it is true that the accumulation of Aß in the mitochondria leads to mitochondrial malfunctions, it is otherwise proven that mitochondrial dysfunction, through the generation of reactive oxygen species, causes an increase in Aß production, by initiating a vicious cycle: there is therefore a bidirectional relationship between Aß aggregation and mitochondrial dysfunction. Here, we focus on the latest news-but also on neglected evidence from the past-concerning the interplay between dysfunctional mitochondrial complex I, oxidative stress, and Aß, in order to understand how their interplay is implicated in the pathogenesis of the disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Mitochondria/metabolism
18.
J Enzyme Inhib Med Chem ; 38(1): 2281893, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37965884

ABSTRACT

In this study, a series of potential ligands for the treatment of AD were synthesised and characterised as novel harmine derivatives modified at position 9 with benzyl piperazinyl. In vitro studies revealed that the majority of the derivatives exhibited moderate to potent inhibition against hAChE and Aß1 - 42 aggregation. Notably, compounds 13 and 17d displayed potent drug - likeness and ADMET properties, demonstrating remarkable inhibitory activities towards AChE (IC50 = 58.76 nM and 89.38 nM, respectively) as well as Aß aggregation (IC50 = 9.31 µM and 13.82 µM, respectively). More importantly, compounds 13 and 17d showed exceptional neuroprotective effects against Aß1 - 42-induced SH - SY5Y damage, while maintaining low toxicity in SH - SY5Y cells. Further exploration of the mechanism through kinetic studies and molecular modelling confirmed that compound 13 could interact with both the CAS and the PAS of AChE. These findings suggested that harmine derivatives hold great potential as dual - targeted candidates for treating AD.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Acetylcholinesterase/metabolism , Harmine/pharmacology , Harmine/therapeutic use , Cholinesterase Inhibitors/pharmacology , Kinetics , Drug Design , Structure-Activity Relationship , Neuroprotective Agents/pharmacology
19.
J Mol Neurosci ; 73(11-12): 983-995, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37947991

ABSTRACT

Alzheimer's disease (AD) is a multifactorial disease affecting aging population worldwide. Neuroinflammation became a focus of research as one of the major pathologic processes relating to the disease onset and progression. Proinflammatory S100A9 is the central culprit in the amyloid-neuroinflammatory cascade implicated in AD and other neurodegenerative diseases. We studied the effect of S100A9 on microglial BV-2 cell proliferation and migration. The responses of BV-2 cells to S100A9 stimulation were monitored in real-time using live cell microscopy, transcriptome sequencing, immunofluorescence staining, western blot analysis, and ELISA. We observed that a low dose of S100A9 promotes migration and proliferation of BV-2 cells. However, acute inflammatory condition (i.e., high S100A9 doses) causes diminished cell viability; it is uncovered that S100A9 activates TLR-4 and TLR-7 signaling pathways, leading to TNF-α and IL-6 expression, which affect BV-2 cell migration and proliferation in a concentration-dependent manner. Interestingly, the effects of S100A9 are not only inhibited by TNF-α and IL-6 antibodies. The addition of amyloid-ß (Aß) 1-40 peptide resumes the capacities of BV-2 cells to the level of low S100A9 concentrations. Based on these results, we conclude that in contrast to the beneficial effects of low S100A9 dose, high S100A9 concentration leads to impaired mobility and proliferation of immune cells, reflecting neurotoxicity at acute inflammatory conditions. However, the formation of Aß plaques may be a natural mechanism that rescues cells from the proinflammatory and cytotoxic effects of S100A9, especially considering that inflammation is one of the primary causes of AD.


Subject(s)
Alzheimer Disease , Calgranulin B , Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Calgranulin B/pharmacology , Interleukin-6/metabolism , Microglia/metabolism , Plaque, Amyloid/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Mice
20.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003588

ABSTRACT

A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-ß (Aß) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aß augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 µM of Aß1-40, leading to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation by Aß1-40 was associated with increased Vmax and unchanged Km. Although BChE activity also increased following incubation with Aß1-40, this was less efficiently achieved as compared with AChE. Ex vivo electrophysiological experiments showed that 10 µM of Aß1-40 significantly decreased the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Acetylcholinesterase , Amyloid beta-Peptides , Butyrylcholinesterase , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...