Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
Front Pharmacol ; 15: 1405342, 2024.
Article in English | MEDLINE | ID: mdl-38953103

ABSTRACT

Angelica sinensis is a long-standing medicine used by Chinese medical practitioners and well-known for its blood-tonic and blood-activating effects. Ferulic acid, ligustilide, and eugenol in Angelica sinensis activate the blood circulation; however, the material basis of their blood-tonic effects needs to be further investigated. In this study, five homogeneous Angelica sinensis polysaccharides were isolated, and their sugar content, molecular weight, monosaccharide composition, and infrared characteristics determined. Acetylphenylhydrazine (APH) and cyclophosphamide (CTX) were used as inducers to establish a blood deficiency model in mice, and organ indices, haematological and biochemical parameters were measured in mice. Results of in vivo hematopoietic activity showed that Angelica sinensis polysaccharide (APS) could elevate erythropoietin (EPO), granulocyte colony-stimulating factor (G-CSF), and interleukin-3 (IL-3) serum levels, reduce tumor necrosis factor-α (TNF-α) level in mice, and promote hematopoiesis in the body by regulating cytokine levels. Biological potency test results of the in vitro blood supplementation indicated strongest tonic activity for APS-H2O, and APS-0.4 has the weakest haemopoietic activity. The structures of APS-H2O and APS-0.4 were characterized, and the results showed that APS-H2O is an arabinogalactan glycan with a main chain consisting of α-1,3,5-Ara(f), α-1,5- Ara(f), ß-1,4-Gal(p), and ß-1,4-Gal(p)A, and two branched chains of ß-t-Gal(p) and α-t-Glc(p) connected to each other in a (1→3) linkage to α-1,3,5-Ara(f) on the main chain. APS-0.4 is an acidic polysaccharide with galacturonic acid as the main chain, consisting of α-1,4-GalA, α-1,2-GalA, α-1,4-Gal, and ß-1,4-Rha. In conclusion, APS-H2O can be used as a potential drug for blood replenishment in patients with blood deficiency, providing a basis for APS application in clinical treatment and health foods, as well as research and development of new polysaccharide-based drugs.

2.
Nat Prod Res ; : 1-7, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988300

ABSTRACT

A new pair of butylphthalide diastereomers, dangguinolide A (1) and dangguinolide B (2), together with two known butylphthalide were isolated from Angelica sinensis. Their structures were determined by extensive spectroscopic analyses, and the absolute configurations of 1 and 2 were assigned via NMR calculations and ECD calculations. Their anti-inflammatory activities have evaluated in vitro.

3.
J Appl Biomed ; 22(2): 67-73, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912861

ABSTRACT

BACKGROUND AND OBJECTIVES: We aimed to determine the effects of vanillic acid (VA) on fracture healing radiologically, histologically, immunohistochemically, and biomechanically using a rat femur open fracture injury model. METHODS: 32 male Wistar-Albino rats were used and divided into two groups: the study group (VA) and the control group. From the time they were operated on until they were sacrificed, the rats in the study group were given 100 mg/kg/day VA by oral gavage. After sacrification, the femurs were analyzed. RESULTS: It was observed that the Huo histological scoring was significantly higher in the VA group (p = 0.001), and the ratio of the amount of callus tissue compared to intact bone tissue was significantly higher. While no significant difference was observed in immunohistochemical H-scores in ColI antibody staining (p = 1.000), a borderline significant difference in favor of VA was observed in ColIII antibody staining (p = 0.078). In biomechanical analysis, failure load (N), total energy (J), maximum stress (MPa), and stiffness (N/mm) measurements were significantly higher in the VA group (p = 0.040, p = 0.021, p = 0.015, and p = 0.035, respectively). CONCLUSION: It has been observed that VA, with its antioxidative properties, increases fracture healing in rats, in which an open fracture model was created. We are hopeful that such an antioxidant, which is common in nature, will increase fracture healing. Since this study is the first to examine the effect of VA on fracture healing, further studies are needed.


Subject(s)
Femoral Fractures , Fracture Healing , Rats, Wistar , Vanillic Acid , Animals , Vanillic Acid/pharmacology , Vanillic Acid/therapeutic use , Fracture Healing/drug effects , Male , Femoral Fractures/drug therapy , Femoral Fractures/pathology , Rats , Disease Models, Animal , Biomechanical Phenomena/drug effects , Femur/drug effects , Femur/pathology , Bony Callus/drug effects , Bony Callus/pathology
4.
Biomed Pharmacother ; 175: 116680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703506

ABSTRACT

Cisplatin (DDP) resistance poses a significant challenge in the treatment of ovarian cancer. Studies have shown that the combination of certain polysaccharides derived from plants with DDP is an effective approach to overcoming drug resistance in some cancers. Angelica sinensis (Oliv.) Diels has been used for centuries in China to treat gynecological ailments. Numerous studies indicate that Angelica sinensis polysaccharide (ASP), an extract from Angelica sinensis, can inhibit various forms of cancer. However, the impact of ASP on ovarian cancer remains unexplored. Through both in vitro and in vivo experiments, our study revealed the capability of ASP to effectively reversing DDP resistance in cisplatin-resistant ovarian cancer cells, while exhibiting acceptable safety profiles in vivo. To elucidate the mechanism underlying drug resistance reversal, we employed RNA-seq analysis and identified GPX4 as a key gene. Considering the role of GPX4 in ferroptosis, we conducted additional research to explore the effects of combining ASP with DDP on SKOV3/DDP cells. In summary, our findings demonstrate that the combination of ASP and DDP effectively suppresses GPX4 expression in SKOV3/DDP cells, thereby reversing their resistance to DDP.


Subject(s)
Angelica sinensis , Cisplatin , Drug Resistance, Neoplasm , Ferroptosis , Ovarian Neoplasms , Phospholipid Hydroperoxide Glutathione Peroxidase , Polysaccharides , Cisplatin/pharmacology , Female , Drug Resistance, Neoplasm/drug effects , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ferroptosis/drug effects , Polysaccharides/pharmacology , Angelica sinensis/chemistry , Cell Line, Tumor , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Animals , Mice, Nude , Mice , Mice, Inbred BALB C , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology
5.
Biochem Pharmacol ; 225: 116295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762145

ABSTRACT

Breast cancer (BC) is one of the most common malignant tumors in women. Angelica sinensis polysaccharide (ASP) is one of the main components extracted from the traditional Chinese medicine Angelica sinensis. Research has shown that ASP affects the progression of various cancers by regulating miRNA expression. This study aimed to explore the specific molecular mechanism by which ASP regulates BC progression through miR-3187-3p. After the overexpression or knockdown of miR-3187-3p and PDCH10 in BC cells, the proliferation, migration, invasion, and phenotype of BC cells were evaluated after ASP treatment. Bioinformatics software was used to predict the target genes of miR-3187-3p, and luciferase gene reporter experiments reconfirmed the targeted binding relationship. Subcutaneous tumor formation experiments were conducted in nude mice after the injection of BC cells. Western blot and Ki-67 immunostaining were performed on the tumor tissues. The results indicate that ASP can significantly inhibit the proliferation, migration, and invasion of BC cells. ASP can inhibit the expression of miR-3187-3p in BC cells and upregulate the expression of PDCH10 by inhibiting miR-3187-3p. A regulatory relationship exists between miR-3187-3p and PDCH10. ASP can inhibit the expression of ß-catenin and phosphorylated glycogen synthase kinase-3ß (p-GSK-3ß) proteins through miR-3187-3p/PDCH10 and prevent the occurrence of malignant biological behavior in BC. Overall, this study revealed the potential mechanism by which ASP inhibits the BC process. ASP mediates the Wnt/ß-catenin signaling pathway by affecting the miR-3187-3p/PDCH10 molecular axis, thereby inhibiting the proliferation, migration, invasion, and other malignant biological behaviors of BC cells.


Subject(s)
Angelica sinensis , Breast Neoplasms , Mice, Inbred BALB C , Mice, Nude , MicroRNAs , Polysaccharides , Wnt Signaling Pathway , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Female , Angelica sinensis/chemistry , Wnt Signaling Pathway/drug effects , Mice , Polysaccharides/pharmacology , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Cell Proliferation/drug effects , Cell Movement/drug effects , MCF-7 Cells
6.
Eur J Pharm Sci ; 199: 106794, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38788908

ABSTRACT

Myocardial fibrosis can induce cardiac dysfunction and remodeling. Great attention has been paid to traditional chinese medicine (TCM) 's effectiveness in treating MF. Radix Angelica sinensis (Oliv.) Diels and Radix Astragalus mongholicus Bunge ultrafiltration extract (RAS-RA), which is a key TCM compound preparation, have high efficacy in regulating inflammation. However, studies on its therapeutic effect on radiation-induced myocardial fibrosis (RIMF) are rare. In this study, RAS-RA had therapeutic efficacy in RIMF and elucidated its mechanism of action. First, we formulated the prediction network that described the relation of RAS-RA with RIMF according to data obtained in different databases. Then, we conducted functional enrichment to investigate the functions and pathways associated with potential RIMF targets for RAS-RA. In vivo experiments were also performed to verify these functions and pathways. Second, small animal ultrasound examinations, H&E staining, Masson staining, transmission electron microscopy, Enzyme-linked immunosorbent assay (ELISA), Western-blotting, Immunohistochemical method and biochemical assays were conducted to investigate the possible key anti-RIMF pathway in RAS-RA. In total, 440 targets were detected in those 21 effective components of RAS-RA; meanwhile, 1,646 RIMF-related disease targets were also discovered. After that, PPI network analysis was conducted to identify 20 key targets based on 215 overlap gene targets. As indicated by the gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis results, inflammation and PI3K/AKT/mTOR pathways might have important effects on the therapeutic effects on RIMF. Molecular docking analysis revealed high binding of effective components to targets (affinity < -6 kcal/mol). Based on experimental verification results, RAS-RA greatly mitigated myocardial fibrosis while recovering the cardiac activity of rats caused by X-rays. According to relevant protein expression profiles, the PI3K/AKT/mTOR pathway was important for anti-fibrosis effect of RAS-RA. Experimental studies showed that RAS-RA improved cardiac function, decreased pathological damage and collagen fiber deposition in cardiac tissues, and improved the mitochondrial structure of the heart of rats. RAS-RA also downregulated TNF-α, IL-6, and IL-1ß levels. Additionally, RAS-RA improved the liver and kidney functions and pathological injury of rat kidney and liver tissues, enhanced liver and kidney functions, and protected the liver and kidneys. RAS-RA also increased PI3K, AKT and mTOR protein levels within cardiac tissues and downregulated α-SMA, Collagen I, and Collagen III. The findings of this study suggested that RAS-RA decreased RIMF by suppressing collagen deposition and inflammatory response by inhibiting the PI3K/AKT/mTOR pathway. Thus, RAS-RA was the potential therapeutic agent used to alleviate RIMF.


Subject(s)
Angelica sinensis , Drugs, Chinese Herbal , Fibrosis , Network Pharmacology , Rats, Sprague-Dawley , Animals , Angelica sinensis/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Rats , Astragalus Plant/chemistry , Myocardium/pathology , Myocardium/metabolism , Ultrafiltration/methods , Signal Transduction/drug effects , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , TOR Serine-Threonine Kinases/metabolism
7.
Article in English | MEDLINE | ID: mdl-38706357

ABSTRACT

BACKGROUND: Bone metabolic diseases are serious health issues worldwide. Angelica sinensis (AS) is traditionally used in Chinese medicine for treating bone metabolism diseases clinically. However, the mechanism of AS in regulating bone metabolism remains uncertain. OBJECTIVE: The current investigation was structured to elucidate the potential mechanisms of AS for modulating bone metabolism. METHODS: Firstly, targets of AS regulating bone metabolism were collected by network pharmacology. Then, the transcriptional regulation of RUNX2 was enriched as one of the key pathways for AS to regulate bone metabolism, constructing its metabolic network. Secondly, combining molecular docking, network efficiency, and network flux analyses, we conducted a quantitative evaluation of the metabolic network to reveal the potential mechanisms and components of AS regulating bone metabolism. Finally, we explored the effect of AS on the differentiation of osteoclasts from M-CSF and RANKL-induced RAW264.7 cells, as well as its impact on the osteogenic induction of MC3T3-E1 cells. We verified the mechanism and key targets of AS on bone metabolism using qRT-PCR. Furthermore, the key component was preliminarily validated through molecular dynamics simulation. RESULTS: Quantitative metabolic network of the transcriptional regulation of RUNX2 was constructed to illustrate the potential mechanism of AS for regulating bone metabolism, indicating that ferulic acid may be a pharmacological component of AS that interferes with bone metabolism. AS suppressed osteoclast differentiation in M-CSF and RANKL-induced RAW264.7 cells and reversed the expressions of osteoclastic differentiation markers, including RUNX2 and SRC. Additionally, AS induced osteogenic generation in MC3T3-E1 cells and reversed the expressions of markers associated with osteoblastic generation, such as RUNX2 and HDAC4. Molecular dynamics simulation displayed a strong binding affinity among ferulic acid, HDAC4 and SRC. CONCLUSION: This study reveals a systematic perspective on the intervention bone mechanism of AS by transcriptive regulation by RUNX2, guiding the clinical use of AS in treating diseases of the skeletal system.

8.
Molecules ; 29(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38731591

ABSTRACT

Angelica sinensis (Oliv.) Diels (A. sinensis) is a medicinal and edible values substance, which could promote blood circulation and enrich blood. It possesses rich chemical components and nutrients, which have significant therapeutic effects on cardiovascular and cerebrovascular diseases. It is commonly used for the prevention and treatment of cardiovascular and cerebrovascular diseases in the elderly, especially in improving ischemic damage to the heart and brain, protecting vascular cells, and regulating inflammatory reactions. This article reviews the main pharmacological effects and clinical research of A. sinensis on cardiovascular and cerebrovascular diseases in recent years, explores the effect of its chemical components on cardiovascular and cerebrovascular diseases by regulating the expression of functional proteins and inhibiting inflammation, anti-apoptosis, and antioxidant mechanisms. It provides a reference for further research on A. sinensis and the development of related drugs. It provides a new reference direction for the in-depth research and application of A. sinensis in the prevention, improvement, and treatment of cardiovascular and cerebrovascular diseases.


Subject(s)
Angelica sinensis , Cardiovascular Diseases , Cerebrovascular Disorders , Humans , Angelica sinensis/chemistry , Cerebrovascular Disorders/drug therapy , Cerebrovascular Disorders/metabolism , Cardiovascular Diseases/drug therapy , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
Heliyon ; 10(7): e28636, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576577

ABSTRACT

The root of Angelica sinensis is utilized in Traditional Chinese medicine to enhance blood replenishment and facilitate blood circulation. The early bolting and flowering (EBF) of A. sinensis, however, compromises the quality of the roots and restricts the yield of medicinal substances. The study was conducted to compare the transcriptomic and metabolomic profiles between EBF plants and normal plants of two cultivars of A. sinensis, followed by validation of the transcriptome results using qRT-PCR. There were 3677 DEGs in EBF plants compared to normal plants of cultivar 2 (Mingui No.2), and cultivar 4 (Mingui No.4) was 3354. The main differential metabolites in the EBF and normal plants were phenolic acids, flavonoids, lignans, and coumarins. The analysis of 5 EBF-related pathways revealed 28 genes exhibiting differential expression and 5 metabolites showing differential accumulation. The expression of the Lhcb5, Lhcb2, Lhcb6, Lhcb1, Lhca4, ATPG1, EGLC, CELB, AMY, glgA, CYCD3, SnRK2, PYL, AHK2, AUX1, BSK, FabI/K, ACACA and FabV decreased and the expression of the PsbR, PsbA, LHY, FT, CO, malQ, HK, GPI and DELLA increased in EBF plants. In addition, the Abscisic acid, d-Glucose-6P, α-d-Glucose-1P, NADP+, and ADP were more significantly enriched in EBF plants. The findings offer novel perspectives on the EBF mechanisms in A. sinensis and other medicinal plants of the Apiaceae family.

10.
Phytochemistry ; 222: 114102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641144

ABSTRACT

Furanocoumarins (FCs) are widely distributed secondary metabolites found in higher plants, including Apiaceae, Rutaceae, Moraceae, and Fabaceae. They play a crucial role in the physiological functions of plants and are well-known for their diverse pharmacological activities. As a representative plant of the Apiaceae family, Angelica sinensis is highly valued for its medicinal properties and FCs are one of the main ingredients of A. sinensis. However, the biosynthetic mechanism of FCs in A. sinensis remains poorly understood. In this study, we successfully cloned and verified three types of enzymes using genome analysis and in vitro functional verification, which complete the biosynthesis of the FCs core skeleton in A. sinensis. It includes a p-coumaroyl CoA 2'-hydroxylase (AsC2'H) responsible for umbelliferone formation, two UbiA prenyltransferases (AsPT1 and AsPT2) that convert umbelliferone to demethylsuberosin (DMS) and osthenol, respectively, and two CYP736 subfamily cyclases (AsDC and AsOD) that catalyze the formation of FCs core skeleton. Interestingly, AsOD was demonstrated to be a bifunctional cyclase and could catalyze both DMS and osthenol, but had a higher affinity to osthenol. The characterization of these enzymes elucidates the molecular mechanism of FCs biosynthesis, providing new insights and technologies for understanding the diverse origins of FCs biosynthesis.


Subject(s)
Angelica sinensis , Furocoumarins , Furocoumarins/chemistry , Furocoumarins/metabolism , Furocoumarins/biosynthesis , Angelica sinensis/chemistry , Angelica sinensis/metabolism , Molecular Structure
11.
J Thorac Dis ; 16(2): 1397-1411, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38505077

ABSTRACT

Background: There is a major need for effective, well-tolerated treatments for idiopathic pulmonary fibrosis (IPF) in clinic. Astragalus radix (AR; Huangqi) and Angelica sinensis radix (AS; Danggui) have been frequently used in the treatment of IPF. This study aimed to reveal the pharmacological effects and the mechanisms of the action of an AR-AS combination in treating IPF. Methods: Sprague-Dawley rats were randomly divided into six groups (n=5): control, bleomycin (BLM) model, AR, AS, AR + AS, and prednisone (PDN) groups. A transforming growth factor-ß1 (TGF-ß1)-induced MRC-5 cell model were also used. Pulmonary fibrosis, inflammation, oxidative stress, and autophagy were evaluated by performing hematoxylin and eosin (H&E) staining, Masson staining, immunohistochemical staining, quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and hydroxyproline assay following the treatment of AR, AS, and the AR-AS herb pair. Results: Rats administered the AR-AS herb pair had lower α-smooth muscle actin (α-SMA), collagen I, fibronectin, and vimentin levels in lung tissues, and lower inflammatory cytokine levels in rat serum. In addition, the AR-AS herb pair induced mammalian target of rapamycin (mTOR)-mediated autophagy and reduced oxidative stress in BLM-induced rats. The effects of the AR and AS combination were confirmed in MRC-5 cells treated with TGF-ß1. Specifically, the combination of AR and AS attenuated MRC-5 cell fibrosis, inflammation, and oxidative stress while inducing autophagy. Conclusions: The combination of AR and AS protects against IPF by inducing autophagy via inhibiting the mTOR signaling pathway. The synergistic action of AR and AS is superior to that of either AR or AS alone.

12.
Plant Dis ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549274

ABSTRACT

Root rot is a very destructive soil-borne disease, which severely affects the quality and yield of Angelica sinensis in major planting areas of Gansu Province, China. Twelve Fusarium strains were identified from root rot tissue and infected soil in the field, by comparing each isolate strain internal transcriptional spacer, translation elongation factor 1-α sequence and RNA polymerase second largest subunit gene (RPB2) with the sequences of known fungal species in the NCBI database. Of these isolates, four were F. acuminatum, followed by three F. solani, two F. oxysporum, and one each of F. equiseti, F. redolens, and F. avenaceum. Under greenhouse conditions, pathogenicity testing experiment was carried out using five strains: two F. acuminatum, one F. solani, one F. oxysporum, and one F. equiseti. Among them, the incidence of F. acuminatum-induced root rot on A. sinensis was 100%; hence, it was the most aggressive. Liquid chromatography was used to show that F. acuminatum was capable of producing neosolaniol (NEO), deoxynivalenol (DON), and T-2 toxins. Of these, the level of NEO produced by F. acuminatum was high, compared with the other two toxins. By isolating Fusarium spp. and characterizing their toxin-producing capacity, this work provides a new information for effectively preventing and controlling A. sinensis root rot in the field, as well as improving the quality of its medicinal materials. Keywords: Angelica sinensis, Fusarium spp., mycotoxins, pathogenicity tests, root rot disease.

13.
J Nat Med ; 78(3): 792-798, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38427209

ABSTRACT

Crude drug Angelicae acutilobae radix is one of the most important crude drugs in Japanese traditional medicine and is used mainly for the treatment of gynecological disorders. In the listing in the Japanese Pharmacopoeia XVIII, Angelicae acutilobae radix is defined as the root of Angelica acutiloba (Apiaceae), which has long been produced on an industrial scale in Japan. With the aging of farmers and depopulation of production areas, the domestic supply has recently declined and the majority of the supply is now imported from China. Due to having only slightly different morphological and chemical characteristics for the Apiaceae roots used to produce dried roots for Chinese medicines, the plant species originating the crude drug Apiaceae roots may be incorrectly identified. In particular, Angelicae sinensis radix, which is widely used in China, and Angelicae acutilobae radix are difficult to accurately identify by morphology and chemical profiles. Thus, in order to differentiate among Angelicae acutilobae radix and other radixes originated from Chinese medicinal Apiaceae plants, we established DNA markers. Using DNA sequences for the chloroplast psbA-trnH intergenic spacer and nuclear internal transcribed spacer regions, Angelicae acutilobae radix and other Chinese Apiaceae roots, including Angelicae sinensis radix, can be definitively identified.


Subject(s)
Angelica sinensis , Angelica , DNA Barcoding, Taxonomic , Plant Roots , Angelica/genetics , Angelica/chemistry , Angelica/classification , Angelica sinensis/genetics , Plant Roots/genetics , Apiaceae/genetics , Apiaceae/classification , DNA, Plant/genetics , Plants, Medicinal/genetics , Plants, Medicinal/classification , Drugs, Chinese Herbal/chemistry , Phylogeny , China
14.
Biomed Pharmacother ; 173: 116429, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490157

ABSTRACT

Fibrosis-related diseases (FRD) include conditions like myocardial fibrosis, pulmonary fibrosis, hepatic fibrosis, renal fibrosis, and others. The impact of fibrosis can be severe, causing organ dysfunction, reduced functionality, and even organ failure, leading to significant health issues. Currently, there is a lack of effective modern anti-fibrosis drugs in clinical practice. However, Chinese medicine has a certain beneficial effect on the treatment of such diseases. Angelica sinensis, with its considerable medicinal value, has garnered attention for its anti-fibrosis properties in recent investigations. In the past few years, there has been a growing number of experimental inquiries into the impact of angelica polysaccharide (ASP), angelica water extract, angelica injection, and angelica compound preparation on fibrosis-associated ailments, piquing the interest of researchers. This paper aims to consolidate recent advances in the study of Angelica sinensis for the treatment of fibrosis-related disorders, offering insights for prospective investigations. Literature retrieval included core electronic databases, including Baidu Literature, CNKI, Google-Scholar, PubMed, and Web of Science. The applied search utilized specified keywords to extract relevant information on the pharmacological and phytochemical attributes of plants. The investigation revealed that Angelica sinensis has the potential to impede the advancement of fibrotic diseases by modulating inflammation, oxidative stress, immune responses, and metabolism. ASP, Angelica sinensis extract, Angelica sinensis injection, and Angelica sinensis compound preparation were extensively examined and discussed. These constituents demonstrated significant anti-fibrosis activity. In essence, this review seeks to gain a profound understanding of the role of Angelica sinensis in treating fiber-related diseases. Organ fibrosis manifests in nearly all tissues and organs, posing a critical challenge to global public health due to its widespread occurrence, challenging early diagnosis, and unfavorable prognosis. Despite its prevalence, therapeutic options are limited, and their efficacy is constrained. Over the past few years, numerous studies have explored the protective effects of traditional Chinese medicine on organ fibrosis, with Angelica sinensis standing out as a multifunctional natural remedy. This paper provides a review of organ fibrosis pathogenesis and summarizes the recent two decades' progress in treating fibrosis in various organs such as the liver, lung, kidney, and heart. The review highlights the modulation of relevant signaling pathways through multiple targets and channels by the effective components of Angelica sinensis, whether used as a single medicine or in compound prescriptions.


Subject(s)
Angelica sinensis , Pulmonary Fibrosis , Angelica sinensis/chemistry , Prospective Studies , Phytotherapy , Medicine, Chinese Traditional , Pulmonary Fibrosis/drug therapy
15.
Transl Androl Urol ; 13(1): 91-103, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38404557

ABSTRACT

Background: Acute kidney injury (AKI) is a devastating clinical syndrome with high mortality rate attributed to lack of effective treatment. The herbal pair of Astragali Radix (AR) and Radix Angelica Sinensis (RAS) is a commonly prescribed herbal formula or is added to other traditional Chinese medicine (TCM) prescriptions for the treatment of kidney diseases. AR-RAS has certain protective effects on AKI in experiments, but the relevant mechanisms have yet to be clear. So this study aims to explore the mechanism of action of AR-RAS in AKI by combining network pharmacology and molecular docking methods. Methods: In Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the major AR-RAS chemical components and associated action targets were found and screened. The DrugBank and GeneCards databases were used to find AKI-related targets. The targets that are in close relationship with AKI were obtained from Therapeutic Target database (TTD), Online Mendelian Inheritance in Man (OMIM), and PharmGKB databases. The "herb-active ingredient-target" network was drawn by Cytoscape 3.8.0 software. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to build the protein-protein interaction network. Bioconductor/R was used to examine Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. AR-RAS components and critical targets were docked using the AutoDock Vina program. Results: A compound-target network, built by screening and analyzing the results, allowed to identify 19 active components and 101 possible therapeutic targets for AKI. The main ingredients were quercetin, kaempferol, 7-o-methylisocronulatol, formononetin and isorhamnetin. The key targets included AKT serine/threonine kinase 1 (AKT1), nuclear receptor coactivator 1 (NCOA1), JUN, estrogen receptor alpha (ESR1) and mitogen-activated protein kinase 8 (MAPK8). These molecules are targeted by pathways such as the calcium signaling route, the tumor necrosis factor (TNF) signaling pathway and the interleukin-17 (IL-17) signaling pathway, as well as the development of T helper 17 cells. Molecular docking demonstrated that AR-active RAS components exhibited strong binding activities to probable targets of AKI. Conclusions: We described here the potential active ingredients, possible targets responsible for the efficacy of AR-RAS in AKI treatment, providing a theoretical basis for further research.

16.
Poult Sci ; 103(4): 103473, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340660

ABSTRACT

This research examined the impact of incorporating Angelica sinensis's aerial components (APA), commonly referred to as "female ginseng", into broilers' diet. Two hundred eighty-eight 1-day-old Cobb 500 broilers were randomly assigned to the 4 experimental groups with 6 replications and 12 birds/replicate. The 4 groups were fed the diets included 4 concentrations of APA (0, 1, 2, and 3%, respectively). The study spanned 42 d, categorized as the starter phase (1-21 d) and the finisher phase (22-42 d). Notably, broilers fed with 3% APA demonstrated a pronounced surge in feed consumption and weight gain during the 22 to 42 d and over the full 42-d period (P < 0.05). Furthermore, when examining the broilers' intestinal structure, there was a notable increase in the villus height and villi ratio across the duodenum, jejunum, and ileum, with a decrease in crypt depth upon 3% APA inclusion (P < 0.05). On a molecular note, certain genes connected to the intestinal mechanical barrier, such as Zona Occludens 1 and Claudin-2, saw significant elevation in the jejunum (P < 0.05). The jejunum also displayed heightened levels of antimicrobial peptides like lysozyme, mucin 2, sIgA, IgG, and IgM, showcasing an enhanced chemical and immune barrier (P < 0.05). Delving into the 16SrDNA sequencing of intestinal content, a higher microbial diversity was evident with a surge in beneficial bacteria, particularly Firmicutes, advocating a resilient and balanced microecosystem. The findings imply that a 3% APA dietary addition bolsters growth metrics and fortifies the intestinal barrier's structural and functional integrity in broilers.


Subject(s)
Angelica sinensis , Dietary Supplements , Animals , Female , Dietary Supplements/analysis , Chickens , Intestines , Diet/veterinary , Plant Components, Aerial , Animal Feed/analysis
17.
Int J Biol Macromol ; 263(Pt 1): 130321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382780

ABSTRACT

As a global public health issue, the treatment of acute liver injury (ALI) is severely limited due to the lack of specific drugs. In order to address the challenges, innovative strategies for selenium nanoparticles (Se NPs) with excellent antioxidant properties have been actively developed to effectively prevent ALI. However, the functional activity of Se NPs is severely affected by poor stability and bioavailability. The aim of this work is to develop a stabilization system (ASP-Se NPs) for Angelica sinensis polysaccharides modified Se NPs. The results showed that ASP-Se NPs with smaller size (62.38 ± 2.96 nm) showed good stability, specific accumulation in liver and enhanced cell uptake, thus exerting strong antioxidant and anti-inflammatory functions. The results of in vivo experiments further confirmed that ASP-Se NPs effectively prevented CCl4-induced ALI by improving liver function, inhibiting oxidative stress and inflammatory response, and liver pathological damage. This work provides a new alternative method for effectively preventing ALI and improving liver function.


Subject(s)
Angelica sinensis , Nanoparticles , Selenium , Selenium/pharmacology , Antioxidants/pharmacology , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Liver , Nanoparticles/therapeutic use
18.
Biomed Chromatogr ; 38(5): e5840, 2024 May.
Article in English | MEDLINE | ID: mdl-38402901

ABSTRACT

The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.


Subject(s)
Angelica sinensis , Chickens , Liver , Polysaccharides , Proteomics , Tandem Mass Spectrometry , Animals , Angelica sinensis/chemistry , Proteomics/methods , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/analysis , Tandem Mass Spectrometry/methods , Liver/drug effects , Liver/metabolism , Proteome/analysis , Proteome/drug effects , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Chemical and Drug Induced Liver Injury/prevention & control
19.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338476

ABSTRACT

The present work aimed to study the feasibility of Angelica sinensis polysaccharide (ASP) as an instinctive liver targeting drug delivery carrier for oridonin (ORI) in the treatment of hepatocellular carcinoma (HCC). ASP was reacted with deoxycholic acid (DOCA) via an esterification reaction to form an ASP-DOCA conjugate. ORI-loaded ASP-DOCA nanoparticles (ORI/ASP-DOCA NPs) were prepared by the thin-film water method, and their size was about 195 nm in aqueous solution. ORI/ASP-DOCA NPs had a drug loading capacity of up to 9.2%. The release of ORI in ORI/ASP-DOCA NPs was pH-dependent, resulting in rapid decomposition and accelerated drug release at acidic pH. ORI/ASP-DOCA NPs significantly enhanced the accumulation of ORI in liver tumors through ASGPR-mediated endocytosis. In vitro results showed that ORI/ASP-DOCA NPs increased cell uptake and apoptosis in HepG2 cells, and in vivo results showed that ORI/ASP-DOCA NPs caused effective tumor suppression in H22 tumor-bearing mice compared with free ORI. In short, ORI/ASP-DOCA NPs might be a simple, feasible, safe and effective ORI nano-drug delivery system that could be used for the targeted delivery and treatment of liver tumors.


Subject(s)
Angelica sinensis , Carcinoma, Hepatocellular , Desoxycorticosterone Acetate , Diterpenes, Kaurane , Liver Neoplasms , Nanoparticles , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Drug Carriers/chemistry , Polysaccharides/therapeutic use
20.
Carbohydr Polym ; 328: 121745, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220331

ABSTRACT

Angelica sinensis polysaccharide (ASP) possesses diverse bioactivities; however, its metabolic fate following oral administration remains poorly understood. To intuitively determine its intestinal digestion behavior after oral administration, ASP was labeled with fluorescein, and it was found to accumulate and be degraded in the cecum and colon. Therefore, we investigated the in vitro enzymatic degradation behavior and identified the products. The results showed that ASP could be degraded into fragments with molecular weights similar to those of the fragments observed in vivo. Structural characterization revealed that ASP is a highly branched acid heteropolysaccharide with AG type II domains, and its backbone is predominantly composed of 1,3-Galp, →3,6)-Galp-(1→6)-Galp-(1→, 1,4-Manp, 1,4-Rhap, 1,3-Glcp, 1,2,3,4-Galp, 1,3,4,6-Galp, 1,3,4-GalAp and 1,4-GlcAp, with branches of Araf, Glcp and Galp. In addition, the high molecular weight enzymatic degradation products (ASP H) maintained a backbone structure almost identical to that of ASP, but exhibited only partial branch changes. Then, the results of ethanol-induced acute liver injury experiments revealed that ASP and ASP H reduced the expression of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and malondialdehyde (MDA) and increased the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) levels, thereby relieving ethanol-induced acute liver injury.


Subject(s)
Angelica sinensis , Angelica sinensis/chemistry , Ethanol/toxicity , Ethanol/metabolism , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Liver , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...