ABSTRACT
Torque teno sus virus k2a (TTSuVk2a) is a member of the family Anelloviridae that can establish persistent infections in both domestic pigs and wild boars. Its association with diseases has not been precisely elucidated, and it is often considered only as a commensal virus. This infectious agent has been reported in herds throughout the world. In this study, we investigated the detection rate and diversity of TTSuVk2a in free-living wild boars from northeastern Patagonia, Argentina. Total DNA was extracted from tonsil samples of 50 animals, nested PCR assays were carried out, and infection was verified in 60% of the cases. Sequence analysis of the viral non-coding region revealed distinct phylogenetic groups. These clusters showed contrasting patterns of spatial distribution, which presented statistically significant differences when evaluating spatial aggregation. In turn, the sequences were compared with those available in the database to find that the clusters were distinguished by having similarity with TTSuVk2a variants of different geographic origin. The results suggested that Patagonian wild boar populations are bearers of diverse viral strains of Asian, European, and South American provenance.
Subject(s)
Anelloviridae , DNA Virus Infections , Swine Diseases , Torque teno virus , Swine , Animals , Sus scrofa , Phylogeny , Argentina , Swine Diseases/epidemiology , DNA Virus Infections/epidemiology , DNA Virus Infections/veterinary , Torque teno virus/geneticsABSTRACT
Bats are natural reservoirs of a variety of zoonotic viruses, many of which cause severe human diseases. Characterizing viruses of bats inhabiting different geographical regions is important for understanding their viral diversity and for detecting viral spillovers between animal species. Herein, the diversity of DNA viruses of five arthropodophagous bat species from Argentina was investigated using metagenomics. Fecal samples of 29 individuals from five species (Tadarida brasiliensis, Molossus molossus, Eumops bonariensis, Eumops patagonicus, and Eptesicus diminutus) living at two different geographical locations, were investigated. Enriched viral DNA was sequenced using Illumina MiSeq, and the reads were trimmed and filtered using several bioinformatic approaches. The resulting nucleotide sequences were subjected to viral taxonomic classification. In total, 4,520,370 read pairs were sequestered by sequencing, and 21.1% of them mapped to viral taxa. Circoviridae and Genomoviridae were the most prevalent among vertebrate viral families in all bat species included in this study. Samples from the T. brasiliensis colony exhibited lower viral diversity than samples from other species of New World bats. We characterized 35 complete genome sequences of novel viruses. These findings provide new insights into the global diversity of bat viruses in poorly studied species, contributing to prevention of emerging zoonotic diseases and to conservation policies for endangered species.
ABSTRACT
A viral metagenomics study was conducted in beef, pork, and chicken sold in supermarkets from Southern Brazil. From chicken, six distinct gyroviruses (GyV) were detected, including GyV3 and GyV6, which for the first time were detected in samples from avian species, plus a novel smacovirus species and two highly divergent circular Rep-encoding ssDNA (CRESS-DNA) viruses. From pork, genomes of numerous anelloviruses, porcine parvovirus 5 (PPV5) and 6 (PPV6), two new genomoviruses and two new CRESS-DNA viruses were found. Finally, two new CRESS-DNA genomes were recovered from beef. Although none of these viruses have history of transmission to humans, the findings reported here reveal that such agents are inevitably consumed in diets that include these types of meat.
Subject(s)
Chickens/virology , Metagenomics , Pork Meat/virology , Red Meat/virology , Viruses/classification , Anelloviridae/classification , Anelloviridae/genetics , Animals , Brazil/epidemiology , DNA, Viral , Gyrovirus/classification , Gyrovirus/genetics , High-Throughput Nucleotide Sequencing , Parvovirus, Porcine/classification , Parvovirus, Porcine/genetics , Phylogeny , Sequence Analysis, DNA , Supermarkets , Viruses/genetics , Viruses/isolation & purificationABSTRACT
Sapajus nigritus are non-human primates which are widespread in South America. They are omnivores and live in troops of up to 40 individuals. The oral cavity is one of the main entry routes for microorganisms, including viruses. Our study proposed the identification of viral sequences from oral swabs collected in a group of capuchin monkeys (n = 5) living in a public park in a fragment of Mata Atlantica in South Brazil. Samples were submitted to nucleic acid extraction and enrichment, which was followed by the construction of libraries. After high-throughput sequencing and contig assembly, we used a pipeline to identify 11 viral families, which are Herpesviridae, Parvoviridae, Papillomaviridae, Polyomaviridae, Caulimoviridae, Iridoviridae, Astroviridae, Poxviridae, and Baculoviridae, in addition to two complete viral genomes of Anelloviridae and Genomoviridae. Some of these viruses were closely related to known viruses, while other fragments are more distantly related, with 50% of identity or less to the currently available virus sequences in databases. In addition to host-related viruses, insect and small vertebrate-related viruses were also found, as well as plant-related viruses, bringing insights about their diet. In conclusion, this viral metagenomic analysis reveals, for the first time, the profile of viruses in the oral cavity of wild, free ranging capuchin monkeys.
Subject(s)
Cebinae/virology , Genetic Variation , Mouth/virology , Viruses/classification , Animals , Brazil , Genome, Viral , High-Throughput Nucleotide Sequencing , Metagenome , Metagenomics , Phylogeny , Sapajus , Viruses/isolation & purificationABSTRACT
Wild birds carry a number of infectious agents, some of which may have pathogenic potential for the host and others species, including humans. Domestic pigeons (Columba livia) are important targets of study since these increasingly cohabit urban spaces, being possible spillover sources of pathogens to humans. In the present study, two genomes (PiGyV_Tq/RS/Br and PiGyV_RG/RS/Br), representative of Gyrovirus genus, family Anelloviridae, were detected in sera of free-living pigeons collected in Southern Brazil. The genomes exhibit less than 50% identity to previously described members of Gyrovirus genus, suggesting that they constitute a new viral species circulating in pigeons, to which the name "pigeon gyrovirus (PiGyV)" is proposed. The current study characterizes these two PiGyV genomes which, to date, are the first gyrovirus species identified in domestic pigeons.
Subject(s)
Animals, Wild/virology , Bird Diseases/virology , Columbidae/virology , Gyrovirus/isolation & purification , Animals , Brazil , Genome, Viral , Gyrovirus/classification , Gyrovirus/geneticsABSTRACT
Brazil is a major exporter of pork meat worldwide. Swine liver is a common ingredient in food consumed by humans, thus emphasizing the importance of evaluating the presence of associated pathogens in swine liver. To obtain knowledge, this study aimed to provide insights into the viral communities of livers collected from slaughtered pigs from southern Brazil. The 46 livers were processed and submitted for high-throughput sequencing (HTS). The sequences were most closely related to Anelloviridae, Circoviridae and Parvoviridae families. The present work also describes the first Brazilian PCV1 and the first PPV6 and PPV7 from South America. Virus frequencies revelead 63% of samples positive for TTSuV1, 71% for TTSuVk2, 10.8% for PCV, 13% for PPV and 6% for PBov. This report addresses the diversity of the liver virome of healthy pigs and expands the number of viruses detected, further characterizing their genomes to assist future studies.
Subject(s)
DNA Viruses/genetics , DNA, Single-Stranded/genetics , Genome, Viral/genetics , Liver/virology , Swine/virology , Virome/genetics , Anelloviridae/genetics , Animals , Brazil , Circoviridae/genetics , High-Throughput Nucleotide Sequencing/methods , Parvoviridae/genetics , Swine Diseases/virologyABSTRACT
Worldwide Torque teno sus virus (TTSuV, genus Iotatorquevirus) species have been regarded as possible agents associated with porcine circovirus-associated disease. Iotatorquevirus species possess high genomic variability, suggesting that diverse genotypes are widely geographically distributed. In this study, we validated the genomic variability of Iotaroquevirus species in pigs with postweaned multisystemic wasting syndrome. Genomic DNA from nine TTSuV1a-positive tissues and 15 TTSuV1b-positive tissues was used to amplify the complete ORF2 of each species by nested PCR to perform a molecular characterization. It was found that Mexican TTSuV1a sequences belong to genotype B, sharing phylogenetic origin, high nucleic acid and amino acid sequence similarity and dominant epitope conformation with commercially linked countries, such as the United States, Canada and China, whereas the Mexican TTSuV1b sequences belong to genotype A, being more divergent among each other and displaying low nucleotide identity with worldwide genotype A sequences. In both Iotatorquevirus species, a PTPase-like signature motif was identified in the predicted amino acid sequence, being more conserved for Mexican TTSuV1b sequences than for Mexican TTSuV1a sequences, in which several substitutions were observed. These changes may influence the conformation of dominant epitopes as different arrays were determined among TTSuV1a genotypes. ORF2 variability may account for pathogenic differences by modifying viral replication and immune response, as depicted for human TTV.
Subject(s)
DNA Virus Infections/veterinary , Porcine Postweaning Multisystemic Wasting Syndrome/virology , Swine Diseases/virology , Torque teno virus/genetics , Animals , Genotype , Mexico , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Swine , Torque teno virus/isolation & purificationABSTRACT
The aim of this editorial is to present a brief description of the Torque teno virus' epidemiology and establish the actuality of their study in México. Also, we mentioned the studies made in México and Yucatán, specifically in the Center of Regional Research "Dr. Hideyo Noguchi" of the Autonomous University of Yucatán.
El objetivo de esta editorial es presentar una breve descripción de la epidemiología del Torque teno virus, así como establecer la actualidad del escenario de su estudio en México. Además, hacemos mención de los estudios hechos en México y en Yucatán, específicamente en el Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", de la Universidad Autónoma de Yucatán.