Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 970
Filter
1.
Subcell Biochem ; 104: 425-458, 2024.
Article in English | MEDLINE | ID: mdl-38963495

ABSTRACT

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a ubiquitous posttranslational modification in eukaryotic cells. GPI-anchored proteins (GPI-APs) play critical roles in enzymatic, signaling, regulatory, and adhesion processes. Over 20 enzymes are involved in GPI synthesis, attachment to client proteins, and remodeling after attachment. The GPI transamidase (GPI-T), a large complex located in the endoplasmic reticulum membrane, catalyzes the attachment step by replacing a C-terminal signal peptide of proproteins with GPI. In the last three decades, extensive research has been conducted on the mechanism of the transamidation reaction, the components of the GPI-T complex, the role of each subunit, and the substrate specificity. Two recent studies have reported the three-dimensional architecture of GPI-T, which represent the first structures of the pathway. The structures provide detailed mechanisms for assembly that rationalizes previous biochemical results and subunit-dependent stability data. While the structural data confirm the catalytic role of PIGK, which likely uses a caspase-like mechanism to cleave the proproteins, they suggest that unlike previously proposed, GPAA1 is not a catalytic subunit. The structures also reveal a shared cavity for GPI binding. Somewhat unexpectedly, PIGT, a single-pass membrane protein, plays a crucial role in GPI recognition. Consistent with the assembly mechanisms and the active site architecture, most of the disease mutations occur near the active site or the subunit interfaces. Finally, the catalytic dyad is located ~22 Å away from the membrane interface of the GPI-binding site, and this architecture may confer substrate specificity through topological matching between the substrates and the elongated active site. The research conducted thus far sheds light on the intricate processes involved in GPI anchoring and paves the way for further mechanistic studies of GPI-T.


Subject(s)
Glycosylphosphatidylinositols , Humans , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/chemistry , Animals , Substrate Specificity , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Aminoacyltransferases/genetics , Endoplasmic Reticulum/metabolism , Structure-Activity Relationship , Acyltransferases
2.
Cogn Sci ; 48(7): e13455, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980958

ABSTRACT

Previous research described different cognitive processes on how individuals process distributional information. Based on these processes, the current research uncovered a novel phenomenon in distribution perception: the Endpoint Leverage Effect. Subjective endpoints influence distribution estimations not only locally around the endpoint but also influence estimations across the whole value range of the distribution. The influence is largest close to the respective endpoint and decreases in size toward the opposite end of the value range. Three experiments investigate this phenomenon: Experiment 1 provides correlational evidence for the Endpoint Leverage Effect after presenting participants with a numerical distribution. Experiment 2 demonstrates the Endpoint Leverage Effect by manipulating the subjective endpoints of a numerical distribution directly. Experiment 3 generalizes the phenomenon by investigating a general population sample and estimations regarding a real-world income distribution. In addition, quantitative model analysis examines the cognitive processes underlying the effect. Overall, the novel Endpoint Leverage Effect is found in all three experiments, inspiring further research in a wide area of contexts.


Subject(s)
Cognition , Humans , Male , Female , Adult , Young Adult , Perception
3.
Am J Emerg Med ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38971635

ABSTRACT

Subdural hematoma is an uncommon complication of epidural analgesia or diagnostic lumbar puncture. Headache is a common complaint for patients with either a subdural hematoma or a post-dural puncture headache. Because post-dural puncture headaches are commonly seen in the Emergency Department, the potential to miss more serious pathology arises. We present the case of a young female who suffered bilateral subdural hematomas following epidural analgesia during childbirth. She presented twice to the Emergency Department and was treated for a post-dural puncture headache before computed tomography imaging revealed the diagnosis on the third Emergency Department encounter. This case highlights the importance of exploring all potential diagnoses when a patient presents with a headache after either epidural analgesia or a diagnostic lumbar puncture, especially if the patient returns after unsuccessful treatment for a presumptive post-dural puncture headache.

4.
J Nippon Med Sch ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897946

ABSTRACT

Painless thyroiditis, which is rare in children, exhibits the characteristic sequence of hyperthyroidism, including aggressive and disruptive behaviors. Unlike subacute thyroiditis or Graves' disease, painless thyroiditis is challenging to diagnose because of its mild symptoms and minimal or absent physical findings. Moreover, aggressive and disruptive behaviors in children with psychiatric disorders may be misconstrued as exacerbation of underlying symptoms. The present patient was a 16-year-old male with adjustment disorder who presented to a pediatric psychiatric clinic for assessment of irritability. After 4 months, he developed aggressive and disruptive behaviors that prompted initiation of risperidone but without improvement. After 1 month, he reported palpitations and dyspnea. His neck was supple and non-tender without thyroid enlargement. Thyroid studies revealed elevated free T4 and T3 levels and suppressed thyroid-stimulating hormone level, suggesting hyperthyroidism. A radioactive iodine uptake test revealed a barely visible thyroid gland, consistent with thyroiditis. Painless thyroiditis, without thyroid tenderness, was diagnosed. We describe a case of painless thyroiditis in an adolescent patient with aggressive and disruptive behaviors that were initially attributed to worsening of an underlying adjustment disorder. Even when minimal or no signs of hyperthyroidism are present, painless thyroiditis should be considered in the differential diagnosis of children with aggressive and disruptive behaviors. Awareness of potential anchoring bias is also recommended to prevent its delayed diagnosis of such behaviors.

5.
Econ Hum Biol ; 54: 101406, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38851164

ABSTRACT

This paper studies the association of pain with subjective well-being (SWB) and time use among older adults in five low- and middle-income countries using data from the first wave of the WHO Study on Global Ageing and Adult Health. We suggest a novel use of anchoring vignettes as direct control functions to account for potentially correlated reporting behaviors such as correlated response scales when analyzing the relationship between subjective variables such as self-reported pain and SWB. Exploiting detailed data on individual time use and several complementary measures of SWB, including fine-grained activity-specific affective experiences derived from an abbreviated version of the Day Reconstruction Method, we find that both evaluative and experienced well-being are markedly lower for people living with pain compared to those without pain. These disparities persist even after controlling for possible confounding from reporting behaviors through the use of anchoring vignettes. Differences in experienced utility by pain status appear to be exclusively due to worse affective experiences during daily activities for those with pain, which seem to be partially mediated through changes in their functional limitations. Pain-related differences in time use, in turn, seem to provide only small compensating effects, underscoring important challenges to the use of changed activity patterns as a viable coping strategy for individuals enduring pain.

6.
Front Microbiol ; 15: 1395837, 2024.
Article in English | MEDLINE | ID: mdl-38841059

ABSTRACT

Bacterium-like particles (BLP) are the peptidoglycan skeleton particles of lactic acid bacteria, which have high safety, mucosal delivery efficiency, and adjuvant effect. It has been widely used in recent years in the development of vaccines. Existing anchoring proteins for BLP surfaces are few in number, so screening and characterization of new anchoring proteins are necessary. In this research, we created the OACD (C-terminal domain of Escherichia coli outer membrane protein A) to serve as an anchoring protein on the surface of BLP produced by the immunomodulatory bacteria Levilactobacillus brevis 23017. We used red fluorescent protein (RFP) to demonstrate the novel surface display system's effectiveness, stability, and ability to be adapted to a wide range of lactic acid bacteria. Furthermore, this study employed this surface display method to develop a novel vaccine (called COB17) by using the multi-epitope antigen of Clostridium perfringens as the model antigen. The vaccine can induce more than 50% protection rate against C. perfringens type A challenge in mice immunized with a single dose and has been tested through three routes. The vaccine yields protection rates of 75% for subcutaneous, 50% for intranasal, and 75% for oral immunization. Additionally, it elicits a strong mucosal immune response, markedly increasing levels of specific IgG, high-affinity IgG, specific IgA, and SIgA antibodies. Additionally, we used protein anchors (PA) and OACD simultaneous to show several antigens on the BLP surface. The discovery of novel BLP anchoring proteins may expand the possibilities for creating mucosal immunity subunit vaccines. Additionally, it may work in concert with PA to provide concepts for the creation of multivalent or multiple vaccines that may be used in clinical practice to treat complex illnesses.

7.
J Dermatol Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38876908

ABSTRACT

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the COL7A1 gene, which encodes type VII collagen (COL7), the main constituent of anchoring fibrils for attaching the epidermis to the dermis. Persistent skin erosions frequently result in intractable ulcers in RDEB patients. Adipose-derived mesenchymal stromal cells (AD-MSCs) are easily harvested in large quantities and have low immunogenicity. Therefore, they are suitable for clinical use, including applications involving allogeneic cell transplantation. Keratinocyte-like cells transdifferentiated from AD-MSCs (KC-AD-MSCs) express more COL7 than undifferentiated AD-MSCs and facilitate skin wound healing with less contracture. Therefore, these cells can be used for skin ulcer treatment in RDEB patients. OBJECTIVE: We investigated whether KC-AD-MSCs transplantation ameliorated the RDEB phenotype severity in the grafted skin of a RDEB mouse model (col7a1-null) on the back of the immunodeficient mouse. METHODS: KC-AD-MSCs were intradermally injected into the region surrounding the skin grafts, and this procedure was repeated after 7 days. After a further 7-day interval, the skin grafts were harvested. RESULTS: Neodeposition of COL7 and generation of anchoring fibrils at the dermal-epidermal junction were observed, although experiments were based on qualitative. CONCLUSION: KC-AD-MSCs may correct the COL7 insufficiency, repair defective/reduced anchoring fibrils, and improve skin integrity in RDEB patients.

8.
ACS Nano ; 18(24): 15991-16001, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38829730

ABSTRACT

Phase heterogeneity of bromine-iodine (Br-I) mixed wide-bandgap (WBG) perovskites has detrimental effects on solar cell performance and stability. Here, we report a heterointerface anchoring strategy to homogenize the Br-I distribution and mitigate the segregation of Br-rich WBG-perovskite phases. We find that methoxy-substituted phenyl ethylammonium (x-MeOPEA+) ligands not only contribute to the crystal growth with vertical orientation but also promote halide homogenization and defect passivation near the buried perovskite/hole transport layer (HTL) interface as well as reduce trap-mediated recombination. Based on improvements in WBG-perovskite homogeneity and heterointerface contacts, NiOx-based opaque WBG-perovskite solar cells (WBG-PSCs) achieved impressive open-circuit voltage (Voc) and fill factor (FF) values of 1.22 V and 83%, respectively. Moreover, semitransparent WBG-PSCs exhibit a PCE of 18.5% (15.4% for the IZO front side) and a high FF of 80.7% (79.4% for the IZO front side) for a designated illumination area (da) of 0.12 cm2. Such a strategy further enables 24.3%-efficient two-terminal perovskite/silicon (double-polished) tandem solar cells (da of 1.159 cm2) with a high Voc of over 1.90 V. The tandem devices also show high operational stability over 1000 h during T90 lifetime measurements.

9.
Psychol Sci ; : 9567976241252138, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865591

ABSTRACT

The aggregation of many lay judgments generates surprisingly accurate estimates. This phenomenon, called the "wisdom of crowds," has been demonstrated in domains such as medical decision-making and financial forecasting. Previous research identified two factors driving this effect: the accuracy of individual assessments and the diversity of opinions. Most available strategies to enhance the wisdom of crowds have focused on improving individual accuracy while neglecting the potential of increasing opinion diversity. Here, we study a complementary approach to reduce collective error by promoting erroneous divergent opinions. This strategy proposes to anchor half of the crowd to a small value and the other half to a large value before eliciting and averaging all estimates. Consistent with our mathematical modeling, four experiments (N = 1,362 adults) demonstrated that this method is effective for estimation and forecasting tasks. Beyond the practical implications, these findings offer new theoretical insights into the epistemic value of collective decision-making.

10.
Molecules ; 29(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893440

ABSTRACT

Three different iridium(III) complexes, labelled as Ir1-Ir3, each bearing a unique anchoring moiety (diethyl [2,2'-bipyridine]-4,4'-dicarboxylate, tetraethyl [2,2'-bipyridine]-4,4'-diylbis(phosphonate), or [2,2'-biquinoline]-4,4'-dicarboxylic acid), were synthesized to serve as photosensitizers. Their electrochemical and photophysical characteristics were systematically investigated. ERP measurements were employed to elucidate the impact of the anchoring groups on the photocatalytic hydrogen generation performance of the complexes. The novel iridium(III) complexes were integrated with platinized TiO2 (Pt-TiO2) nanoparticles and tested for their ability to catalyze hydrogen production under visible light. A H2 turnover number (TON) of up to 3670 was obtained upon irradiation for 120 h. The complexes with tetraethyl [2,2'-bipyridine]-4,4'-diylbis(phosphonate) anchoring groups were found to outperform those bearing other moieties, which may be one of the important steps in the development of high-efficiency iridium(III) photosensitizers for hydrogen generation by water splitting. Additionally, toxicological analyses found no significant difference in the toxicity to luminescent bacteria of any of the present iridium(III) complexes compared with that of TiO2, which implies that the complexes investigated in this study do not pose a high risk to the aquatic environment compared to TiO2.

11.
Adv Mater ; : e2406380, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857899

ABSTRACT

Clarifying the formation mechanism of single-atom sites guides the design of emerging single-atom catalysts (SACs) and facilitates the identification of the active sites at atomic scale. Herein, a molten-salt atomization strategy is developed for synthesizing zinc (Zn) SACs with temperature universality from 400 to 1000/1100 °C and an evolved coordination from Zn-N2Cl2 to Zn-N4. The electrochemical tests and in situ attenuated total reflectance-surface-enhanced infrared absorption spectroscopy confirm that the Zn-N4 atomic sites are active for electrochemical carbon dioxide (CO2) conversion to carbon monoxide (CO). In a strongly acidic medium (0.2 m K2SO4, pH = 1), the Zn SAC formed at 1000 °C (Zn1NC) containing Zn-N4 sites enables highly selective CO2 electroreduction to CO, with nearly 100% selectivity toward CO product in a wide current density range of 100-600 mA cm-2. During a 50 h continuous electrolysis at the industrial current density of 200 mA cm-2, Zn1NC achieves Faradaic efficiencies greater than 95% for CO product. The work presents a temperature-universal formation of single-atom sites, which provides a novel platform for unraveling the active sites in Zn SACs for CO2 electroreduction and extends the synthesis of SACs with controllable coordination sites.

12.
Curr Res Struct Biol ; 7: 100149, 2024.
Article in English | MEDLINE | ID: mdl-38766652

ABSTRACT

Anchoring of coagulation factors to anionic regions of the membrane involves the C2 domain as a key player. The rate of enzymatic reactions of the coagulation factors is increased by several orders of magnitude upon membrane binding. However, the precise mechanisms behind the rate acceleration remain unclear, primarily because of a lack of understanding of the conformational dynamics of the C2-containing factors and corresponding complexes. We elucidate the membrane-bound form of the C2 domain from human coagulation factor V (FV-C2) by characterizing its membrane binding the specific lipid-protein interactions. Employing all-atom molecular dynamics simulations and leveraging the highly mobile membrane-mimetic (HMMM) model, we observed spontaneous binding of FV-C2 to a phosphatidylserine (PS)-containing membrane within 2-25 ns across twelve independent simulations. FV-C2 interacted with the membrane through three loops (spikes 1-3), achieving a converged, stable orientation. Multiple HMMM trajectories of the spontaneous membrane binding provided extensive sampling and ample data to examine the membrane-induced effects on the conformational dynamics of C2 as well as specific lipid-protein interactions. Despite existing crystal structures representing presumed "open" and "closed" states of FV-C2, our results revealed a continuous distribution of structures between these states, with the most populated structures differing from both "open" and "closed" states observed in crystal environments. Lastly, we characterized a putative PS-specific binding site formed by K23, Q48, and S78 located in the groove enclosed by spikes 1-3 (PS-specificity pocket), suggesting a different orientation of a bound headgroup moiety compared to previous proposals based upon analysis of static crystal structures.

13.
Cerebellum ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735882

ABSTRACT

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.

14.
Am J Med Genet A ; : e63720, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780195

ABSTRACT

Dual sensory impairment, commonly referred to as combined hearing and vision loss, can stem from a diverse spectrum of conditions, each presenting with its unique set of clinical characteristics. Our understanding of dual sensory impairment has expanded significantly in the past decade, broadening the scope of genetic differential diagnoses, including genes such as CEP250, ARSG, TUBB4B, CEP78, and ABHD12. A case series including three patients from two families with genetically diagnosed CEP78-associated cone-rod dystrophy was identified. We collected and reviewed their clinical records, imaging data, and genetic testing results. In addition, a comprehensive literature review was conducted on the phenotype and the genetic testing modality employed in all published CEP78 cases through a PubMed search using the keyword "CEP78." A retinal dystrophy panel detected a novel homozygous CEP78 pathogenic variant (c.1447C>T, p.Arg483*) in siblings-Cases 1 and 2-from Family 1. Both teenagers have a clinical diagnosis of cone-rod dystrophy with presumed normal hearing. Case 3 from Family 2, diagnosed with cone-rod dystrophy and early-onset hearing loss, was found to carry a CEP78 pathogenic variant (c.1206-2A>C) and a likely pathogenic variant (c.856_857del, p.Leu286Glyfs*12) also through panel-based genetic testing. Intriguingly, neither of these variants was reported in an affected sibling's clinical whole-exome sequencing (WES) report when performed in 2015. A review of CEP78-related literature unveiled that the initial report linking CEP78 to cone-rod dystrophy and hearing loss was published in September 2016. Any pathogenic variant found in CEP78 before 2016 would have been categorized as a "clearly disruptive variant in a gene of uncertain significance (GUS)" and might not have been reported in the WES report. It is important to acknowledge that our understanding of genotype-phenotype associations is undergoing rapid expansion. It is also crucial to recognize that repeat genetic testing may represent a fundamentally different approach, given the technological advancements not only in the coverage of the sequencing but also in the more comprehensive understanding of genotype-phenotype associations. This case series also enriches the existing CEP78 literature by providing phenotypic details of the youngest case of CEP78-associated retinopathy reported in the literature (Case 2), which expands our perspective on the natural history of disease in this disorder.

15.
Carbohydr Polym ; 337: 122142, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710551

ABSTRACT

The growth of cyclodextrin inclusion complexes (ICs) on oil/water interfaces represents a beautiful example of spontaneous pattern formation in nature. How the supramolecules evolve remains a challenge because surface confinement can frustrate microcrystal growth and give rise to unusual phase transitions. Here we investigate the self-assembly of ICs on droplet surfaces using microfluidics, which allows directly visualizing packing, wetting and ordering of the microcrystals anchored on the surface. The oil guests of distinct molecular structures can direct the assembly of the ICs and largely affect anchoring dynamics of the ICs microcrystals, leading to a range of behaviors including orientating, slipping, buckling, jamming, or merging. We discuss the behaviors observed in terms of the flexibility of the building blocks, which offers a new degree of freedom through which to tailor their properties and gives rise to a striking feature of anchoring patterns that have no counterpart in normal colloidal crystals.

16.
Biomed Pharmacother ; 175: 116715, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739993

ABSTRACT

Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.


Subject(s)
A Kinase Anchor Proteins , Ischemic Stroke , Humans , A Kinase Anchor Proteins/metabolism , Ischemic Stroke/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism
17.
Front Mol Neurosci ; 17: 1412407, 2024.
Article in English | MEDLINE | ID: mdl-38813437

ABSTRACT

The complex nature of the retina demands well-organized signaling to uphold signal accuracy and avoid interference, a critical aspect in handling a variety of visual stimuli. A-kinase anchoring proteins (AKAPs), known for binding protein kinase A (PKA), contribute to the specificity and efficiency of retinal signaling. They play multifaceted roles in various retinal cell types, influencing photoreceptor sensitivity, neurotransmitter release in bipolar cells, and the integration of visual information in ganglion cells. AKAPs like AKAP79/150 and AKAP95 exhibit distinct subcellular localizations, impacting synaptic transmission and receptor sensitivity in photoreceptors and bipolar cells. Furthermore, AKAPs are involved in neuroprotective mechanisms and axonal degeneration, particularly in retinal ganglion cells. In particular, AKAP6 coordinates stress-specific signaling and promotes neuroprotection following optic nerve injury. As our review underscores the therapeutic potential of targeting AKAP signaling complexes for retinal neuroprotection and enhancement, it acknowledges challenges in developing selective drugs that target complex protein-protein interactions. Overall, this exploration of AKAPs provides valuable insights into the intricacies of retinal signaling, offering a foundation for understanding and potentially addressing retinal disorders.

18.
J Behav Med ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704776

ABSTRACT

The purpose of this study was to: (1) compare the relative efficacy of different combinations of three behavioral intervention strategies (i.e., personalized reminders, financial incentives, and anchoring) for establishing physical activity habits using an mHealth app and (2) to examine the effects of these different combined interventions on intrinsic motivation for physical activity and daily walking habit strength. A four-arm randomized controlled trial was conducted in a sample of college students (N = 161) who had a self-reported personal wellness goal of increasing their physical activity. Receiving cue-contingent financial incentives (i.e., incentives conditional on performing physical activity within ± one hour of a prespecified physical activity cue) combined with anchoring resulted in the highest daily step counts and greatest odds of temporally consistent walking during both the four-week intervention and the full eight-week study period. Cue-contingent financial incentives were also more successful at increasing physical activity and maintaining these effects post-intervention than traditional non-cue-contingent incentives. There were no differences in intrinsic motivation or habit strength between study groups at any time point. Financial incentives, particularly cue-contingent incentives, can be effectively used to support the anchoring intervention strategy for establishing physical activity habits. Moreover, mHealth apps are a feasible method for delivering the combined intervention technique of financial incentives with anchoring.

19.
J Biol Chem ; 300(6): 107329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679328

ABSTRACT

The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In Actinomyces oris, the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated. Here, we present the crystal structure of SrtC2 solved to 2.10-Å resolution. SrtC2 harbors a canonical sortase fold and a lid typical for class C sortases and additional features specific to SrtC2. Structural, biochemical, and mutational analyses of SrtC2 reveal that the extended lid of SrtC2 modulates its dual activity. Specifically, we demonstrate that the polymerizing activity of SrtC2 is still maintained by alanine-substitution, partial deletion, and replacement of the SrtC2 lid with the SrtC1 lid. Strikingly, pilus incorporation of CafA is significantly reduced by these mutations, leading to compromised polymicrobial interactions mediated by CafA. In a srtA mutant, the partial deletion of the SrtC2 lid reduces surface anchoring of FimP polymers, and the lid-swapping mutation enhances this process, while both mutations diminish surface anchoring of FimA pili. Evidently, the extended lid of SrtC2 enables the enzyme the cell wall-anchoring activity in a substrate-selective fashion.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Fimbriae Proteins , Fimbriae, Bacterial , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/chemistry , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Fimbriae Proteins/metabolism , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , Crystallography, X-Ray , Actinomyces/metabolism , Actinomyces/enzymology , Substrate Specificity , Models, Molecular
20.
Angew Chem Int Ed Engl ; 63(28): e202401261, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38687258

ABSTRACT

Aggregation is a conventional method to enhance the quantum yields (QYs) of pure organic luminophores due to the restriction of intramolecular motions (RIM). However, how to realize RIM in metal-organic frameworks (MOFs) is still unclear and challenging. In this work, the ligand meta-anchoring strategy is first proposed and proved to be an effective and systematic approach to restrict the intramolecular motions of MOFs for the QY improvement. By simply shifting the substituent position in the ligand from para to meta, the QY of the resulting MOF is significantly enhanced by eleven-fold. The value is even higher than that of ligand aggregates, demonstrating the strong RIM effect of this ligand meta-anchoring strategy. The introduction of co-ligand induces the appearance of visible yellow room temperature phosphorescence with a lifetime of 222 ms due to the QY enhancement and the charge transfer between the donor and accepter units. The present work thus broadens the understanding of the RIM mechanism from a new perspective, develops a novel method to realize RIM and expands the applicable objects from pure organic materials to organic-inorganic hybrid materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...