ABSTRACT
The concentrations of heavy metals (HMs) can be increased by various anthropogenic activities such as mining, fuel combustion, pesticide use, and urban development, which can alter the mechanisms determining their spatial variability in the environment. Determining natural concentrations, monitoring, and assessing potential ecological risks are essential in the management of pollution prevention policies and soil conservation in watersheds. The aim of this study was to determine HMs natural concentrations, establish quality reference values (QRVs), and evaluate pollution indices in a watershed-scale. Composite surface soil samples (n = 115) were collected from areas: native vegetation, pasture, perennial crops, urbanization, planted forest, annual crops, and desertification. The soil samples digestion followed the EPA 3051A, and metals determination in ICP-OES. The data were subjected to the Kruskal-Wallis test, Spearman's correlation, multivariate clustering analysis and. geostatistics. The QRVs established (75th) for the Gurgueia River watershed in descending order were (mg kg-1): V (26.16) > Cr (18.06) > Pb (6.24) > Zn (3.86) > Cu (2.66) > Ni (1.45) > Co (0.57) > Mo (0.46) > Cd (0.07). The concentrations of Cd, Co, Cr, Mo, Ni, V, and Zn in types of land and management practices were significantly increased compared to those in natural vegetation. Overall, the watershed falls into the categories of minimal to moderate enrichment, moderate to considerable contamination, and low to moderate potential ecological risk, with Cd presenting elevated values. The percentages of polluted samples ranged from 14.3 to 82.5%, indicating the need for monitoring these areas to ensure environmental quality and food safety.
Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Rivers , Soil Pollutants , Metals, Heavy/analysis , Brazil , Risk Assessment , Soil Pollutants/analysis , Geologic Sediments/chemistry , Rivers/chemistry , Soil/chemistry , Water Pollutants, Chemical/analysisABSTRACT
Antibiotic resistance genes (ARGs) are a major threat to human and environmental health. This study investigated the occurrence and distribution of ARGs in Lake Cajititlán, a hypereutrophic subtropical lake in Mexico contaminated by anthropogenic sources (urban wastewater and runoff from crop and livestock production). ARGs (a total of 475 genes) were detected in 22 bacterial genera, with Pseudomonas (144 genes), Stenotrophomonas (88 genes), Mycobacterium (54 genes), and Rhodococcus (27 genes) displaying the highest frequencies of ARGs. Among these, Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed the highest number of ARGs. The results revealed a diverse array of ARGs, including resistance to macrolides (11.55 %), aminoglycosides (8.22 %), glycopeptides (6.22 %), tetracyclines (4 %), sulfonamides (4 %), carbapenems (1.11 %), phenicols (0.88 %), fluoroquinolones (0.44 %), and lincosamides (0.22 %). The most frequently observed ARGs were associated with multidrug resistance (63.33 %), with MexF (42 genes), MexW (36 genes), smeD (31 genes), mtrA (25 genes), and KHM-1 (22 genes) being the most common. Lake Cajititlán is a recreational area for swimming, fishing, and boating, while also supporting irrigation for agriculture and potentially acting as a drinking water source for some communities. This raises concerns about the potential for exposure to antibiotic-resistant bacteria through these activities. The presence of ARGs in Lake Cajititlán poses a significant threat to both human and environmental health. Developing strategies to mitigate the risks of antibiotic resistance, including improving wastewater treatment, and promoting strategic antibiotic use and disposal, is crucial. This study represents a significant advancement in the understanding of antibiotic resistance dynamics in a hypereutrophic subtropical lake in a developing country, providing valuable insights for the scientific community and policymakers.
Subject(s)
Drug Resistance, Microbial , Environmental Monitoring , Lakes , Lakes/microbiology , Drug Resistance, Microbial/genetics , Mexico , Anti-Bacterial Agents/pharmacology , Metagenomics , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Wastewater/microbiology , Bacteria/drug effects , Bacteria/genetics , Water Pollutants, Chemical/analysisABSTRACT
The coastal lagoons of the Gulf of California support important traditional fisheries and mollusc cultures (generally oysters) and receive important volumes of agricultural, industrial and urban effluents, consumption of the oysters could pose risk to human health. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), and zinc (Zn) in the oysters Saccostrea palmula and Crassostrea corteziensis, from four coastal lagoons (Altata, AL; Macapule, ML; Navachiste, NL; El Colorado, ECL) in the Southeast Gulf of California, were seasonally evaluated (summer 2019-spring 2020). The order of magnitude of potentially toxic elements concentrations in the soft tissue in both oyster species and at all sites was Zn > Fe > Cu > As > Cd > Pb. Cadmium, Cu, Pb, and Zn exceeded the maximum permissible limits in more than one sampling site. The highest concentrations (mg kg-1, wet weight) of As (4.2 ± 1.1, spring) and Cd (3.3 ± 0.7, autumn) were registered in S. palmula et al. and NL sampling sites, respectively. Crassostrea corteziensis presented higher levels of Cu (40.5 ± 6.7, spring), Pb (2.0 ± 0.4, spring), and Zn (96.9 ± 20.4, spring) in ECL and Fe (62.2 ± 25.4, autumn) in ML. The hazard quotient (HQ) values exceeded the safe level of 1 for Cd in S. palmula and C. corteziensis in NL for children (~ 16 kg weight). In addition, in children, the hazard index (HI) values in both species of oysters ranged from 0.7 to 2.1 and 0.6 to 1.9, respectively. On the other hand, the intake of the studied elements through the consumption of oysters would not induce adverse effects to human health (men and women weighing 70 and 60 kg, respectively); HQ and HI values were < 1.
Subject(s)
Arsenic , Crassostrea , Metals, Heavy , Water Pollutants, Chemical , Animals , Child , Female , Humans , Cadmium/toxicity , Biological Monitoring , Mexico , Lead , Environmental Monitoring , Risk Assessment , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Metals, Heavy/toxicity , Metals, Heavy/analysisABSTRACT
Heavy metal pollution by accelerating urbanization is an emerging socio-environmental issue that poses a potential risk to human health and the environment. In this scenario, street dust is a primary source of contaminants. Here, the metal concentrations in street dust of one of the biggest Brazilian cities were assessed aiming to identify and quantify the sources of contamination. The metal bioaccessibility and estimated probabilistic (non)-carcinogenic risks to humans were also evaluated. Thirty-six dust samples were collected in the metropolitan region of Recife. Results showed that the traffic governed the distribution and accumulation of metals in street dust. Emissions from vehicles were the primary source (> 70 %) of heavy metals, except for Cd, which had a mixed origin (natural, traffic, and industrial). Moderate to heavy dust contamination by Ba, Cu, Mn, Pb, and Zn were found, with a very high potential ecological risk. The main exposure route depended on the metal. Barium, Cu, and Pb had ingestion rather than dermal contact as the main route of exposure, while inhalation and dermal contact posed the main risks to Mn and Cr, respectively. The risk for children was higher than for adults. The probabilities of unacceptable carcinogenic risk scenarios (TCRI >10-6) for children and adults were 27 and 4 %, respectively, with Cr being the most concerning metal for the health of the urban population.
Subject(s)
Dust , Metals, Heavy , Adult , Child , Humans , Dust/analysis , Brazil , Lead , Environmental Monitoring/methods , Metals, Heavy/analysis , Cities , Risk Assessment/methods , Carcinogens/analysis , ChinaABSTRACT
Rare earth elements have been increasingly used in modern societies and soils are likely to be the final destination of several REE-containing (by)products. This study reports REE contents for topsoils (0-20 cm) of 175 locations in reference (n = 68) and cultivated (n = 107) areas in Brazil. Benchmark soil samples were selected accomplishing a variety of environmental conditions, aiming to: i) establishing natural background and anthropogenic concentrations for REE in soils; ii) assessing potential contamination of soils - via application of phosphate fertilizers - with REE; and, iii) predicting soil-REE contents using biomes, soil type, parent material, land use, sand content, and biomes-land use interaction as forecaster variables through generalized least squares multiple regression. Our hypotheses were that the variability of soil-REE contents is influenced by parent material, pedogenic processes, land use, and biomes, as well as that cultivated soils may have been potentially contaminated with REE via input of phosphate fertilizers. The semi-total concentrations of REE were assessed by inductively coupled plasma mass spectrometry (ICP-MS) succeeding a microwave-assisted aqua regia digestion. Analytical procedures followed a rigorous QA/QC protocol. Soil physicochemical composition and total oxides were also determined. Natural background and anthropogenic concentrations for REE were established statistically from the dataset by the median plus two median absolute deviations method. Contamination aspects were assessed by REE-normalized patterns, REE fractionation indices, and Ce and Eu anomalies ratios, as well as enrichment factors. The results indicate that differences in the amounts of REE in cultivated soils can be attributed to land use and agricultural sources (e.g., phosphate-fertilizer inputs), while those in reference soils can be attributed to parent materials, biomes, and pedogenic processes. The biomes, land use, and sand content helped to predict concentrations of light REE in Brazilian soils, with parent material being also of special relevance to predict heavy REE contents in particular.
Subject(s)
Metals, Rare Earth , Soil Pollutants , Benchmarking , Brazil , Environmental Monitoring , Metals, Rare Earth/analysis , Soil , Soil Pollutants/analysisABSTRACT
The water quality and trends in 12 tropical rivers in northeastern Brazil over a 27-year period (1990-2016; N = 39,008 samples) were evaluated. The analyzed parameters included temperature, conductivity, pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrogen (NH4+), total phosphorus (P), and fecal coliforms. Densely populated basins (> 1000 inhab km-2) presented lower DO values (average 3.4 mg l-1; 43% DO saturation), while those with low demographic density (< 100 inhab km-2) presented values that aligned well with the recommendations of environmental legislation (average 5.8 mg l-1; 75% DO saturation). The NH4+ and P compound concentrations were typical of water bodies affected by urban inputs. The average p values were above the allowable limit (< 0.1 mg l-1) at all stations. The NH4+ values were high at the stations showing low DO concentrations, which suggested that due to reducing conditions after NH4+ accumulation was favored in those aquatic systems. In densely populated basins, the average fecal coliform concentrations were > 40,000 MPN 100 ml-1, indicating the input of improperly treated domestic/industrial liquid wastes. For the period from 1990 to 2016, 45% of the stations (N = 19) showed a rate of DO reduction that ranged from 0.01 to 0.17 mg l-1.O2 year-1. An increase in NH4+ concentrations was observed in 33% of the stations (N = 14), with an estimated average increase rate from 0.013 to 1.8 mg l-1 NH4+ year-1. These results demonstrated that the rates of increase in anthropogenic factors were significant (p < 0.05), while the natural factors remained constant.
Subject(s)
Rivers , Water Pollutants, Chemical , Brazil , Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Water QualityABSTRACT
The main land use/land cover changes (LULCC) have been associated with population growth and energy policies in the São Paulo State, Brazil, since 1970. The LULCC can alter the behavior of trace elements in different environmental systems, with the riverbed sediments being the main reservoirs or sinks for trace elements, and thus become a valuable environmental archive on temporal changes. Thus, the main purpose of the study was to apply a multi-tracer analysis to estimate the historical evolution of pollution in riverbed sediment of a subtropical watershed, the lower course of the Piracicaba River, São Paulo, Brazil. 210Pb measurements done on river sediment core samples allowed estimating a sedimentation rate of 9â¯mmâ¯yr-1 between 1971 and 2001. Zn was the most abundant trace element in the sediment core, followed by Cr, Cu, Ni, Pb, Sc and Cd. The total concentrations of Cd, Cr, Ni, Sc and Pb presented practically no variations in the sediment core, with a continuous excess of ca. 0.27⯵gâ¯g-1â¯yr-1 of Cu and of ca. 0.54⯵gâ¯g-1â¯yr-1 of Zn between 1971 and 2001. The excess of Cu and Zn was associated with labile fractions, in particular with carbonate bound to Zn and organic matter bound to Cu. The assessment of trace metal pollution indicated that most of the trace elements were of geogenic origin, except for Cu and Zn. According to the sediment quality guidelines used in Brazil, Pb showed no potential toxic effect, Cu, Cr and Zn were intermediate to Threshold Effect Level (TEL) and Probable Effect Level (PEL) and the Cd and Ni concentrations were above the PEL limits. The elemental and isotopic analysis of C and N and the C/N ratio indicated that the anthropogenic origin of POM found in the sediment core is related mainly to domestic sewage.
ABSTRACT
The Megalopolis of Mexico is one of the largest cities in the world and presents substantial problems of metal pollution. Insectivorous bats that inhabit this city are potentially exposed to metals and could therefore serve as a good biomonitor. We collected 70 adult male individuals of Tadarida brasiliensis (Chiroptera: Molossidae) from two areas inside the Megalopolis (Cuautitlán and Xochimilco) and two rural environments in Central Mexico (Tequixquiac and Tlalcozotitlán). We analyzed livers to determine the total concentrations of ten metals by the ICP-MS technique, compared concentrations among study sites to provide evidence of metal exposure, and explored the associations between metals and their accumulation patterns in bats. The hepatic metal concentrations we recorded were generally consistent with those of similar studies in insectivorous bats. Higher concentrations of Cu and Zn in Cuautitlán and Xochimilco bats were associated with vehicular traffic. Higher concentrations of V, Cr, and Co in Tequixquiac bats and Cd in Tlalcozotitlán bats were linked with industrial, agricultural, or sewage sources. Variations in Fe and Mn concentrations were related to geogenic sources or local conditions. Similar Ni and Pb concentrations were linked with strong homeostatic controls or historical pollution. Accumulation patterns showed that all urban bats belonged to a single population with similar degrees of metal exposure, while rural bats belonged to two different populations exposed to different metals. Our results highlight the need to monitor the emissions generated by particular sources in each study site.
Subject(s)
Chiroptera , Metals, Heavy , Soil Pollutants , Adult , Animals , Cities , Environmental Monitoring , Humans , Male , Metals, Heavy/analysis , Mexico , Soil Pollutants/analysisABSTRACT
The Mexico City Metropolitan Area (MCMA) was the object of a chemical elemental characterization (Ti, V, Cr, Mn, Co, Ni, Cu, Mo, Ag, Cd, Sb, Pb, La, Sm, Ce, and Eu) of PM2.5 collected during 2013 and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Sampling campaigns were carried out at five locations simultaneously-northwest, northeast, center, southwest, and southeast-during dry-warm season (April), rainy season (August), and dry-cold season (November). By means of enrichment factor (EF) and principal component analysis (PCA), it was possible to attribute the analyzed elements to geogenic and anthropogenic sources, as well as to identify a group of elements with mixed provenance sources. The highest concentrations for most metals were found in northwest and northeast, and during dry-warm (DW), confirming the trend observed in PM2.5 samples collected in 2011. Despite similarities between 2011 and 2013, an increase of 17% in PM2.5 mass concentration was observed, mainly attributable to geogenic sources, whereby the importance of wind intensity to the impact of emission sources is highlighted. The effect of wind intensity was revealed, by means of polar plots, as the controlling mechanism for this increase. This allowed us to conclude that high-speed episodes (5 m s-1) were responsible for raising geogenic metal concentrations rather than wind direction.
Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Particulate Matter/analysis , Cities , Metals/analysis , Mexico , Seasons , WindABSTRACT
The concentration and isotopic composition of lead in the blood of forty seven women of reproductive age (15-45y) exposed to multiple sources in two rural communities of the mining region of Taxco, Guerrero in southern Mexico were determined in order to identify specific contributing sources and their apportionment and to trace probable ingestion pathways. Our data indicate that >36% of the studied women have blood lead concentrations above 10µgdL-1 and up to 87% above 5µgdL-1. Tailings contain between 2128 and 5988mgkg-1 of lead and represent the most conspicuous source in the area. Lead contents in indoor dust are largely variable (21.7-987mgkg-1) but only 15% of samples are above the Mexican Regulatory Guideline for urban soils (400mgkg-1). By contrast, 85% of glazed containers (range: 0.026-68.6mgkg-1) used for cooking and food storage are above the maximum 2mgL-1 of soluble lead established in the Mexican Guideline. The isotopic composition indicates that lead in the blood of 95% of the studied women can be modeled in terms of a mixing system between local ores (and derivatives), glazed pottery and Morelos bedrock, end-members, with the two former being largely the most important contributors. Only one sample shows influence of indoor paints. Indoor dust is dominated by ores and derivatives but some samples show evidence of contribution from a less radiogenic source very likely represented by interior paints. This study supports the application of lead isotopic ratios to identify potential sources and their apportionment in humans exposed to multiple sources of lead from both, natural and anthropogenic origin.
Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Lead/blood , Adult , Environmental Exposure/analysis , Environmental Monitoring , Female , Humans , Mexico , MiningABSTRACT
Monthly, the distribution and enrichment of heavy metals (Fe, Mn, Cu, Pb and Zn) in surface waters were examined at eight sampling sites, in Tapacurá river (Pernambuco State, Brazil), from March 1997 to December 1998 and from June 2005 to March 2006. On average, metal levels ranged from 0.30 to 4.22 for Fe; 0.02 to 1.09 for Mn; 0.001 to 0.014 for Cu; ï£ 0.006 to 0.029 for Pb and 0.003 to 0.020 for Zn, all in mg L-1. Heavy metals presented a great heterogeneous horizontal distribution, with hotspots in municipal and agricultural areas. The enrichment factor (EF) and the potential contamination index (Cp) indicated moderate to severe contamination by Cu and Zn. The results pointed the potential pathways of trace metals via the transport of soil for the river basin, mainly from agricultural areas, and inefficient sewage treatment at the cities. The first step to apply a remedial measure is the inspection of the agricultural areas, the controlled use of fertilizers and herbicides, as well as the development of an efficient sewage treatment to urban areas.
Níveis de metais pesados em águas superficiais de um rio tropical, Estado de Pernambuco, Brasil