Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
J Neuroendocrinol ; : e13429, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986626

ABSTRACT

In teleosts, GnRH1 neurons stand at the apex of the Hypothalamo-Pituitary-Gonadal (HPG) axis, which is responsible for the production of sex steroids by the gonads (notably, androgens). To exert their actions, androgens need to bind to their specific receptors, called androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARß) that are encoded by two different genes, ar1 and ar2, respectively. In A. burtoni, males stratify along dominance hierarchies, in which an individuals' social status determines its physiology and behavior. GnRH1 neurons have been strongly linked with dominance and circulating androgen levels. Similarly, GnRH3 neurons are implicated in the display of male specific behaviors. Some studies have shown that these GnRH neurons are responsive to fluctuations in circulating androgens levels, suggesting a link between GnRH neurons and ARs. While female A. burtoni do not naturally form a social hierarchy, their reproductive state is positively correlated to androgen levels and GnRH1 neuron size. Although there are reports related to the expression of ar genes in GnRH neurons in cichlid species, the expression of each ar gene remains inconclusive due to technical limitations. Here, we used immunohistochemistry, in situ hybridization chain reaction (HCR), and spatial transcriptomics to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.

2.
Anim Reprod Sci ; 268: 107550, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38996787

ABSTRACT

Ghrelin, a peptide found in the brain and gut, is predicted to play a significant role in the control of various physiological systems in fish. The objective of this study was to examine the impact of ipamorelin acetate (IPA), a ghrelin agonist, on the reproductive axis of the tilapia Oreochromis mossambicus. The administration of either 5 or 30 µg of IPA for 21 days led to a significant and dose-dependent rise in food intake concomitant with a significant increase in the numbers of primary spermatocytes, secondary spermatocytes, and early spermatids compared to the control group. There was a significant rise in the number of late spermatids, as well as the areas of the lobule and lumen, in fish treated with 30 µg of IPA, compared to the control group. Moreover, there was no significant difference in the percentage of gonadotropin-releasing hormone (GnRH)-immunoreactive fibres in the hypothalamus and anterior pituitary gland across different groups. However, a significant elevation in the expression of androgen receptor protein was observed in fish treated with 30 µg of IPA. Furthermore, the concentrations of luteinizing hormone (LH) and 11-ketotestosterone (11-KT) in the serum of fish treated with either 5 or 30 µg of IPA were significantly elevated in comparison to the control group. Collectively, these findings suggest that the administration of ghrelin enhances the development of germ cells during the meiosis-I phase and that this effect might be mediated via the stimulation of 11-KT and androgen receptors at the testicular level and LH at the pituitary level in the tilapia.

3.
Tissue Cell ; 88: 102404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759521

ABSTRACT

Follicular maturation arrest is a prevalent endocrine disorder characterized by hormonal imbalance, ovarian dysfunction, and metabolic disturbances leading to Polycystic ovarian syndrome (PCOS). Tanshinone IIA (TIIA), a bioactive compound derived from Salvia miltiorrhiza, has shown promising therapeutic potential in various diseases, including cardiovascular diseases and cancer. However, its effects on reproductive health and gynecological disorders, particularly PCOS, remain poorly understood. In this study, we investigated the potential therapeutic effects of TIIA on ovarian function. Using a combination of experimental and computational approaches, we elucidated the molecular mechanisms underlying TIIA's pharmacological impact on ovarian function, follicular development, and androgen receptor signaling. Molecular docking and dynamics simulations revealed that TIIA interacts with the human androgen receptor (HAR), modulating its activity and downstream signaling pathways. Our results demonstrate that TIIA treatment alleviates PCOS-like symptoms in a zebrafish model, including improved follicular development, lowered GSI index, improved antioxidant status (SOD, CAT), decreased LDH levels, and enhanced AChE levels by regulating Tox3 and Dennd1a pathway. Our findings suggest that TIIA may hold promise as a novel therapeutic agent for the management of PCOS or ovulation induction.


Subject(s)
Abietanes , Ovarian Follicle , Polycystic Ovary Syndrome , Receptors, Androgen , Salvia miltiorrhiza , Zebrafish , Animals , Humans , Abietanes/pharmacology , Receptors, Androgen/metabolism , Salvia miltiorrhiza/chemistry , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Ovarian Follicle/pathology , Female , Molecular Docking Simulation , Zebrafish Proteins/metabolism , Signal Transduction/drug effects , Protein Binding/drug effects
4.
Anim Reprod Sci ; 263: 107451, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490066

ABSTRACT

In vertebrates, opioid peptides are thought to be involved in the regulation of reproduction; however, the significance of enkephalins in testicular function remains unclear. We examined the influence of δ-opioid receptor agonist leucine enkephalin (L-ENK) on the hypophysial-testicular axis of the cichlid fish Oreochromis mossambicus. Treatment with a low dose of L-ENK (60 µg) caused a significant increase in the numbers of primary and secondary spermatocytes and early and late spermatids, concomitant with intense immunolabelling of testicular androgen receptors, but did not significantly alter serum luteinizing hormone (LH) and 11-ketotestosterone (11-KT) levels compared to those of controls. Nevertheless, treatment with a high dose of L-ENK (200 µg) caused a significant reduction in the numbers of secondary spermatocytes as well as late spermatids associated with marginal immunolabelling of androgen receptors and significantly lower concentrations of serum 11-KT and LH compared to controls. In addition, the serum cortisol level was not affected in low-dose L-ENK-treated fish, but its level was significantly increased in the high-dose L-ENK-treated group. Together, these findings indicate that a low dose of L-ENK stimulates the germ cells at the meiosis stage and promotes further stages of spermatogenesis, whereas a high concentration of L-ENK inhibits spermatogenesis at the advanced stages. This effect appears to be mediated through the suppression of testicular steroidogenesis and the reduction of LH release in the pituitary gland of tilapia. The findings also suggest that elevated L-ENK levels in teleosts may exert their inhibitory influence on the hypophysial-testicular axis via glucocorticoids.


Subject(s)
Cichlids , Tilapia , Male , Animals , Enkephalin, Leucine/pharmacology , Opioid Peptides , Receptors, Androgen , Luteinizing Hormone
5.
Cancer Treat Rev ; 124: 102697, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38401478

ABSTRACT

Salivary Gland carcinomas (SGCs) are rare tumors accounting for less than 1% of all cancers with 21 histologically diverse subtypes. The rarity of the disease presents a challenge for clinicians to conduct large size randomized controlled trials. Surgery and radiotherapy remain the only curative treatment for localized disease, whereas treatments for recurrent and metastatic disease remain more challenging with very disappointing results for chemotherapy. The different histological subtypes harbor various genetic alterations, some pathognomonic with a diagnostic impact for pathologists in confirming a difficult diagnosis and others with therapeutic implications regardless of the histologic subtype. Current international guidelines urge pathologists to identify androgen receptor status, HER-2 expression that could be determined by immunohistochemistry, and TRK status in patients with non-adenoid cystic salivary gland carcinoma that are eligible to initiate a systemic treatment, in order to offer them available targeted therapies or refer them to clinical trials based on their mutational profile. A more advanced molecular profiling by next generation sequencing would offer a larger panel of molecular alterations with possible therapeutic implications such as NOTCH, PI3K, BRAF, MYB, and EGFR. In the following review, we present the most common genetic alterations in SGCs as well as actionable mutations with the latest available data on therapeutic options and upcoming clinical trials.


Subject(s)
Carcinoma , Salivary Gland Neoplasms , Humans , Oncogenes , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/therapy , Salivary Gland Neoplasms/metabolism , Mutation , Salivary Glands/metabolism , Salivary Glands/pathology
6.
bioRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352335

ABSTRACT

Within a social hierarchy, an individuals' social status determines its physiology and behavior. In A. burtoni, subordinate males can rise in rank to become dominant, which is accompanied by the upregulation of the entire HPG axis, including activation of GnRH1 neurons, a rise in circulating androgen levels and the display of specific aggressive and reproductive behaviors. Cichlids possess two other GnRH subtypes, GnRH2 and GnRH3, the latter being implicated in the display of male specific behaviors. Interestingly, some studies showed that these GnRH neurons are responsive to fluctuations in circulating androgen levels, suggesting a link between GnRH neurons and androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARß) that are encoded by two different genes, ar1 and ar2, respectively. Even though social status has been strongly linked to androgens, whether ARα and/or ARß are present in GnRH neurons remains unclear. Here, we used immunohistochemistry and in situ hybridization chain reaction (HCR) to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.

7.
Fish Physiol Biochem ; 50(2): 733-743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38277042

ABSTRACT

Although the involvement of ß-endorphin (ß-ERP) in vertebrate reproduction has been suggested, its role in testicular activity is not clear in fish. We describe the influence of ß-ERP on spermatogenesis in a cichlid fish in the present paper. In comparison to the control group, the administration of ß-ERP (3 µg) caused a significant increase in the number of spermatogonia-A and spermatids. Following treatment with ß-ERP (6 µg), a significant increase in the number of spermatogonia-A was observed, whereas the numbers of all the other germ cells, excluding spermatogonia-B, significantly decreased in comparison to those in the control group. In addition, treatment of fish with 6 µg ß-ERP resulted in a significant reduction in the dimensions of the lumen and seminiferous lobules, the level of immunopositive androgen receptor (AR) expression in Sertoli cells, and the percentage of luteinizing hormone (LH) immunolabeled in the pituitary compared to those in the control group or the group treated with 3 µg ß-ERP. In contrast, the intensity of AR immunoreactivity and the percentage of LH immunolabeling were substantially increased in fish treated with 3 µg ß-ERP compared to those in the control group. These findings reveal for the first time that a low dose of ß-ERP stimulates the recruitment of spermatogonia as well as spermateleosis, whereas a high concentration affects the recruitment of germ cells prior to meiotic division in tilapia. These results suggest that ß-ERP exerts modulatory effects at the testicular and hypophysial levels through alterations in AR expression and LH secretory activity, respectively, in teleosts.


Subject(s)
Testis , Tilapia , Male , Animals , Testis/metabolism , Tilapia/metabolism , beta-Endorphin/metabolism , beta-Endorphin/pharmacology , Opioid Peptides/metabolism , Opioid Peptides/pharmacology , Spermatogenesis , Luteinizing Hormone/metabolism , Spermatogonia
8.
Bioorg Chem ; 143: 107029, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091717

ABSTRACT

Prostate cancer is one of the most prevalent cancers in men leading to second most death causing cancer in men. Despite the availability of multiple treatment still the prevalence is high for prostate cancer. Steroidal antagonists associated with poor bioavailability, side effects while non-steroidal antagonists show serious side effects like gynecomastia. Therefore, there is a need of potential candidate for the treatment of prostate cancer with better bioavailability, good therapeutic effect and minimal side effects. In the same context, we have designed the series, SP1-SP25 based 3-phenyl-5-styryl-1,2,4-oxadiazole as the core structure. We successfully synthesized all 25 molecules in this series and characterized them using 1H, 13C NMR, and mass spectroscopy. Subsequently, we conducted MTT assays using PC-3 cells and observed that all the compounds exhibited a dose-dependent decrease in cell viability. Notably, compounds SP04, SP16, and SP19 demonstrated a significant decrease in cell viability and exhibited potent activity compared to the other synthesized molecules and standard drug bicalutamide. Among them, SP04 emerged as the one of the most potent compounds with an IC50 value of 238.13 nM and an 89.99 % inhibition of PC-3 cells, compared to synthesized molecules and standard drug bicalutamide. Furthermore, we conducted ROS assays and androgen receptor inhibition assays using the potent compound SP04 and bicalutamide. The results indicated that SP04 increased ROS production and decreased androgen receptor expression dose-dependent manner. Additionally, we conducted a docking study to analyse the interaction patterns within the active site of the androgen receptor. ADMET analysis revealed that all the compounds exhibited favorable physicochemical properties and manageable toxicity profiles.


Subject(s)
Anilides , Antineoplastic Agents , Nitriles , Prostatic Neoplasms , Tosyl Compounds , Male , Humans , Molecular Docking Simulation , Receptors, Androgen/chemistry , Antineoplastic Agents/chemistry , Reactive Oxygen Species , Steroids/chemistry , Prostatic Neoplasms/drug therapy , Molecular Structure , Cell Proliferation , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Line, Tumor
9.
Pol Przegl Chir ; 95(6): 24-30, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38058163

ABSTRACT

Males account for 1% of all cases of breast cancer. With the aging of the world's population, the disease has exhibited a rise in incidence in recent decades. Male breasts are smaller than female breasts, making the disease easier to spot, but patients often do not report their cases in time due to a lack of awareness. The stage-to-stage prognosis of male breast cancer is comparable to that of their female counterparts. Due to the relative rarity of the disease and poor patient enrollment in large randomized studies, the optimal management of male breast cancer remains uncertain. This article presents a narrative review of male breast cancer in light of recent literature, with an emphasis on epidemiology, clinical features, and current management.


Subject(s)
Breast Neoplasms, Male , Humans , Male , Breast Neoplasms, Male/diagnosis , Breast Neoplasms, Male/epidemiology , Breast Neoplasms, Male/therapy , Mutation , Prognosis
10.
J Exp Zool A Ecol Integr Physiol ; 339(9): 898-910, 2023 11.
Article in English | MEDLINE | ID: mdl-37528770

ABSTRACT

While the seasonal testicular cycle has been well studied regarding internal components, no attention has been given to the testicular capsule (tunica albuginea and tunica serosa). This study elucidated the structure-function modulations of intra-testicular functions by its capsule in the finch red munia (Amandava amandava) during the annual testicular cycle. The birds were studied during breeding (preparatory and breeding) and nonbreeding (regressive and quiescent) reproductive phases using hematoxylin-eosin and acridine orange-ethidium bromide capsule staining, hormonal ELISA (LH and testosterone) and immunohistochemical expression of neuropeptides (GnRH, GnIH) and androgen receptor (AR). The thickness of the tunica albuginea was significantly increased with multiple myoid layers during the nonbreeding phases (p < 0.05). The thickness of the tunica serosa was not altered, although characteristics and distribution of squamous cells showed significant seasonal alterations. Immunoreactive (-ir) AR and GnIH cells were differentially localized on both layers of the capsule. Strong AR-ir cells on tunica serosa during breeding phases showed increased expression of the receptor; a significant increase in plasma LH and testosterone was also observed during the breeding cycle (p < 0.01). Contrarily, intense GnIH-ir cells on both the capsular layers peaked during testicular regression. Differential structural alterations of the testicular capsule provide mechanical support and help maintain internal homeostasis in tune with changing seasons. The seasonal expressions and alterations of reproduction-related receptors, hormones, and neuropeptides provide evidence for the potential regulatory roles of the capsule in the peripheral modulation of intratesticular functions.


Subject(s)
Gonadotropin-Releasing Hormone , Testis , Male , Animals , Seasons , Gonadotropin-Releasing Hormone/metabolism , Reproduction/physiology , Testosterone
11.
Res Rep Urol ; 15: 243-259, 2023.
Article in English | MEDLINE | ID: mdl-37396015

ABSTRACT

The therapeutic landscape of metastatic hormone sensitive and metastatic castration-resistant prostate cancer (mCRPC) is rapidly changing. We reviewed the current treatment options for mCRPC, with insights on new available therapeutic strategies. Chemotherapy with docetaxel or cabazitaxel (for patients progressing on docetaxel), as well as treatment with androgen receptor axis targeted therapies, and Radium-223 are well-established treatment options for patients with mCRPC. The advent of theragnostic in prostate cancer established Lutetium-177 (177Lu)-PSMA-617 as a new standard of care for PSMA-positive mCRPC previously treated with ARAT and taxane-based chemotherapy. Olaparib, a poly-ADP-ribose polymerase (PARP) inhibitor, is approved for selected patients with mCRPC progressed on ARATs and in combination with abiraterone acetate as first-line treatment for mCRPC. Immunotherapy showed limited efficacy in unselected patients with mCRPC and novel immunotherapy strategies need to be explored. The search for biomarkers is a growing field of interest in mCRPC, and predictive biomarkers are needed to support the choice of treatment and the development of tailored strategies.

12.
Reprod Sci ; 30(12): 3495-3506, 2023 12.
Article in English | MEDLINE | ID: mdl-37430099

ABSTRACT

Menopause is a significant risk factor for pelvic organ prolapse (POP), suggesting that ovarian sex steroids play a major role in the etiology of the condition. POP results from failure of the uterine-cervix-vagina support structures, including the uterosacral ligament (USL). We previously identified consistent degenerative USL phenotypes that occur in POP and used their characteristics to develop a standardized POP Histologic Quantification System (POP-HQ). In this study, POP and matched control USL tissue was first segregated into the unique POP-HQ phenotypes, and specimens were then compared for estrogen receptor (ER) alpha (ERα), ERbeta (ERß), the G-protein estrogen receptor (GPER), and androgen receptor (AR) content via immunohistochemical staining. ER and AR expression levels in the control USL tissues were indistinguishable from those observed in the POP-A phenotype, and partially overlapped with those of the POP-I phenotype. However, control-USL steroid receptor expression was statistically distinct from the POP-V phenotype. This difference was driven mainly by the increased expression of GPER and AR in smooth muscle, connective tissue, and endothelial cells, and increased expression of ERα in connective tissue. These findings support a multifactorial etiology for POP involving steroid signaling that contributes to altered smooth muscle, vasculature, and connective tissue content in the USL. Furthermore, these data support the concept that there are consistent and distinct degenerative processes that lead to POP and suggest that personalized approaches are needed that target specific cell and tissues in the pelvic floor to treat or prevent this complex condition.


Subject(s)
Pelvic Organ Prolapse , Receptors, Estrogen , Female , Humans , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Androgen/metabolism , Endothelial Cells/metabolism , Ligaments/metabolism , Ligaments/pathology , Pelvic Organ Prolapse/genetics , Pelvic Organ Prolapse/metabolism , Pelvic Organ Prolapse/pathology , Estrogens/metabolism
13.
Article in English | MEDLINE | ID: mdl-37365786

ABSTRACT

BACKGROUND: Prostate cancer is one of the most prevalent cancers in men, leading to the second most common cause of death in men. Despite the availability of multiple treatments, the prevalence of prostate cancer remains high. Steroidal antagonists are associated with poor bioavailability and side effects, while non-steroidal antagonists show serious side effects, such as gynecomastia. Therefore, there is a need for a potential candidate for the treatment of prostate cancer with better bioavailability, good therapeutic effects, and minimal side effects. OBJECTIVE: This current research work focused on identifying a novel non-steroidal androgen receptor antagonist through computational tools, such as docking and in silico ADMET analysis. METHODS: Molecules were designed based on a literature survey, followed by molecular docking of all designed compounds and ADMET analysis of the hit compounds. RESULTS: A library of 600 non-steroidal derivatives (cis and trans) was designed, and molecular docking was performed in the active site of the androgen receptor (PDBID: 1Z95) using AutoDock Vina 1.5.6. Docking studies resulted in 15 potent hits, which were then subjected to ADME analysis using SwissADME. ADME analysis predicted three compounds (SK-79, SK-109, and SK-169) with the best ADME profile and better bioavailability. Toxicity studies using Protox-II were performed on the three best compounds (SK-79, SK-109, and SK-169), which predicted ideal toxicity for these lead compounds. CONCLUSION: This research work will provide ample opportunities to explore medicinal and computational research areas. It will facilitate the development of novel androgen receptor antagonists in future experimental studies.

14.
J Cheminform ; 15(1): 50, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149650

ABSTRACT

Drug resistance represents a major obstacle to therapeutic innovations and is a prevalent feature in prostate cancer (PCa). Androgen receptors (ARs) are the hallmark therapeutic target for prostate cancer modulation and AR antagonists have achieved great success. However, rapid emergence of resistance contributing to PCa progression is the ultimate burden of their long-term usage. Hence, the discovery and development of AR antagonists with capability to combat the resistance, remains an avenue for further exploration. Therefore, this study proposes a novel deep learning (DL)-based hybrid framework, named DeepAR, to accurately and rapidly identify AR antagonists by using only the SMILES notation. Specifically, DeepAR is capable of extracting and learning the key information embedded in AR antagonists. Firstly, we established a benchmark dataset by collecting active and inactive compounds against AR from the ChEMBL database. Based on this dataset, we developed and optimized a collection of baseline models by using a comprehensive set of well-known molecular descriptors and machine learning algorithms. Then, these baseline models were utilized for creating probabilistic features. Finally, these probabilistic features were combined and used for the construction of a meta-model based on a one-dimensional convolutional neural network. Experimental results indicated that DeepAR is a more accurate and stable approach for identifying AR antagonists in terms of the independent test dataset, by achieving an accuracy of 0.911 and MCC of 0.823. In addition, our proposed framework is able to provide feature importance information by leveraging a popular computational approach, named SHapley Additive exPlanations (SHAP). In the meanwhile, the characterization and analysis of potential AR antagonist candidates were achieved through the SHAP waterfall plot and molecular docking. The analysis inferred that N-heterocyclic moieties, halogenated substituents, and a cyano functional group were significant determinants of potential AR antagonists. Lastly, we implemented an online web server by using DeepAR (at http://pmlabstack.pythonanywhere.com/DeepAR ). We anticipate that DeepAR could be a useful computational tool for community-wide facilitation of AR candidates from a large number of uncharacterized compounds.

15.
Life Sci ; 323: 121697, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37061126

ABSTRACT

AIM: this study aims to explore the effect of androgen receptor (AR) blockade by flutamide on some renal pathologic changes such as inflammation, apoptosis, and fibrosis in male rats. MAIN METHODS: Firstly, we investigated the potential effect of AR blockade on renal inflammatory intermediates including IL-1ß, IL-6, TNF-α, NF-Òšß proteins, and the renal gene expression of NF-Қß. Besides inflammation, we also assessed the apoptosis pathways including the caspases 3 & 9, mTOR, pAKT proteins, and BAX gene expression. Besides inflammation and apoptosis pathways, we also investigated the effect of androgen blockade on renal fibrosis intermediates including vimentin, TGFß-1, α-SMA, MMP-9, collagen type-III, collagen type-IV, and the renal expression of the col1A1 gene. Besides previous pathological pathways, we assessed the expression of chloride channel protein-5 (ClC-5), as an important regulator of many renal pathological changes. Finally, we assessed the impact of previous pathological changes on renal function at biochemical and pathological levels. KEY FINDINGS: We found that AR blockade by flutamide was associated with the down-regulation of renal inflammation, apoptosis, and fibrosis markers. It was associated with expression down-regulation of IL-1ß & IL-6, TNF-α, NF-Қß, caspases 3 & 9, mTOR, MMP-9, collagens, TGFß-1, and α-SMA. Away from down-regulation, we also found that AR blockade has upregulated ClC-5 and pAKT proteins. SIGNIFICANCE: AR is a major player in androgens-induced nephrotoxicity. AR blockade downregulates renal fibrosis, inflammation, and apoptosis pathways. It may be helpful as a strategy for alleviation of renal side effects associated with some drugs. However; this needs further investigations.


Subject(s)
Flutamide , Kidney Diseases , Rats , Male , Animals , Flutamide/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Matrix Metalloproteinase 9/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-6/pharmacology , NF-kappa B/metabolism , Androgens/pharmacology , Fibrosis , Apoptosis , TOR Serine-Threonine Kinases , Inflammation/drug therapy , Caspases
16.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 4): 95-104, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36995121

ABSTRACT

Mutations in the androgen receptor (AR) ligand-binding domain (LBD) can cause resistance to drugs used to treat prostate cancer. Commonly found mutations include L702H, W742C, H875Y, F877L and T878A, while the F877L mutation can convert second-generation antagonists such as enzalutamide and apalutamide into agonists. However, pruxelutamide, another second-generation AR antagonist, has no agonist activity with the F877L and F877L/T878A mutants and instead maintains its inhibitory activity against them. Here, it is shown that the quadruple mutation L702H/H875Y/F877L/T878A increases the soluble expression of AR LBD in complex with pruxelutamide in Escherichia coli. The crystal structure of the quadruple mutant in complex with the agonist dihydrotestosterone (DHT) reveals a partially open conformation of the AR LBD due to conformational changes in the loop connecting helices H11 and H12 (the H11-H12 loop) and Leu881. This partially open conformation creates a larger ligand-binding site for AR. Additional structural studies suggest that both the L702H and F877L mutations are important for conformational changes. This structural variability in the AR LBD could affect ligand binding as well as the resistance to antagonists.


Subject(s)
Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Ligands , Crystallography, X-Ray , Mutation , Protein Structure, Secondary
17.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982683

ABSTRACT

Lacrimal gland dysfunction causes dry eye disease (DED) due to decreased tear production. Aqueous-deficient DED is more prevalent in women, suggesting that sexual dimorphism of the human lacrimal gland could be a potential cause. Sex steroid hormones are a key factor in the development of sexual dimorphism. This study aimed to quantify estrogen receptor (ER) and androgen receptor (AR) expression in the human lacrimal gland and compare it between sexes. RNA was isolated from 35 human lacrimal gland tissue samples collected from 19 cornea donors. AR, ERα, and ERß mRNA was identified in all samples, and their expression was quantified using qPCR. Immunohistochemical staining was performed on selected samples to evaluate protein expression of the receptors. ERα mRNA expression was significantly higher than the expression of AR and ERß. No difference in sex steroid hormone (SSH) receptor mRNA expression was observed between sexes, and no correlation was observed with age. If ERα protein expression is found to be concordant with mRNA expression, it should be investigated further as a potential target for hormone therapy of DED. Further research is needed to elucidate the role of sex steroid hormone receptors in sex-related differences of lacrimal gland structure and disease.


Subject(s)
Lacrimal Apparatus , Receptors, Estrogen , Humans , Female , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Androgens/metabolism , Lacrimal Apparatus/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Gonadal Steroid Hormones/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
Biol Trace Elem Res ; 201(12): 5721-5733, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36922476

ABSTRACT

Polycystic ovary syndrome (PCOS) occurs during the reproductive period in women and is characterized by reproductive, endocrine, and metabolic disorders. Androgen plays a decisive role in its pathogenesis due to the interaction between hyperandrogenism and insulin resistance, which might be improved by selenium nanoparticles (SeNPs). The present study aimed to clarify the effect of SeNPs on androgen synthesis and action in the PCOS model and the resulting effect on ovarian function. Fifty-five 7-week-old female albino rats (90-105 g) were divided equally into five groups: control (C), fed a standard diet for 11 weeks; high-fat diet (HFD) group, fed HFD for 11 weeks; HFD and letrozole (L) (HFD + L), fed HFD for 11 weeks and administrated orally with L, at a daily dose of 1 mg/kg BW, for three weeks from the 7th to 9th week of the trial; HFD + L + 0.1SeNPs and HFD + L + 0.2SeNPs groups, treated the same as HFD + L group and orally gavaged SeNPs at daily doses of 0.1 and 0.2 mg/kg BW, respectively, during the last 14 day of the experiment. Daily determination of estrous cycle was performed, and at the end of the experimental period, BMI, serum glucose, insulin, HOMA-IR, lipid profile, sex hormones, TNF-α, IL6, oxidative stress biomarkers, ovarian mRNA expression of different proteins and enzymes involved in steroidogenesis, pathological examination, and immunohistochemical staining for androgen receptor (AR) were evaluated. Treatment of SeNPs restored estrous cyclicity, decreased BMI, and insulin resistance, improved dyslipidemia, reduced serum testosterone, and improved ovarian histopathology in PCOS rats. Furthermore, the anti-inflammatory and antioxidant impacts of SeNPs were remarkably noticed. Administration of SeNPs decreased androgen synthesis and expression of ovarian AR protein by decreasing the mRNA expression of STAR, Cyp11A1, Cyp17A1, and HSD17B3 and increasing the expression of Cyp19α1. Conclusively, SeNPs decreased androgen synthesis and blocked the vicious circle initiated by excessive androgen secretion via decreased AR expression. Thus, it may effectively treat PCOS cases by eliminating its reproductive, endocrine, and metabolic dysfunctions.


Subject(s)
Insulin Resistance , Polycystic Ovary Syndrome , Selenium , Humans , Rats , Female , Animals , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Androgens/pharmacology , Androgens/therapeutic use , Receptors, Androgen/genetics , Receptors, Androgen/therapeutic use , Selenium/pharmacology , Selenium/therapeutic use , RNA, Messenger
19.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835177

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC), the most prevalent cancer in the head and neck region, develops from the mucosal epithelium of the upper aerodigestive tract. Its development directly correlates with alcohol and/or tobacco consumption and infection with human papillomavirus. Interestingly, the relative risk for HNSCC is up to five times higher in males, so it is considered that the endocrine microenvironment is another risk factor. A gender-specific risk for HNSCC suggests either the existence of specific risk factors that affect only males or that females have defensive hormonal and metabolic features. In this review, we summarized the current knowledge about the role of both nuclear and membrane androgen receptors (nAR and mARs, respectively) in HNSCC. As expected, the significance of nAR is much better known; it was shown that increased nAR expression was observed in HNSCC, while treatment with dihydrotestosterone increased proliferation, migration, and invasion of HNSCC cells. For only three out of five currently known mARs-TRPM8, CaV1.2, and OXER1-it was shown either their increased expression in various types of HNSCC or that their increased activity enhanced the migration and invasion of HNSCC cells. The primary treatments for HNSCC are surgery and radiotherapy, but targeted immunotherapies are on the rise. On the other hand, given the evidence of elevated nAR expression in HNSCC, this receptor represents a potential target for antiandrogen therapy. Moreover, there is still plenty of room for further examination of mARs' role in HNSCC diagnosis, prognosis, and treatment.


Subject(s)
Receptors, Androgen , Squamous Cell Carcinoma of Head and Neck , Female , Humans , Male , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Tumor Microenvironment
20.
Ir J Med Sci ; 192(1): 187-192, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35320487

ABSTRACT

BACKGROUND: Individual susceptibility to develop acute respiratory distress syndrome is related to age and most frequent comorbidities. So far, it is known that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the type II pneumocytes in humans, with the help of transmembrane serine protease type 2 (TMPRSS2). Up to now, the only known transcriptional promoters of genes coding TMPRSS2 are androgenic. Theoretically, the elevated level of androgens or androgen receptors would lead to a higher expression of TMPRSS2 and a higher level of viremia as a consequence. AIM: The aim of our research was to indirectly investigate if the severity of SARS-CoV-2 infection is dependent on the expression of androgen receptors. METHODS: This observational study analysed male patients hospitalized for SARS-CoV-2 infection with respect to the length of hospitalisation, the outcome of the disease, the type of necessary oxygen support and the presence of comorbidities and hairiness. In hairiness estimation, we used an adapted version of the Hamilton-Norwood scale and the presence of the Gabrin sign. RESULTS: In total, 208 patients were enrolled in the study. There were statistically significant differences comparing the average age of patients with the different types of alopecia when groups were divided according to the presence of the Gabrin sign (t = 4.958, p > 0.01). The outcomes and the type of needed minimal oxygen support, compared with the type of alopecia in the case of Gabrin + / - classification showed a statistically significant difference in the outcome of the disease (p = 0.027). There were no statistically significant differences in the distribution of comorbidities among alopecia groups, but hypertension was related to poor COVID-19 prognosis. CONCLUSION: Our findings suggest that the Gabrin sign and hypertension are related to a poor COVID-19 prognosis.


Subject(s)
COVID-19 , Hypertension , Humans , Male , SARS-CoV-2 , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Androgens , Alopecia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...