Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
2.
Ther Apher Dial ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894556

ABSTRACT

INTRODUCTION: This study aims to examine the relationship between fluid overload, Vascular Endothelial Growth Factor C (VEGF-C), plasma Angiotensinogen (pAGT), and echocardiography findings in hemodialysis patients. METHODS: This was a single-center, cross-sectional study. Patients were divided into two groups according to mid-week inter-dialytic weight gain (mIDWG): (1) mIDWG ≤3% and (2) mIDW >3%. RESULTS: A total of 55 patients were enrolled in this study. While the mean pAGT and left ventricular mass index were significantly higher in patients with mIDWG >3% compared to patients with mIDWG ≤3%, VEGF-C was similar between groups. pAGT ≥76.8 mcg/L, VEGF-C ≤175.5 pg/ML, and pAGT /VEGF-C ≥0.45 were significant cut-offs for the prediction of left ventricular hypertrophy(LVH). Univariate logistic regression analysis revealed that these cut-off values were significantly associated with LVH. CONCLUSION: Renin-angiotensin-aldosterone system activation may persist in hemodialysis patients with excessive IDWG. Additionally, pAGT and VEGF-C could be risk factors for the development of LVH.

3.
Chronic Dis Transl Med ; 10(2): 102-117, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38872760

ABSTRACT

Background: Hypertension (HTN) involves genetic variability in the renin-angiotensin system and influences antihypertensive response. We previously reported that angiotensinogen (AGT) messenger RNA (mRNA) is endogenously bound by miR-122-5p and rs699 A > G decreases reporter mRNA in the microRNA functional-assay PASSPORT-seq. The AGT promoter variant rs5051 C > T is in linkage disequilibrium (LD) with rs699 A > G and increases AGT transcription. The independent effect of these variants is understudied due to their LD therefore we aimed to test the hypothesis that increased AGT by rs5051 C > T counterbalances AGT decreased by rs699 A > G, and when these variants occur independently, it translates to HTN-related phenotypes. Methods: We used in silico, in vitro, in vivo, and retrospective models to test this hypothesis. Results: In silico, rs699 A > G is predicted to increase miR-122-5p binding affinity by 3%. Mir-eCLIP results show rs699 is 40-45 nucleotides from the strongest microRNA-binding site in the AGT mRNA. Unexpectedly, rs699 A > G increases AGT mRNA in an AGT-plasmid-cDNA HepG2 expression model. Genotype-Tissue Expression (GTEx) and UK Biobank analyses demonstrate liver AGT expression and HTN phenotypes are not different when rs699 A > G occurs independently from rs5051 C > T. However, GTEx and the in vitro experiments suggest rs699 A > G confers cell-type-specific effects on AGT mRNA abundance, and suggest paracrine renal renin-angiotensin-system perturbations could mediate the rs699 A > G associations with HTN. Conclusions: We found that rs5051 C > T and rs699 A > G significantly associate with systolic blood pressure in Black participants in the UK Biobank, demonstrating a fourfold larger effect than in White participants. Further studies are warranted to determine if altered antihypertensive response in Black individuals might be due to rs5051 C > T or rs699 A > G. Studies like this will help clinicians move beyond the use of race as a surrogate for genotype.

4.
Hypertension ; 81(7): 1491-1499, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38690653

ABSTRACT

BACKGROUND: Small-interfering RNA (siRNA) targeting hepatic AGT (angiotensinogen) mRNA depletes AGT, lowering blood pressure for up to 6 months. However, certain situations may require a rapid angiotensin increase. The REVERSIR (RVR) - reverse siRNA silencing technology a potential approach to counteract siRNA effects. METHODS: Spontaneously hypertensive rats received 10 mg/kg AGT siRNA, and 3 weeks later were given AGT-RVR (1, 10, or 20 mg/kg). One week after AGT-RVR dosing, a redose of AGT siRNA assessed its post-AGT-RVR effectiveness for 2 weeks. Additionally, the impact of AGT-RVR after an equihypotensive dose of valsartan (4 mg/kg per day) was examined. RESULTS: Baseline mean arterial pressure (MAP) was 144±1 mm Hg. AGT siRNA reduced MAP by ≈16 mm Hg and AGT by >95%, while renin increased 25-fold. All AGT-RVR doses restored MAP to baseline within 4 to 7 days. Notably, 10 and 20 mg/kg restored AGT and renin to baseline, while 1 mg/kg allowed ≈50% AGT restoration, with renin remaining above baseline. A second AGT siRNA treatment, following 1 mg/kg AGT-RVR, reduced MAP to the same degree as the initial dose, while following 10 mg/kg AGT-RVR, it resulted in ≈50% of the first dose's MAP effect at 2 weeks. The valsartan-induced MAP reduction was unaffected by AGT-RVR. CONCLUSIONS: In spontaneously hypertensive rats, angiotensinogen-RVR dose-dependently reversed AGT siRNA-induced AGT reduction, normalizing MAP. MAP normalization persisted even with 50% recovered AGT levels, likely due to upregulated renin maintaining adequate angiotensin generation. Post-AGT-RVR dosing, a second AGT siRNA dose lowered MAP again.


Subject(s)
Angiotensinogen , Antihypertensive Agents , Hypertension , RNA, Small Interfering , Rats, Inbred SHR , Animals , Angiotensinogen/genetics , Angiotensinogen/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology , RNA, Small Interfering/genetics , Rats , Hypertension/drug therapy , Hypertension/genetics , Hypertension/metabolism , Antihypertensive Agents/pharmacology , Male , Blood Pressure/drug effects , Disease Models, Animal , Valsartan/pharmacology , Renin-Angiotensin System/drug effects
5.
Hypertension ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716648

ABSTRACT

BACKGROUND: Angiotensin-(1-12), measured by a self-developed, polyclonal antibody-based radioimmunoassay, has been suggested to act as an alternative precursor of angiotensin II. A more reliable detection method would be liquid chromatography-tandem mass spectrometry. METHODS: We set up the quantification of human and murine angiotensin-(1-12) by liquid chromatography-tandem mass spectrometry and then used this method to measure angiotensin-(1-12) in human and mouse blood samples, as well as in mouse brain and kidney. We also verified ex vivo angiotensin-(1-12) generation and metabolism in human blood samples incubated at 37 °C. RESULTS: Stabilization of blood in guanidine hydrochloride was chosen for sample collection since this allowed full recovery of spiked angiotensin-(1-12). Angiotensin-(1-12) was undetectable in human blood samples when incubating nonstabilized plasma at 37 °C, while angiotensin-(1-12) added to nonstabilized human plasma disappeared within 10 minutes. Stabilized human blood samples contained angiotensin II, while angiotensin-(1-12) was undetectable. Blood, hearts, and kidneys, but not brains, of wild-type mice and rats contained detectable levels of angiotensin II, while angiotensin-(1-12) was undetectable. In renin knockout mice, all angiotensins, including angiotensin-(1-12), were undetectable at all sites, despite a 50% rise in angiotensinogen. Angiotensin-(1-12) metabolism in human blood plasma was not affected by renin inhibition. Yet, blockade of angiotensin-converting enzyme and aminopeptidase A, but not of chymase, neutral endopeptidase, or prolyl oligopeptidase, prolonged the half-life of angiotensin-(1-12), and angiotensin-converting enzyme inhibition prevented the formation of angiotensin II. CONCLUSIONS: We were unable to detect intact angiotensin-(1-12) in humans or mice, either in blood or tissue, suggesting that this metabolite is an unlikely source of endogenous angiotensins.

6.
Horm Behav ; 163: 105551, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678724

ABSTRACT

Alamandine is a peptide hormone belonging to the renin-angiotensin system (RAS). It acts through the Mas-related G-protein coupled receptor type D, MrgD, which is expressed in different tissues, including the brain. In the present study, we hypothesize that a lack of alamandine, through MrgD, could cause the anxiety-like behavior in transgenic rats with low brain angiotensinogen [TGR(ASrAOGEN)680]. Adult male transgenic rats exhibited a significant increase in the latency to feeding time in the novelty suppressed feeding test and a decrease in the percentage of time and entries in the open arms in the elevated plus maze. These effects were reversed by intracerebroventricular infusion of alamandine. Pretreatment with D-Pro7-Ang-(1-7), a Mas and MrgD receptor antagonist, prevented the anxiolytic effects induced by this peptide. However, its effects were not altered by the selective Mas receptor antagonist, A779. In conclusion, our data indicates that alamandine, through MrgD, attenuates anxiety-like behavior in male TGR(ASrAOGEN)680, which reinforces the importance of the counter-regulatory RAS axis as promising target for the treatment of neuropsychiatric disorders.


Subject(s)
Angiotensinogen , Anti-Anxiety Agents , Anxiety , Brain , Rats, Transgenic , Receptors, G-Protein-Coupled , Animals , Male , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Rats , Anxiety/drug therapy , Anxiety/metabolism , Anti-Anxiety Agents/pharmacology , Angiotensinogen/metabolism , Angiotensinogen/genetics , Brain/metabolism , Brain/drug effects , Receptors, Gastrointestinal Hormone/metabolism , Oligopeptides/pharmacology , Nerve Tissue Proteins
7.
Arterioscler Thromb Vasc Biol ; 44(5): 1021-1030, 2024 May.
Article in English | MEDLINE | ID: mdl-38572647

ABSTRACT

AGT (angiotensinogen) is the unique precursor for the generation of all the peptides of the renin-angiotensin system, but it has received relatively scant attention compared to many other renin-angiotensin system components. Focus on AGT has increased recently, particularly with the evolution of drugs to target the synthesis of the protein. AGT is a noninhibitory serpin that has several conserved domains in addition to the angiotensin II sequences at the N terminus. Increased study is needed on the structure-function relationship to resolve many unknowns regarding AGT metabolism. Constitutive whole-body genetic deletion of Agt in mice leads to multiple developmental defects creating a challenge to use these mice for mechanistic studies. This has been overcome by creating Agt-floxed mice to enable the development of cell-specific deficiencies that have provided considerable insight into a range of cardiovascular and associated diseases. This has been augmented by the recent development of pharmacological approaches targeting hepatocytes in humans to promote protracted inhibition of AGT synthesis. Genetic deletion or pharmacological inhibition of Agt has been demonstrated to be beneficial in a spectrum of diseases experimentally, including hypertension, atherosclerosis, aortic and superior mesenteric artery aneurysms, myocardial dysfunction, and hepatic steatosis. This review summarizes the findings of recent studies utilizing AGT manipulation as a therapeutic approach.


Subject(s)
Angiotensinogen , Cardiovascular Diseases , Metabolic Diseases , Animals , Humans , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/genetics , Angiotensinogen/metabolism , Angiotensinogen/genetics , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Metabolic Diseases/genetics , Renin-Angiotensin System/drug effects , Molecular Targeted Therapy
8.
Cells ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38607073

ABSTRACT

Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.


Subject(s)
Glioblastoma , Renin-Angiotensin System , Humans , Renin-Angiotensin System/genetics , Up-Regulation/genetics , Glioblastoma/genetics , Tumor Microenvironment , Receptors, Cell Surface/metabolism , Prorenin Receptor
9.
J Pharm Bioallied Sci ; 16(Suppl 1): S286-S289, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38595634

ABSTRACT

Introduction: Alteration in the various markers is seen in diabetic nephropathy (DN). In the current research, four different markers were evaluated and were examined for their diagnostic value in the nephropathic type 2 diabetes patients. Methods: A prospective clinical trial was piloted with diabetic male subjects with nephropathy. The subjects were followed up for 9 months. Thirty subjects were recruited as type 2 diabetes mellitus patients without nephropathy as controls. The interventional groups were grouped again as microalbuminuria, normoalbuminuria, and hyperfiltration. All of them underwent testing for urinary biomarkers like urine protein, ACR, HbA1C, and estimated glomerular filtration rate (eGFR). Correlation and logistic regression were used to compare all diagnostic tests across various groupings. Results: The greatest area under curve (AUC) values were .90 and .91 for AGT and AGT/Cr, respectively. The AUC, specificity, sensitivity, and cut-off value of AGT/Cr were, respectively, .91, 85%, 91%, and 4.36 mg/g. When using urine as the cut-off, the sensitivity was 42 and 100 for ACR and eGFR both. All other biomarkers had lower values than the AGT. Less than. 50 was evident for NGAL/Cr and NAGL. Conclusions: To identify DN, before the initiation of the albuminuria, compared to other diagnostic markers, urinary AGT demonstrated a greater diagnostic value. Further research is suggested to corroborate the findings.

10.
Biochem Pharmacol ; 223: 116127, 2024 May.
Article in English | MEDLINE | ID: mdl-38490519

ABSTRACT

Sepsis induced myocardial dysfunction (SIMD) is a serious complication of sepsis. There is increasing evidence that the renin-angiotensin system (RAS) is activated in SIMD. Angiotensinogen (AGT) is a precursor of the RAS, and the inhibition of AGT may have significant cardiovascular benefits. But until now, there have been no reports of small molecule drugs targeting AGT. In this study, we designed a promoter-luciferase based system to screen for novel AGT inhibitors to alleviate SIMD. As a result of high-throughput screening, a total of 5 compounds from 351 medicinal herb-derived natural compounds were found inhibiting AGT. 18ß-glycyrrhetinic acid (18ßGA) was further identified as a potent suppressor of AGT. In vitro experiments, 18ßGA could inhibit the secretion of AGT by HepG2 cells and alleviate the elevated level of mitochondrial oxidative stress in cardiomyocytes co-cultured with HepG2 supernatants. In vivo, 18ßGA prolonged the survival rate of SIMD mice, enhanced cardiac function, and inhibited the damage of mitochondrial function and inflammation. In addition, the results showed that 18ßGA may reduce AGT transcription by downregulating hepatocyte nuclear factor 4 (HNF4) and that further alleviated SIMD. In conclusion, we provided a more efficient screening strategy for AGT inhibitors and expanded the novel role of 18ßGA as a promising lead compound in rescuing cardiovascular disease associated with RAS overactivation.


Subject(s)
Glycyrrhetinic Acid/analogs & derivatives , High-Throughput Screening Assays , Sepsis , Mice , Animals , Lipopolysaccharides , Angiotensinogen/genetics
11.
Eur J Pharmacol ; 969: 176467, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38431244

ABSTRACT

Hypertension, a well-known cardiovascular disorder noticed by rise in blood pressure, poses a significant global health challenge. The development RNA interfering (RNAi)-based therapies offers a ground-breaking molecular tool, holds promise for addressing hypertension's intricate molecular mechanisms. Harnessing the power of small interfering RNA (siRNA), researchers aim to selectively target and modulate genes associated with hypertension. Furthermore, they aim to downregulate the levels of mRNA by activating cellular nucleases in response to sequence homology between the siRNA and the corresponding mRNA molecule. As a result, genes involved in the cause of disorders linked to a known genetic background can be silenced using siRNA strategy. In the realm of hypertension, siRNA therapy emerges as a potential therapy for prognostics, diagnostics and treatments. It plays an important role in execution of targeting suppression of genes involved in vascular tone regulation, sodium handling, and pathways contributing to high blood pressure. A clinical trial involving intervention like angiotensinogen siRNA (AGT siRNA) is currently being carried out to treat hypertension. Genetic correlations between uromodulin (UMOD) and hypertension are investigated as emerging Non AGT siRNA target. Furthermore, expression of UMOD is responsible for regulation of sodium by modulating the tumor necrosis factor-α and regulating the Na + -K + -2Cl-cotransporter (NKCC2) in the thick ascending limb, which makes it an important target for blood pressure regulation.


Subject(s)
Hypertension , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Hypertension/therapy , Hypertension/drug therapy , Blood Pressure/genetics , RNA, Messenger , Sodium
12.
Biochem Genet ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546913

ABSTRACT

Basal cell carcinoma (BCC) is the most prevalent human neoplasm, with constantly increasing annual incidence. Despite its slow growth, BCC is locally invasive and, if left untreated, can cause severe complications, including metastasis and death. The renin-angiotensin system (RAS) plays a key role in electrolyte balance, atrial pressure, tissue development, homeostasis, and inflammation, but also in cancer development. After binding to its type 1 receptor (AT1R), angiotensin II (ANGII), the system's principal hormonal effector, regulates cancer pathways spanning from the formation of the initial cancer cell to the construction and nutrition of the tumor microenvironment, angiogenesis, proliferation, and metastasis. Although the role of RAS in the development of skin pathologies has not been widely researched, RAS-targeting antihypertensive medications have been shown to have a chemoprotective effect against BCC. Based on those findings, our group conducted a series of genetic association studies to investigate the association between common functional variations in key genes related to ANGII production (AGT, ACE, ACE2, AT1R, AT2R, and CMA1) and the risk of BCC occurrence. This review provides a summary of the current understanding of the ANGII involvement in BCC development. The reliable and easily assessed pool of genetic biomarkers may be used for predictive testing and prevention purposes in high-risk individuals.

13.
Life (Basel) ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38398716

ABSTRACT

BACKGROUND: Despite the considerable progress made in recent years in fetal assessment, the etiology of fetal growth disturbances is not as yet well understood. In an effort to enhance our knowledge in this area, we investigated the associations of the amniotic fluid angiotensinogen of the renin-angiotensin system with fetal growth abnormalities. METHODS: We collected amniotic fluid samples from 70 pregnant women who underwent amniocentesis during their early second trimester. Birth weight was documented upon delivery, after which the embryos corresponding to the respective amniotic fluid samples were categorized into three groups as follows: small for gestational age (SGA), appropriate for gestational age (AGA), and large for gestational age (LGA). Amniotic fluid angiotensinogen levels were determined by using ELISA kits. RESULTS: Mean angiotensinogen values were 3885 ng/mL (range: 1625-5375 ng/mL), 4885 ng/mL (range: 1580-8460 ng/mL), and 4670 ng/mL (range: 1995-7250 ng/mL) in the SGA, LGA, and AGA fetuses, respectively. The concentrations in the three groups were not statistically significantly different. Although there were wide discrepancies between the mean values of the subgroups, the large confidence intervals in the three groups negatively affected the statistical analysis. However, multiple regression analysis revealed a statistically significant negative correlation between the angiotensinogen levels and gestational age and a statistically significant positive correlation between the birth weight and angiotensinogen levels. DISCUSSION: Our findings suggest that fetal growth abnormalities did not correlate with differences in the amniotic fluid levels of angiotensinogen in early second trimester pregnancies. However, increased angiotensinogen levels were found to be consistent with a smaller gestational age at birth and increased BMI of neonates.

14.
Article in English | MEDLINE | ID: mdl-38329697

ABSTRACT

Diabetes mellitus, a most common endocrine disorder of glucose metabolism, has become a global epidemic and poses a serious public health threat with an increased socio-economic burden. Escalating incidence of diabetes is correlated with changes in lifestyle and food habits that cause gut microbiome dysbiosis and ß-cells damage, which can be addressed with dietary interventions containing probiotics. Hence, the search for probiotics of human origin with anti-diabetic, anti-AGE, and anti-ACE potentials has gained renewed interest for the effective management of diabetes and its associated complications. The present study used an alloxan (AXN)-induced diabetic rat model to investigate the effects of potential probiotic Lacticaseibacillus casei MKU1, Lactiplantibacillus pentosus MKU3, and Lactiplantibacillus plantarum MKU7 administration individually on physiochemical parameters related to diabetic pathogenesis. Experimental animals were randomly allotted into six groups viz. NCG (control), DCG (AXN), DGM (metformin), DGP1 (MKU1), DGP2 (MKU3), and DGP3 (MKU7), and biochemical data like serum glucose, insulin, AngII, ACE, HbA1c, and TNF-α levels were measured until 90 days. Our results suggest that oral administration with MKU1, MKU3, or MKU7 significantly improved serum insulin levels, glycemic control, glucose tolerance, and body weight. Additionally, ß-cell mass was increased by preserving islet integrity in Lactobacillus-treated diabetic rats, whereas TNF-α (~40%), AngII (~30%), and ACE levels (~50%) were strongly inhibited and enhanced sIgA production (5.8 folds) abundantly. Furthermore, Lactobacillus administration positively influenced the gut microbiome with a significant increase in the abundance of Lactobacillus species and the beneficial Bacteroides uniformis and Bacteroides fragilis, while decreased the pathogenic Proteus vulgaris and Parabacteroides distasonis. Among the probiotic treatment groups, L. pentosus MKU3 performed greatly in almost all parameters, indicating its potential use for alleviating diabetes-associated complications.

15.
Int J Immunogenet ; 51(2): 81-88, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38265173

ABSTRACT

To investigate the correlation between susceptibility to systemic lupus erythematosus (SLE) and single nucleotide polymorphisms (SNPs) rs699, rs4762 and rs1926723 in the AGT gene in the population of Northeast China, while also introducing a new method for early detection of SLE. A total of 856 cases of SLE patients and healthy volunteers who attended the First Affiliated Hospital of Harbin Medical University from January 2020 to December 2022 were recruited. Clinical information and biood samples were collected from particpants in this study. SNaPshot sequencing technology was used to sequence the bases of the rs699, rs4762 and rs1926723 in the AGT gene. The genetic stability of SNPs was analysed by means of Hardy-Weinberg (HWE) genetic equilibrium. The study examined the correlation between genetically stable SNPs and susceptibility to SLE using logistic regression analysis. Rs699 did not adhere to the principles of the HWE genetic equilibrium (p < .01). Conversely, both rs4762 and rs1926723 conformed to the HWE genetic equilibrium (p > .05). However, no significant differences in genotypes and alleles frequencies of the rs4762 were observed between the two groups (p > .05). Furthermore, there was a significant difference in the distribution of AG, GG genotypes frequency and G allele frequency at the rs1926723 between the two groups (p < .001). Individuals with AG and GG genotypes and the G allele had a significantly lower frequency of SLE, indicating a potential genetic protective factor against susceptibility to the SLE. The SNPs rs1926723 may be linked to the susceptibility to SLE, and the AG, GG genotypes and the G allele may be important protective factors for the development of SLE in Northeast China.


Subject(s)
Lupus Erythematosus, Systemic , Polymorphism, Single Nucleotide , Humans , Genetic Predisposition to Disease , Lupus Erythematosus, Systemic/genetics , Genotype , Gene Frequency , China , Case-Control Studies
16.
Front Pediatr ; 11: 1274435, 2023.
Article in English | MEDLINE | ID: mdl-38027263

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is one of the leading causes of end-stage renal disease. In spite of the recent tremendous progress in the understanding of ADPKD pathogenesis, the molecular mechanisms of the disease remain incompletely understood. Considering emerging new targeted therapies for ADPKD, it has become crucial to disclose easily measurable and widely available biomarkers for identifying patients with future rapid disease progression. This review encompasses all the research with a shared goal of identifying promising serum or urine biomarkers for predicting ADPKD progression or response to therapy. The rate of the ADPKD progress varies significantly between patients. The phenotypic variability is only partly explained by the underlying genetic lesion diversity. Considering significant decline in kidney function in ADPKD is not usually evident until at least 50% of the parenchyma has been destroyed, conventional kidney function measures, such as glomerular filtration rate (GFR), are not suitable for monitoring disease progression in ADPKD, particularly in its early stages. Since polycystic kidney enlargement usually precedes the decline in GFR, height-adjusted total kidney volume (ht-TKV) has been accepted as an early biomarker for assessing disease severity in ADPKD patients. However, since measuring ht-TKV is time-consuming and observer-dependent, the identification of a sensitive and quickly measurable biomarker is of a great interest for everyday clinical practice. Throughout the last decade, due to development of proteomic and metabolomic techniques and the enlightenment of multiple molecular pathways involved in the ADPKD pathogenesis, a number of urine and serum protein biomarkers have been investigated in ADPKD patients, some of which seem worth of further exploring. These include copeptin, angiotensinogen, monocyte chemoattractant protein 1, kidney injury molecule-1 and urine-to-plasma urea ratio among many others. The aim of the current review is to provide an overview of all of the published evidence on potentially clinically valuable serum and urine biomarkers that could be used for predicting disease progression or response to therapy in patients with ADPKD. Hopefully, this review will encourage future longitudinal prospective clinical studies evaluating proposed biomarkers as prognostic tools to improve management and outcome of ADPKD patients in everyday clinical practice.

17.
Expert Rev Clin Pharmacol ; 16(11): 1025-1033, 2023.
Article in English | MEDLINE | ID: mdl-37897397

ABSTRACT

INTRODUCTION: Hypertension is the main global risk factor for cardiovascular disease. Despite this, less than half of treated hypertensive patients are controlled. One reason for this is nonadherence, a major unmet need in hypertension pharmacotherapy. Small interfering RNA (small interfering ribonucleic acid) therapies inhibit protein translation, and, when linked to N-acetylgalactosamine, allow liver-specific targeting, and durability over several months. Targeted knockdown of hepatic angiotensinogen, the source of all angiotensins, offers a precision medicine approach. AREAS COVERED: This article describes the molecular basis for durability over months and the 24-h tonic target inhibition observed after one administration. We present an analysis of the published phase I trials using zilebesiran, a siRNA targeting hepatic angiotensinogen, which reduces blood pressure (BP) by up to 20 mmHg, lasting 24 weeks. Finally, we examine data evaluating reversibility of angiotensinogen knockdown and its relevance to the future clinical utility of zilebesiran. EXPERT OPINION: Further studies should assess safety, efficacy, and outcomes in larger, more broadly representative groups. An advantage of zilebesiran is the potential for bi-annual dosing, thereby reducing nonadherence and improving control rates. It may also reduce nighttime BP due to 24-h tonic control. The provision of adherence assessment services will maximize the clinical value of zilebesiran.


Subject(s)
Angiotensinogen , Hypertension , Humans , Angiotensinogen/genetics , Angiotensinogen/metabolism , Angiotensinogen/therapeutic use , RNA, Small Interfering , Hypertension/drug therapy , Blood Pressure , Liver/metabolism
18.
Arterioscler Thromb Vasc Biol ; 43(12): 2256-2264, 2023 12.
Article in English | MEDLINE | ID: mdl-37855126

ABSTRACT

Blood pressure management involves antihypertensive therapies blocking the renin-angiotensin system (RAS). Yet, it might be inadequate due to poor patient adherence or the so-called RAS escape phenomenon, elicited by the compensatory renin elevation upon RAS blockade. Recently, evidence points toward targeting hepatic AGT (angiotensinogen) as a novel approach to block the RAS pathway that could circumvent the RAS escape phenomenon. Removing AGT, from which all angiotensins originate, should prevent further angiotensin generation, even when renin rises. Furthermore, by making use of a trivalent N-acetylgalactosamine ligand-conjugated small interfering RNA that specifically targets the degradation of hepatocyte-produced mRNAs in a highly potent and specific manner, it may be possible in the future to manage hypertension with therapy that is administered 1 to 2× per year, thereby supporting medication adherence. This review summarizes all current findings on AGT small interfering RNA in preclinical models, making a comparison versus classical RAS blockade with either ACE (angiotensin-converting enzyme) inhibitors or AT1 (angiotensin II type 1) receptor antagonists and AGT suppression with antisense oligonucleotides. It ends with discussing the first-in-human study with AGT small interfering RNA.


Subject(s)
Angiotensinogen , Hypertension , Humans , Acetylgalactosamine , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensinogen/genetics , Angiotensinogen/metabolism , Blood Pressure , Hypertension/therapy , Hypertension/drug therapy , Renin/metabolism , Renin-Angiotensin System/physiology , RNA, Small Interfering/pharmacology
19.
Front Cardiovasc Med ; 10: 1250234, 2023.
Article in English | MEDLINE | ID: mdl-37655218

ABSTRACT

Background and objective: Whole body manipulation of the renin-angiotensin system (RAS) consistently exerts profound effects on experimental atherosclerosis development. A deficit in the literature has been a lack of attention to the effects of sex. Also, based on data with gene-deleted mice, the site of RAS activity that influences lesion formation is at an unknown distant location. Since angiotensin (AngII) concentrations are high in kidney and the major components of the RAS are present in renal proximal tubule cells (PTCs), this study evaluated the role of the RAS in PTCs in atherosclerosis development. Methods and results: Mice with an LDL receptor -/- background were fed Western diet to induce hypercholesterolemia and atherosclerosis. We first demonstrated the role of AT1 receptor antagonism on atherosclerosis in both sexes. Losartan, an AngII type 1 (AT1) receptor blocker, had greater blood pressure-lowering effects in females than males, but equivalent effects between sexes in reducing atherosclerotic lesion size. To determine the roles of renal AT1a receptor and angiotensin-converting enzyme (ACE), either component was deleted in PTCs after weaning using a tamoxifen-inducible Cre expressed under the control of an Ndrg1 promoter. Despite profound deletion of AT1a receptor or ACE in PTCs, the absence of either protein did not influence development of atherosclerosis in either sex. Conversely, mice expressing human angiotensinogen and renin in PTCs or expressing human angiotensinogen in liver but human renin in PTCs did not change atherosclerotic lesion size in male mice. Conclusion: Whole-body AT1R inhibition reduced atherosclerosis equivalently in both male and female mice; however, PTC-specific manipulation of the RAS components had no effects on hypercholesterolemia-induced atherosclerosis.

20.
Hypertension ; 80(11): 2243-2254, 2023 11.
Article in English | MEDLINE | ID: mdl-37706295

ABSTRACT

Hypertension remains the leading cause of cardiovascular disease and premature death globally, affecting half of US adults. A high proportion of hypertensive patients exhibit uncontrolled blood pressure (BP), associated with poor adherence, linked to pill burden and adverse effects. Novel pharmacological strategies are urgently needed to improve BP control. Dysregulation of the renin-angiotensin system increases BP through its primary effector, Ang II (angiotensin II), which results in tissue remodeling and end-organ damage. Silencing liver angiotensinogen (the sole source of Ang II) has been achieved using novel RNA therapeutics, including the antisense oligonucleotide, IONIS-AGT (angiotensinogen)-LRX, and the small-interfering RNA, zilebesiran. Conjugation to N-acetylgalactosamine enables targeted delivery to hepatocytes, where endosomal storage, slow leakage, and small-interfering RNA recycling (for zilebesiran) result in knockdown over several months. Indeed, zilebesiran has an impressive and durable effect on systolic BP, reduced by up to 20 mm Hg and sustained for 6 months after a single administration, likely due to its very effective knockdown of angiotensinogen, without causing acute kidney injury or hyperkalemia. By contrast, IONIS-AGT-LRX caused less knockdown and marginal effects on BP. Future studies should evaluate any loss of efficacy relating to antidrug antibodies, safety issues associated with long-term angiotensinogen suppression, and broader benefits, especially in the context of common comorbidities such as type 2 diabetes and chronic kidney disease.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Humans , Angiotensinogen/genetics , Angiotensinogen/metabolism , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/pharmacology , Hypertension/drug therapy , Hypertension/genetics , Blood Pressure/physiology , Renin-Angiotensin System , Angiotensin II/pharmacology , RNA, Small Interfering/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...