Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Food Chem ; 458: 140169, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38968713

ABSTRACT

This study was aimed to investigate the effectiveness of activated carbon on reduction in biogenic amines (BAs) via two-stage adsorption process at industrial scale, and the consequent effect was evaluated by the taste and aroma of anchovy fish sauce. Through reaction surface methodology, the optimal working paratmeters were determined to adsorbent composition of 2% activated carbon and 0.9% diatomite under temperature of 27 °C for 97 min. Upon optimized settings at industrial scale, there were effective reductions in tryptamine (by 100%), cadaverine (by 10%), histamine (by 61%), and tyramine (by 96%), while the changes in taste-related amino nitrogen, total nitrogen, free amino acids, and color were minimum. In addition, off-flavor-causing compounds, such as alcohols and acids, were removed by the developed method. From the obtained results, the activated carbon-based two-stage adsorption approach can provide the framework for control of BAs contents in fish-based sauces or stocks at commercial and industrial scales.

2.
J Fish Biol ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031973

ABSTRACT

Forage species with high biomass, such as anchovies and sardines, play a key role in pelagic ecosystems and make up a significant proportion of the world's capture fisheries production. In recent years, condition indices have gained interest as significant indicators for assessing the effects of environmental and human pressures on these species and the quality of their habitats. In the present study, we examined, for the first time in the North Aegean Sea (eastern Mediterranean), the year-round variation in somatic and gonadal condition, energy density, and percentage of lipid content of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus). Energy density was measured with bomb calorimetry and percentage lipid content with the fatmeter, a portable electronic device. Finally, the monthly changes in gonadal and energetic condition were examined in relation to the annual cycle of temperature and mesozooplankton biomass, simulated by the implementation of a coupled hydrodynamic-biogeochemical model (POM-ERSEM). There was a strong relationship between fish energy density (kJ g-1) and percentage dry weight. Furthermore, the mean monthly energy density and fatmeter measurements were strongly correlated, especially in sardine. Overall, the monthly changes in energetic condition were indicative of the species' different strategies for energy acquisition and allocation to reproduction (capital vs. income breeding): sardine exhibited low energy density and percentage lipid content during the winter spawning period (November-March) and markedly higher energetic condition from spring to autumn (April-October). Anchovy spawning period, as inferred from gonadal condition, lasted from April to September, i.e., during the warm period of the year but its energy density and percentage lipid content did not exhibit any seasonal changes and were markedly lower than in sardine from April to October. Finally, the simulated mesozooplankton biomass was higher from January to July, which corresponded to the second half of the spawning season for sardine, but first half of the spawning season for anchovy.

3.
Environ Sci Pollut Res Int ; 31(21): 30509-30518, 2024 May.
Article in English | MEDLINE | ID: mdl-38605274

ABSTRACT

The Adriatic Sea plays a crucial role as both a significant fishing ground and a thriving trading market for small pelagic edible fish. Recognized for their nutritional value, these fish are esteemed for their high protein content and abundance of polyunsaturated omega-3 and omega-6 fatty acids, making them a sought-after and healthful food choice. Nevertheless, pelagic species can also serve as a reservoir for lipophilic organochlorine pollutants, posing potential risks to human health. In this study, we compared traditional classification methods traditional principal component analysis (PCA) and Ward's clustering with an advanced self-organizing map (SOM) algorithm in determining distribution patterns of 24 organochlorines and 19 fatty acids in sardine and anchovy samples taken from the eastern Adriatic. The outcomes reveal the strengths and weaknesses of the three approaches (PCA, Ward's clustering, and SOM). However, it is evident that SOM has proven to be the most effective in offering detailed information and data visualization. Although sardines and anchovies exhibit similar distribution patterns for p,p'-DDE, PCB-28, PCB-138, PCB-153, PCB-118, and PCB-170, they differ in the concentrations of fatty acids such as stearic, palmitic, myristic, oleic, docosapentaenoic, and docosahexaenoic acid. Our findings supply valuable insights for environmental authorities and fish consumers concerning the potential risks associated with organochlorines in these two types of fish.


Subject(s)
Fatty Acids , Fishes , Hydrocarbons, Chlorinated , Water Pollutants, Chemical , Hydrocarbons, Chlorinated/analysis , Animals , Fatty Acids/analysis , Cluster Analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Principal Component Analysis
4.
Gen Comp Endocrinol ; 351: 114476, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38408712

ABSTRACT

Primordial germ cells (PGCs) are pivotal for gonadal development and reproductive success. Though artificial induction of sterility by targeting PGCs are gaining popularity due to its advantages in fish surrogacy and biodiversity management, it is often skill and time intensive. In this study, we have focused on understanding the role of PGCs and the chemotactic SDF-1/CXCR4 signaling on gonad development of Japanese anchovy (JA, Engraulis japonicus), an upcoming marine model organism with eco-commercial values, with an aim to develop a novel, easy, and versatile gonad sterilization method. Our data showed that PGC migration related genes, i.e., sdf-1a, sdf-1b, cxcr4a, cxcr4b and vasa, are phylogenetically closer relatives of respective herring (Clupea harengus) and zebrafish (Danio rerio) homolog. Subsequently, PGC marking and live tracing experiments confirmed that PGC migration in JA initiates from 16 hours post fertilization (hpf) followed by PGC settlement in the gonadal ridge at 44 hpf. We found that overexpression of zebrafish sdf-1a mRNA in the germ cell suppresses cxcr4a and increases cxcr4b transcription at 8 hpf, dose dependently disrupts PGC migration at 24-48 hpf, induces PGC death and upregulates sdf-1b at 5 days post hatching. 48 h of immersion treatment with CXCR4 antagonist (AMD3100, Abcam) also accelerated PGC mismigration and pushed the PGC away from gonadal ridge in a dose responsive manner, and further when grown to adulthood caused germ cell less gonad formation in some individuals. Cumulatively, our data, for the first time, suggests that JA PGC migration is largely regulated by SDF1/CXCR4 signaling, and modulation of this signaling has strong potential for sterile, germ cell less gonad preparation at a mass scale. However, further in-depth analysis is pertinent to apply this methodology in marine fish species to successfully catapult Japanese anchovy into a true marine fish model.


Subject(s)
Gonads , Mesoderm , Animals , Cell Movement , Germ Cells/metabolism , Gonads/embryology , Japan , Zebrafish
5.
Front Physiol ; 15: 1349119, 2024.
Article in English | MEDLINE | ID: mdl-38370015

ABSTRACT

SDF-1/CXCR4 chemokine signaling are indispensable for cell migration, especially the Primordial Germ Cell (PGC) migration towards the gonadal ridge during early development. We earlier found that this signaling is largely conserved in the Japanese anchovy (Engraulis japonicus, EJ), and a mere treatment of CXCR4 antagonist, AMD3100, leads to germ cell depletion and thereafter gonad sterilization. However, the effect of AMD3100 was limited. So, in this research, we scouted for CXCR4 antagonist with higher potency by employing advanced artificial intelligence deep learning-based computer simulations. Three potential candidates, AMD3465, WZ811, and LY2510924, were selected and in vivo validation was conducted using Japanese anchovy embryos. We found that seven transmembrane motif of EJ CXCR4a and EJ CXCR4b were extremely similar with human homolog while the CXCR4 chemokine receptor N terminal (PF12109, essential for SDF-1 binding) was missing in EJ CXCR4b. 3D protein analysis and cavity search predicted the cavity in EJ CXCR4a to be five times larger (6,307 Å³) than that in EJ CXCR4b (1,241 Å³). Docking analysis demonstrated lower binding energy of AMD3100 and AMD3465 to EJ CXCR4a (Vina score -9.6) and EJ CXCR4b (Vina score -8.8), respectively. Furthermore, we observed significant PGC mismigration in microinjected AMD3465 treated groups at 10, 100 and 1 × 105 nM concentration in 48 h post fertilized embryos. The other three antagonists showed various degrees of PGC dispersion, but no significant effect compared to their solvent control at tested concentrations was observed. Cumulatively, our results suggests that AMD3645 might be a better candidate for abnormal PGC migration in Japanese anchovy and warrants further investigation.

6.
Heliyon ; 10(1): e23463, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169681

ABSTRACT

The development of meat analogues focuses on sustainable production and requires attention to their nutritional, physicochemical, and sensory values. Anchovy protein isolate (API) is a novel and potential binding agent in the development of meat analogues. This study aimed to produce API and evaluate the physical, proximate, and sensory qualities of patty meat analogue (PMA) with the addition of API. The preparation method for API uses pH-shifting. The ratios of API added to the meat analogues were 0 % (F0), 4 % (F1), 8 % (F2), and 12 % (F3) per textured vegetable protein (TVP) weight. Furthermore, PMA was analysed for physical, proximate, and sensory properties. API had 87.23 % dry basis (db) protein content. The amino acid composition of API generally complied with the nutritional requirements of adults and children. The addition of API significantly affected the physical properties, proximate composition, and sensory (taste) qualities of PMA (p < 0.05). The protein content of PMA met Indonesian national standards (SNI) and was similar to both McDonald's and ground beef patty based on United States Department of Agriculture (USDA) standards. F3 was found to be the best based on its physical, proximate, and sensory properties.

7.
Parasitol Res ; 123(1): 95, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38216829

ABSTRACT

The European anchovy Engraulis encrasicolus is one of the most important commercial species in the Bay of Biscay (ICES Subarea 8), and our analysis focused on the analysis of the temporal mean abundance, prevalence, and intensity of Anisakis spp. larvae species in anchovies from ICES Subarea 8 in the years 2000, 2001, 2014-2016, and 2019-2023. Prevalence in adult individuals of anchovy was only 1% in 2000 but increased to 90% in 2014. Since 2015, the prevalence has decreased, and the number of individuals affected in 2023 accounted for 17.6%. The mean abundance showed a similar trend, with a peak of 3.79 nematodes/anchovy in 2014, falling to 0.21 in 2023. The species A. simplex sensu stricto and A. pegreffii were identified by PCR/SANGER sequencing and PCR/RLFP techniques in 2019 and 2020. Anisakis simplex (s.s.) was the most abundant species and, according to the results returned by these two techniques, it accounted for an average of 62.4% and 52.1% of total nematodes in 2019 and 2020, respectively. The results of studies monitoring infection levels in anchovies showed that the mean abundance and prevalence changed over the course of the study period and that the proportion of different species of Anisakis is also subject to variation from year to year.


Subject(s)
Anisakiasis , Anisakis , Fish Diseases , Nematoda , Humans , Animals , Anisakiasis/epidemiology , Anisakiasis/veterinary , Bays , Fishes , Larva , Fish Diseases/epidemiology
8.
Glob Chang Biol ; 30(1): e17047, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273534

ABSTRACT

Decreased body size is often cited as a major response to ocean warming. Available evidence, however, questions the actual emergence of shrinking trends and the prevalence of temperature-driven changes in size over alternative drivers. In marine fish, changes in food availability or fluctuations in abundance, including those due to size-selective fishing, provide compelling mechanisms to explain changes in body size. Here, based on three decades of scientific survey data (1990-2021), we report a decline in the average body size-length and weight-of anchovy, Engraulis encrasicolus L., in the Bay of Biscay. Shrinking was evident in all age classes, from juveniles to adults. Allometric adjustment indicated slightly more pronounced declines in weight than in total length, which is consistent with a change toward a slender body shape. Trends in adult weight were nonlinear, with rates accelerating to an average decline of up to 25% decade-1 during the last two decades. We found a strong association between higher anchovy abundance and reduced juvenile size. The effect of density dependence was less clear later in life, and temperature became the best predictor of declines in adult size. Theoretical analyses based on a strategic model further suggested that observed patterns are consistent with a simultaneous, opposing effect of rising temperatures on accelerating early growth and decreasing adult size as predicted by the temperature-size rule. Macroecological assessment of ecogeographical-Bergmann's and James'-rules in anchovy size suggested that the observed decline largely exceeds intraspecific variation and might be the result of selection. Limitations inherent in the observational nature of the study recommend caution and a continued assessment and exploration of alternative drivers. Additional evidence of a climate-driven regime shift in the region suggests, however, that shrinking anchovy sizes may signal a long-lasting change in the structure and functioning of the Bay of Biscay ecosystem.


Subject(s)
Bays , Ecosystem , Animals , Climate , Temperature , Body Size/physiology , Seafood
9.
Mar Pollut Bull ; 194(Pt B): 115303, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37478786

ABSTRACT

To contribute to a better understanding of the regional dynamics of MP pollution and its potential effects on the anchovy population and human health, here we assessed the presence and characterization of microplastics (MPs) in European anchovy (Engraulis encrasicolus), which is the most caught/consumed species in the Black Sea and is of vital importance to the ecosystem. A total of 360 individuals (30 per month) were sampled from the eastern Black Sea continental shelf all year round (monthly from September 20 to Aug 21). We extracted and digested the gastrointestinal tracts (GITs) of the samples with H2O2 and characterized the MPs in the GITs by stereomicroscope and ATR-FTIR. MPs varied between 0 and 0.43 MP individual-1. The morphological structure of MPs was composed of 51 % fiber > fragment (32.7 %) > film (12.2 %) > foam (4.1 %) and polymer types as PP (42.9 %) and PE (22.4 %). In the prevalence of MP colors, black (26.5 %) > white (24.5 %) > red (22.5 %) was observed. The mean MP size was 735.32 ± 836.62 µm, with no significant correlation between the abundance and size of ingested MPs and anchovy height/weight and GIT weight. We determined that MP abundance showed substantial differences between the fishing season (0.18 ± 0.05 MP ind-1) and the banned season (0.05 ± 0.03 MP ind-1). It is essential to develop effective waste management strategies to protect the vulnerable marine ecosystems of the Black Sea and ensure sustainable exploitation of living resources in this region. These strategies should be accompanied by robust monitoring and enforcement measures to guarantee their effectiveness and compliance.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Humans , Plastics , Black Sea , Ecosystem , Hydrogen Peroxide , Fishes , Gastrointestinal Tract/chemistry , Environmental Monitoring , Water Pollutants, Chemical/analysis
10.
Mar Pollut Bull ; 194(Pt A): 115269, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37437521

ABSTRACT

This survey focuses on an environmental parasitology study by investigating Polycyclic Aromatic Hydrocarbons (PAH) bioaccumulation and the occurrence of Anisakis spp. on common anchovies collected from Moroccan coasts over 9 months through chemical (PAH) and Biological (Biometrics and parasitic) analysis. Obtained results were statistically analyzed and human health risks from anchovies consumption were assessed. The results obtained highlighted the good biological and chemical status of this fish in all stations of Morocco's coasts. Anisakis spp. was present in only four stations in the Atlantic fringe (maximum prevalence 22.22 %). Results have shown non-significant differences for tissue nature (Muscle, viscera) or spatial variation and were within a low range of concentrations well below the European Commission standards. Results have shown no serious harmful risk for humans from this fish consumption (ILCR and HI), and statistical analysis had shown positive correlations between prevalence and Chr, prevalence and sex-ratio, and prevalence and weight.


Subject(s)
Anisakiasis , Anisakis , Humans , Animals , Anisakiasis/epidemiology , Anisakiasis/parasitology , Larva , Preliminary Data , Food Parasitology , Fishes
11.
Ital J Food Saf ; 12(1): 11032, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-37064521

ABSTRACT

The ingestion of synthetic microfibers, the most prevalent type of microplastics in marine environments, and natural fibers was assessed in Engraulis engrasicolus and Mullus barbatus, two commercially important fish species in the Mediterranean Sea. Microfibers were isolated from the fish gastrointestinal tract using a 10% potassium hydroxide solution. For the microfiber characterization, the evaluation of specific morphological features using a light microscope, coupled with the Fourier-transform infrared (FTIR) analysis of a subsample of isolated particles, was applied. The preliminary results showed the occurrence of microfibers in 53 and 60% of European anchovy and Red mullet, respectively. A mean of 6.9 microfibers/individual was detected in anchovies, while on average Red mullet samples contained 9.2 microfibers/individual. The most common colors of fibers in both species were black, blue, and transparent. Visual characterization of fibers allowed the classification of 40% of the items as synthetic microfibers. FTIR spectroscopy confirmed the visual classification by fiber morphology. Microfibers were made of different typologies of polymers, represented by cellulose, cotton, and polyester. These findings confirm as the wide distribution of fibrous microplastics, and natural microfibers may impact both pelagic and deep-sea trophic webs. Despite the presence of microfibers in fish species poses a potential risk to human health, the literature is scarce regarding studies on the uptake by commercial marine fish mostly due to methodological issues. The visual characterization, corroborated by spectroscopic techniques, may be useful to differentiate synthetic and natural fibers, representing a fast and easy method to assess fibrous microplastic pollution in commercially important fish species.

12.
Foods ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36900577

ABSTRACT

Fish plays a key role in a healthy and balanced Italian diet, but it is also subject to the bioaccumulation of different contaminants depending on the geographical or anthropogenic context from which it is derived. In recent years, the European Food Safety Authority (EFSA) has been focusing its attention on consumer toxicological risk, considering emerging contaminants such as perfluoroalkyl substances (PFASs) and potentially toxic elements (PTEs). Regarding fish, anchovies are among the five small pelagic main commercial species in the European Union and the top five fresh species consumed by households in Italy. Considering the lack of data on PFASs and PTEs in this species, our aim was to investigate the mentioned contaminants in salted and canned anchovies collected over 10 months from different fishing areas, even those far apart, to verify possible variations in bioaccumulation and to consider the risk for the consumer. According to our results, the assessed risk was very reassuring also for large consumers. The only concern, related to Ni acute toxicity, also dependent on the different consumers' sensitivity, was related to only one sample.

13.
J Sci Food Agric ; 103(7): 3468-3478, 2023 May.
Article in English | MEDLINE | ID: mdl-36807149

ABSTRACT

BACKGROUND: Bacillus velezensis SW5, with good enzyme production ability, was isolated and identified in our laboratory from fermented fish sauce. Its galactosidase has been expressed in Escherichia coli, which could hydrolyze lactose in milk. The present study aims to express a novel serine protease gene (SPr-SW5) of this strain by Bacillus subtilis WB800N, and applies the expressed enzyme in hydrolysis of anchovy to prepare antioxidant substances, aiming to alleviate the waste of low-value fish resources. RESULTS: SPr-SW5 with the open reading frame of 1353 bp encodes a serine protease (SPr-SW5) with 450 amino acids. The theoretical molecular weight and isoelectric point are 47.2 kDa and 5.22, respectively. The successful expression of SPr-SW5 in B. subtilis WB800N was confirmed by a skim milk plate test. Its optimal temperature and pH were 50 °C and 8.0, respectively. SPr-SW5 activity was increased by Ca2+ and Zn2+ , but inhibited by Fe3+ . Furthermore, SPr-SW5 was tolerant to 1% Tween-40 and Tween-80; however, its activity was strongly inhibited by 10 mm phenylmethylsulfonyl fluoride. Additionally, SPr-SW5 could be capable of hydrolyzing anchovy, the hydrolysate (AHP) at 10 g L-1 , with 2,2-diphenyl-1-picrylhydrazyl and hydroxyl (·OH) scavenging rates of 73.21% and 79.71%, displaying good antioxidant activity. CONCLUSION: The novel SPr-SW5 was successfully expressed in B. subtilis WB800N. It exhibited excellent temperature stability and good tolerance to several metal ions. In addition, the anchovy hydrolyzed by expressed SPr-SW5 has good antioxidant ability. Overall, this research lays a good foundation for SPr-SW5 with respect to exploration and application in the food industry as enzyme preparation. © 2023 Society of Chemical Industry.


Subject(s)
Polysorbates , Serine Proteases , Animals , Serine Proteases/chemistry , Serine Proteases/metabolism , Hydrolysis , Antioxidants , Serine Endopeptidases , Temperature , Hydrogen-Ion Concentration
14.
Foods ; 12(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36766165

ABSTRACT

The colorimetric sensor array (CSA) is a simple, rapid, and cost-effective system widely used in food science to assess food quality by identifying undesirable volatile organic compounds. As a prospective alternative to conventional techniques such as total volatile basic nitrogen, peroxide value, and thiobarbituric acid reactive substance analysis, the CSA system has garnered significant attention. This study evaluated the quality of edible-coated food products using both conventional and CSA methods in order to demonstrate that the CSA approach is a feasible alternative to conventional methods. Boiled-dried anchovies (BDA) were selected as the model food product, and the sample's quality was assessed as a function of storage temperature and incubation period using conventional techniques and the CSA system. The surface of BDA was coated with an edible alginate film to form the surface-modified food product. The conventional methods revealed that an increase in storage temperature and incubation time accelerated the lipid oxidation process, with the uncoated BDA undergoing lipid oxidation at a faster rate than the coated BDA. Utilizing multivariate statistical analysis, the CSA approach essentially yielded the same results. In addition, the partial least square regression technique revealed a strong correlation between the CSA system and conventional methods, indicating that the CSA system may be a feasible alternative to existing methods for evaluating the quality of food products with surface modifications.

15.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768685

ABSTRACT

The oxidative state of intestinal tracts of healthy animals were investigated after short-term intake of half-fin anchovy hydrolysates (HAHp) and their thermal or Maillard reaction products (MRPs). After one month of continuous oral gavage of HAHp, HAHp-heated products (HAHp-H), the MRPs of HAHp with 3% of glucose (HAHp-3%G MRPs), and the MRPs of HAHp with 3% of fructose (HAHp-3%F MRPs) at a dose of 1.0 g/kg of body weight per day into healthy ICR male mice, the concentrations of serum low-density and high-density lipoprotein cholesterol did not significantly change compared to the control group (CK, gavage with saline). Similar results were found for the interleukin-6 concentrations of all groups. By comparison, HAHp-H, HAHp-3%G MRPs, and HAHp-3%F MRPs administration decreased serum tumor necrosis factor-α concentration as compared to the CK group (p < 0.05). No histological damage was observed in the jejunum, ileum, and colonic tissues of all groups. However, HAHp-H treatment induced higher upregulation of Kelch-like ECH-associated protein 1, transcription factors Nrf-2, associated protective phase-II enzymes of NAD(P)H: quinine oxidoreductase-1, and hemoxygenase-1 in colon tissue, as well as higher upregulation of endogenous antioxidant enzymes, including copper/zinc superoxide dismutase, manganese superoxide dismutase, catalase, and glutathione peroxidase 2 than other groups (p < 0.05). Additionally, increases in Nε-carboxymethyllysine expression in the colonic tissues of all groups were consistent with their increased oligopeptide transporter 1 expressions. Our results suggest that the thermal products of HAHp might have a broad application prospect in improving antioxidant defense in vivo in healthy animals.


Subject(s)
Antioxidants , Maillard Reaction , Mice , Animals , Male , Antioxidants/pharmacology , Mice, Inbred ICR , Fishes/metabolism , Glycation End Products, Advanced
16.
Sci Total Environ ; 860: 160451, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36442631

ABSTRACT

Fragments of microplastics (<5 mm) found in commercial species of fish, crustaceans, and bivalves, are an issue of global concern. The bioaccumulation of microplastics and other anthropogenic particles in different levels of the food web may provoke unwanted impacts on marine ecosystems and cause pernicious effects on human health. Here, we study the presence of anthropogenic particles and the fraction of microplastics in the target organs of two representative commercial fish species in Spain; the European anchovy (Engraulis encrasicolus) and the European pilchard (Sardina pilchardus). The individuals were sampled along the continental shelf of the Gulf of Cádiz, from the Bay of Cádiz to Cape Santa Maria. The isolation of the microplastics (MPs) was carried out with a complete alkaline-oxidant organic digestion (KOH-H2O2) of the digestive tract, including both the contents ingested and the muscle tissues. Anthropogenic particles were found in all individuals of both species with an average of 8.94 ± 5.11 items·ind-1. Fibres made up 93 % of the items while fragments and films were represented by the remaining 7 %. The average size of the anthropogenic particles was 0.89 ± 0.82 mm. In addition to the fragment and film particles identified as microplastics, 29 % of the fibres were estimated to be microplastics by Fourier-transform infrared spectroscopy (FTIR) analysis. The main polymer found in both species was nylon. No significant correlation was found between the abundance and size of anthropogenic particles ingested and individual size or other body variables. The analysis of similarities (ANOSIM) and the distanced-based multiple linear regression model showed a high homogeneity in anthropogenic particle contamination in both species throughout the study area along the continental shelf of the Gulf of Cádiz.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Humans , Plastics/analysis , Ecosystem , Hydrogen Peroxide/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Fishes , Gastrointestinal Tract
17.
Environ Pollut ; 316(Pt 2): 120548, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36336179

ABSTRACT

Microplastic (particle size <5 mm) is considered an emerging threat to the marine environment, yet data are limited for coastal ecosystems. To provide information related to microplastic in a coastal system, we used alkaline tissue digestion and Raman spectroscopy to quantify the prevalence and composition (e.g. fiber, fragment, foam, etc.) of anthropogenic microparticles in the digestive tracts of northern anchovies (Engraulis mordax, anchovy, n = 24), and common murres (Uria aalge, murre, n = 19) from the Monterey Bay, California USA. We also determined microplastic prevalence and composition in seawater (n = 12 17-h sampling periods representing ∼46,000 L sampled) from two Monterey Bay intake systems (Moss Landing, CA and Santa Cruz, CA USA). Microparticles recovered from murre digestive tracts were assessed for estrogenic activity using an in-vitro estrogen receptor activation assay. Suspected anthropogenic microparticles based on visual characteristics were recovered from all sample types with ∼2 particles per 1000 L from the seawater sampling periods, 58% prevalence in anchovies, and 100% prevalence in murres. Across samples of seawater, anchovies, and murres, the most abundant microparticle type found were fibers (78%), followed by fragments (13%), foam (6%), film (2%), and beads (1%). Raman spectroscopy identified 57% of microparticles (excluding dye-prominent and unknown) as plastic (synthetic, semi-synthetic, or blends). Almost one quarter (23%) of the murre digestive tracts contained microparticles that exhibited estrogenic activity. Our study describes the widespread occurrence, composition, and potential estrogenic activity of microplastic in the Monterey Bay and provides important information to aid in the understanding of microplastic contamination in coastal systems.


Subject(s)
Charadriiformes , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Bays , Environmental Monitoring , Prevalence , Ecosystem , Charadriiformes/physiology , Fishes , Estrone , Water Pollutants, Chemical/analysis
18.
BMC Genomics ; 23(1): 526, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858854

ABSTRACT

BACKGROUND: In aquatic environments, pH, salinity, and ammonia concentration are extremely important for aquatic animals. NHE is a two-way ion exchange carrier protein, which can transport Na+ into cells and exchange out H+, and also plays key roles in regulating intracellular pH, osmotic pressure, and ammonia concentration. RESULTS: In the present study, ten NHEs, the entire NHE gene family, were identified from Coilia nasus genome and systemically analyzed via phylogenetic, structural, and synteny analysis. Different expression patterns of C. nasus NHEs in multiple tissues indicated that expression profiles of NHE genes displayed tissue-specific. Expression patterns of C. nasus NHEs were related to ammonia excretion during multiple embryonic development stages. To explore the potential functions on salinity challenge and ammonia stress, expression levels of ten NHEs were detected in C. nasus gills under hypotonic stress, hypertonic stress, and ammonia stress. Expression levels of all NHEs were upregulated during hypotonic stress, while they were downregulated during hypertonic stress. NHE2 and NHE3 displayed higher expression levels in C. nasus larvae and juvenile gills under ammonia stress. CONCLUSIONS: Our study revealed that NHE genes played distinct roles in embryonic development, salinity stress, and ammonia exposure. Syntenic analysis showed significant difference between stenohaline fish and euryhaline fishes. Our findings will provide insight into effects of C. nasus NHE gene family on ion transport and ammonia tolerance and be beneficial for healthy aquaculture of C. nasus.


Subject(s)
Ammonia , Salinity , Ammonia/metabolism , Animals , Fish Proteins/genetics , Fishes/genetics , Phylogeny , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism
19.
Orphanet J Rare Dis ; 17(1): 300, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906608

ABSTRACT

BACKGROUND: ANCHOVY was a global, multicenter, chart-review study that aimed to describe the natural history of Type 1 spinal muscular atrophy (SMA) from a broad geographical area and provide further contextualization of results from the FIREFISH (NCT02913482) interventional study of risdiplam treatment in Type 1 SMA. METHODS: Data were extracted from medical records of patients with first symptoms attributable to Type 1 SMA between 28 days and 3 months of age, genetic confirmation of SMA, and confirmed survival of motor neuron 2 copy number of two or unknown. The study period started on 1 January 2008 for all sites; study end dates were site-specific due to local treatment availabilities. Primary endpoints were time to death and/or permanent ventilation and proportion of patients achieving motor milestones. Secondary endpoints included time to initiation of respiratory and feeding support. RESULTS: Data for 60 patients from nine countries across Asia, Europe and North and South America were analyzed. The median age (interquartile range [IQR]) for reaching death or permanent ventilation was ~ 7.3 (5.9-10.5) months. The median age (IQR) at permanent ventilation was ~ 12.7 (6.9-16.4) months and at death was ~ 41.2 (7.3-not applicable) months. No patients were able to sit without support or achieved any level of crawling, standing or walking. INTERPRETATION: Findings from ANCHOVY were consistent with published natural history data on Type 1 SMA demonstrating the disease's devastating course, which markedly differed from risdiplam-treated infants (FIREFISH Part 2). The results provide meaningful additions to the literature, including a broader geographical representation.


Subject(s)
Muscular Atrophy, Spinal , Spinal Muscular Atrophies of Childhood , Asia , Europe , Humans , Infant , Retrospective Studies
20.
Glob Chall ; 6(5): 2100141, 2022 May.
Article in English | MEDLINE | ID: mdl-35602407

ABSTRACT

The "AnchoisFert", the solid residue comprised of milled anchovy leftovers after fish oil extraction with biobased limonene, is a powerful organic fertilizer. Employed to promote the growth of Tropea's red onion (Allium cepa), the fertilizer turns out to largely be superior to commonly used organic (manure) and chemical (nitrogen phosphorous potassium) fertilizers. Rich in proteins, organic carbon, flavonoids, magnesium, potassium, phosphate and sulfate, and devoid of antibiotics and antibiotic resistance genes, the new organic fertilizer can replace both conventional organic and inorganic fertilizers. This discovery closes the fishing material cycle for the most fished species across the seas opening the route to a new class of organic fertilizers of exceptional performance derived from abundant biowaste via a low-cost and environmentally-friendly circular economy process.

SELECTION OF CITATIONS
SEARCH DETAIL
...