Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.398
Filter
1.
Ageing Res Rev ; : 102386, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969143

ABSTRACT

Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce malfunction of psycho-motor functions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-ß, huntingtin, and tau, and accumulation of its associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. Cannabidiol has gained attention as a promising therapeutic drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as its clinical applications in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.

2.
Avicenna J Phytomed ; 14(1): 138-141, 2024.
Article in English | MEDLINE | ID: mdl-38948172

ABSTRACT

Objective: There is escalating evidence suggesting the beneficial effects of ellagic acid (EA) on the cardiovascular system. The aim of the present study was to investigate the protective effect of EA in human umbilical vein endothelial cells (HUVECs) against high glucose (HG)- induced endothelial dysfunction and to study the potential roles of adropin and nitric oxide (NO) in this regard. Materials and Methods: The experimental groups consisted of normal and HG (30 mM, 48 hr)-treated HUVECs incubated without or with 5 or 10 µM of EA (6 groups of at least 6 replicates, each). The cell count and viability were studied. Moreover, the markers of the redox state, including malondialdehyde (MDA), the activities of superoxide dismutase (SOD) and catalase enzymes, and ferric reducing anti-oxidant power (FRAP), were assayed. The levels of adropin and eNOS gene expression were also studied using RT-qPCR. Results: A high concentration of glucose reduced cell count and caused lipid peroxidation, reduced anti-oxidant capacity of the cells, decreased NO levels, and downregulated the expression of NOS3 (encoding eNOS) and ENHO (encoding adropin) genes. Ellagic acid reversed all these effects. Conclusion: These results suggest a significant protective effect for EA against HG-induced injury in HUVECs. The improved redox state and upregulation of NOS3 and ENHO genes seem to play critical roles in this regard.

3.
Adv Protein Chem Struct Biol ; 141: 495-538, 2024.
Article in English | MEDLINE | ID: mdl-38960484

ABSTRACT

The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-ß-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.


Subject(s)
Gastrointestinal Microbiome , Metalloproteins , Reactive Oxygen Species , Xenobiotics , Xenobiotics/metabolism , Humans , Metalloproteins/metabolism , Metalloproteins/chemistry , Metalloproteins/genetics , Reactive Oxygen Species/metabolism
4.
Biomater Adv ; 163: 213935, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38970881

ABSTRACT

In the present era of "Diabetic Pandemic", peptide-based therapies have generated immense interest however, are facing odds due to inevitable limitations like stability, delivery complications and off-target effects. One such promising molecule is C-peptide (CPep, 31 amino acid polypeptide with t1/2 30 min); it is a cleaved subunit of pro-insulin, well known to suppress microvascular complications in kidney but has not been able to undergo translation to the clinic till date. Herein, a polymeric CPep nano-complexes (NPX) was prepared by leveraging electrostatic interaction between in-house synthesized cationic, polyethylene carbonate (PEC) based copolymer (Mol. wt. 44,767 Da) and negatively charged CPep (Mol. wt. 3299 Da) at pH 7.4 and further evaluated in vitro and in vivo. NPX exhibited a spherical morphology with a particle size of 167 nm and zeta potential equivalent to +10.3, with 85.70 % of CPep complexation efficiency. The cellular uptake of FITC-tagged CPep NPX was 95.61 % in normal rat kidney cells, NRK-52E. Additionally, the hemocompatible NPX showed prominent cell-proliferative, anti-oxidative (1.8 folds increased GSH; 2.8 folds reduced nitrite concentration) and anti-inflammatory activity in metabolic stress induced NRK-52E cells as well. The observation was further confirmed by upregulation of anti-apoptotic protein BCl2 by 3.5 folds, and proliferative markers (ß1-integrin and EGFR) by 3.5 and 2.3 folds, respectively, compared to the high glucose treated control group. Pharmacokinetic study of NPX in Wistar rats revealed a 6.34 folds greater half-life than free CPep. In in-vivo efficacy study in STZ-induced diabetic nephropathy animal model, NPX reduced blood glucose levels and IL-6 levels significantly by 1.3 and 2.5 folds, respectively, as compared to the disease control group. The above findings suggested that NPX has tremendous potential to impart sustained release of CPep, resulting in enhanced efficacy to treat diabetes-induced nephropathy and significantly improved renal pathology.

5.
Drug Chem Toxicol ; : 1-10, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984369

ABSTRACT

Valproic acid is an antiepileptic drug associated with skin-related issues like excessive hair growth, hair loss, and skin rashes. In contrast, Moringa oleifera, rich in nutrients and antioxidants, is gaining popularity worldwide for its medicinal properties. The protective properties of M. oleifera extract against skin-related side effects caused by valproic acid were investigated. Female rats were divided into control groups and experimental groups such as moringa, sodium valproate, and sodium valproate + moringa groups. A 70% ethanolic extract of moringa (0.3 g/kg/day) was given to moringa groups, and a single dose of sodium valproate (0.5 g/kg/day) was given to valproate groups for 15 days. In the skin samples, antioxidant parameters (such as glutathione, glutathione-S-transferase, superoxide dismutase, catalase, and total antioxidant capacity), as well as oxidant parameters representing oxidative stress (i.e. lipid peroxidation, sialic acid, nitric oxide, reactive oxygen species, and total oxidant capacity), were examined. Additionally, boron, hydroxyproline, sodium-potassium ATPase, and tissue factor values were determined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was also carried out for protein analysis in the skin samples. The results showed that moringa could increase glutathione, total antioxidant capacity, sodium-potassium ATPase, and boron levels, while decreasing lipid peroxidation, sialic acid, nitric oxide, total oxidant capacity, reactive oxygen species, hydroxyproline, and tissue factor levels. These findings imply that moringa possesses the potential to mitigate dermatological side effects.

6.
Cureus ; 16(6): e61728, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975527

ABSTRACT

Background Bioactive glass, which can form strong bonds with tissues, particularly bones, has become pivotal in tissue engineering. Incorporating biologically active ions like selenium enhances its properties for various biomedical applications, including bone repair and cancer treatment. Selenium's antioxidative properties and role in bone health make it a promising addition to biomaterial. Aim The present study was aimed at the preparation and characterization of selenium-doped bioglass. Materials and methods Tetraethyl orthosilicate (TEOS) was mixed with ethanol, water, and nitric acid to form a silica network and then supplemented with calcium nitrate, selenium acid sodium nitrate, and orthophosphoric acid. Sequential addition ensured specific functionalities. After sintering at 300 °C for three hours, the viscous solution transformed into powdered selenium-doped bioglass. Characterization involved scanning electron microscope (SEM) for microstructure analysis, attenuated total reflection infrared spectroscopy (ATR-IR) for molecular structure, and X-ray diffraction (XRD) for crystal structure analysis. Results SEM analysis of selenium-doped bioglass reveals a uniform distribution of selenium dopants in an amorphous structure, enhancing bioactivity through spherical particles with consistent size, micro-porosity, and roughness, facilitating interactions with biological fluids and tissues. ATR-IR analysis shows peaks corresponding to Si-O-Si and P-O bonds, indicating the presence of phosphate groups essential for biomedical applications within the bioglass network. XRD analysis confirms the amorphous nature of selenium-doped bioglass, with shifts in diffraction peaks confirming selenium incorporation without significant crystallization induction. Conclusion The selenium-infused bioglass displays promising versatility due to its amorphous structure, potentially enhancing interactions with biological fluids and tissues. Further research is needed to assess its impact on bone regeneration activity.

7.
Biochem Biophys Res Commun ; 729: 150344, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38976946

ABSTRACT

Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic ß-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.

8.
Article in English | MEDLINE | ID: mdl-38980411

ABSTRACT

Eight Novel chalcones were synthesized and their structures were confirmed by different spectral tools. All the prepared compounds were subjected to SRB cytotoxic screening against several cancer cell lines. Compound 5c exerted the most promising effect against MCF7 and HEP2 cells with IC50 values of 9.5 and 12 µg/mL, respectively. Real-time PCR demonstrated the inhibitory effect of compound 5c on the expression level of Antigen kiel 67 (KI-67), Survivin, Interleukin-1beta (IL-1B), Interleukin-6 (IL-6), Cyclooxygenase-2 (COX-2) and Protein kinase B (AKT1) genes. Flow-cytometric analysis of the cell cycle indicated that compound 5c stopped the cell cycle at the G0/G1 and G2/M phases in MCF7 and HEP2 treated cells, respectively. ELISA assay showed that Caspase 8, Caspase 9, P53, BAX, and Glutathione (GSH) were extremely activated and Matrix metalloproteinase 2 (MMP2), Matrix metalloproteinase 9 (MMP9), BCL2, Malondialdehyde (MDA), and IL-6 were deactivated in 5c treated MCF7 and HEP2 cells. Wound healing revealed that chalcone 5c reduced the ability to close the scrape wound and decreased the number of migrating MCF7 and HEP2 cells compared to the untreated cells after 48 h. Theoretical molecular modeling against P53 cancer mutant Y220C and Bcl2 showed binding energies of -22.8 and -24.2 Kcal/mole, respectively, which confirmed our ELISA results.

9.
Toxicol Res (Camb) ; 13(4): tfae094, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38957782

ABSTRACT

This study evaluated the anti-oxidant and anti-diabetic potential of Caralluma fimbriata (CF) in 28-days rat modelling trial. Diabetes is a chronic disorder characterized by elevated blood glucose levels and insulin resistance and cause microvascular and macrovascular issues. Caralluma fimbriata was evaluated for its nutritional composition along with anti-oxidant potential of CF powder (CFP) and CF extract (CFE) using total phenolic contents (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power (FRAP) assays. Furthermore, anti-diabetic potential was computed by dividing rats into four groups of 5 individuals each. Rats of Group I was non-diabetic and no supplementation was given while rats of group II were diabetic and no supplementation was given. While group III and group IV rats were diabetic and received CFP and CFE supplementation respectively. CF powder's TPC, and DPPH and FRAP activity were observed maximum at 44.17 ± 0.006 (µgFe/g) in water, 68.75 ± 0.49 (µgFe/g) in acetone and 800.81 ± 0.99 (µgFe/g) in hexane. Supplementation of CFP and CFE reduced blood glucose effectively i.e. (125.00 ± 4.04 and 121.00 ± 4.49 mg/dL, respectively). Moreover, the consumption of C. fimbriata can be helpful in the management of diabetes mellitus due to its glucose lowering potential, anorexic effects, anti-oxidant potential and α-amylase inhibition.

10.
Microsc Res Tech ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877835

ABSTRACT

One of the most important areas of nanotechnology is the use of nanoparticles (NPs) for a variety of environmental and biological applications, with silver nanoparticles (Ag-NPs) gaining a lot attention due to their distinct properties. The current study deals with the synthesis of Ag-NPs from Dicliptera bupleuroides Nees leaf extract and to determine their antioxidant, antimicrobial potential and effects on wheat seed germination and growth. UV-Visible spectrum revealed a prominent absorption peak at 442 nm, elucidating the conformation of the Ag-NPs synthesis. Scanning electron microscopy (SEM) showed distinctive triangular, pyramidal, and irregular shape. X-ray diffraction (XRD) demonstrated their crystalline nature, with average crystallite size of the Ag-NPs measured at 20.52 nm. Fourier-transform infrared spectroscopy (FT-IR) further confirmed the presence of functional groups such as Phenols (O-H stretch), transition metal carbonyls N-H, ≡C-H, C ≡ N, C ≡ C, C-Cl, C-Br and O-H bonds on the surface Ag-NPs. The antibacterial activity of the Ag-NPs was most pronounced against Bacillus subtilis, with a zone of inhibition (ZOI) measuring 11 mm ± 0.57 at a concentration of 1000 µg/mL (45% inhibition). Likewise, Ag-NPs exhibited highest antioxidant potential (73.2%) at 100 µg/mL compared with standard (ascorbic acid) which showed (76%) at the same concentration. Furthermore, the effect of D. bupleuroides mediated Ag-NPs on wheat seeds growth and germination was recorded maximum at high concentrations (200-300 ppm). In conclusion, D. bupleuroides mediated Ag-NPs showed safe, cost effective and environmentally friendly synthesis which can be used as an antibacterial and antioxidant agent as well as for enhancing the growth and seed germination of crop seeds globally. RESEARCH HIGHLIGHTS: Nanotechnology is the study of nanoparticles for biological and environmental applications. Ag-NPs among other NPs have received broad attention because of their unique properties. D. bupleuroides Ag-NPs: 45% antibacterial, 73.2% antioxidant, enhance wheat germination. D. bupleuroides-mediated Ag-NPs are both cost-effective and environmentally beneficial.

11.
J Pharm Bioallied Sci ; 16(Suppl 2): S1256-S1262, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882743

ABSTRACT

Nonessential heavy metals are toxic to human health. In this study, mercury, a hazardous metal, was detected by colorimetric analysis using Murraya koenigii. The eco-friendliness of this method was also emphasized. UV spectrum is a broad peak observed at 200-250 nm in P. guajava leaf extracts. The UV spectrum of green synthesized P. guajava exhibited an absorption band of 418 nm, which confirms the nanoparticle synthesis. FTIR analysis of the vibrational peak around 3307 cm-1 is assigned to ν(O-H) stretching that could possibly emanate from carbohydrates or phenolics. The peaks found around 2917 and 2849 cm-1 are ascribed to the -C-H stretch of the alkyl group, and the peak around 1625 cm-1 is due to the enolic ß-diketones or -C = O stretch of carboxylic acids, while the corresponding -C-O stretch is observed around 1375 and 1029 cm-1. The assignment of peaks is similar. It is clear from the SEM image that the constituent parts were non-uniform sphere-shaped, agglomerated, and of an average size of 30.9 nm. XRD analysis was utilized to determine the structural characteristics and crystalline nature of P. guajava. The observed intensity peaks at 32.35°, 36.69°, 39.24°, 44.76°, 59.42°, and 67.35° represent the 2θ values for P. guajava in the diffraction pattern, aligning with the values in the standard database. The synthesized AgNPs tested antibacterial properties against various strains of microorganisms, including Escherichia coli, 25 µg/mL 6.02 ± 0.17 and 100 µg/mL 7.3 ± 0.05, Staphylococcus aureus, 25 µg/mL 05.02 ± 0.07 and 100 µg/mL 11.3 ± 1.12, Streptococcus mutans, 25 µg/mL 04.02 ± 0.19 and 100 µg/mL 11.1 ± 0.11, Enterococcus faecalis, 25 µg/mL 0.8.05 ± 0.11 and 100 µg/mL 11.7 ± 0.02. The short novelty of Psidium guajava (guava) lies in its potential relevance to human health, as it has been found to possess bioactive compounds with various medicinal properties, such as antimicrobial, antioxidant, and anti-inflammatory activities, making it a promising natural resource for therapeutic applications.

12.
Cureus ; 16(5): e60407, 2024 May.
Article in English | MEDLINE | ID: mdl-38883108

ABSTRACT

BACKGROUND: Nanotechnology enables precise manipulation of matter at the molecular level, with nanoparticles offering diverse applications in medicine and beyond. Green synthesis methods, utilizing natural sources like plant extracts, are favored for their eco-friendliness. Zinc oxide (ZnO) nanoparticles are recognized for their ability to combat microbes and reduce inflammation, which holds promise for biomedical applications. Catharanthus roseus, renowned for its medicinal properties, warrants further exploration in oral health management due to its anti-inflammatory and antioxidant attributes. AIM: The current study aimed to synthesize Catharanthus roseus-mediated ZnO nanoparticles and to evaluate their anti-inflammatory and antioxidant activity. MATERIALS AND METHODS: Catharanthus roseus powder (1 g) was dissolved in distilled water (100 ml), heated at 60°C for 15-20 minutes, and filtered to obtain 20 ml extract. ZnO nanoparticles were synthesized by adding 0.594 g ZnO powder to 50 ml water, mixed with plant extract, and stirred for 72 hours, and the resulting solution was centrifuged. Nanoparticles were collected and analyzed for Fourier-transform infrared spectroscopy (FTIR) using Bruker's Alpha II FTIR spectrometer (Bruker, Billerica, Massachusetts, United States), antioxidant, and anti-inflammatory activities. RESULTS: FTIR analysis revealed characteristic peaks indicative of functional groups present in Catharanthus roseus-mediated ZnO nanoparticles, including O-H, N-O, C-O, C=C, and C≡C-H. Anti-inflammatory activity evaluation showed inhibition ranging from 48% to 89%, with the maximum inhibition at 50 µL concentration. Similarly, antioxidant activity ranged from 62% to 88%, with the maximum inhibition also seen at 50 µL concentration. CONCLUSION: Both assays effectively showcased the superior anti-inflammatory and antioxidant activity of the Catharanthus roseus-incorporated ZnO nanoparticles extract compared to the control. This suggests their potential as a viable therapeutic agent for further evaluation.

13.
AAPS PharmSciTech ; 25(6): 145, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918292

ABSTRACT

The objective of the current research was to develop abietic acid (AA)-loaded hybrid polymeric nanoparticles (HNPs) for anti-inflammatory and antioxidant activity after oral administration. AAHNPs were developed by microinjection technique and optimized by 3-factor 3-level Box-Behnken design. The AAHNPs were evaluated for morphology, FTIR, X-ray diffraction, in-vitro release, ex-vivo permeation, in-vitro antioxidant, and in-vivo anti-inflammatory activity. The optimized AAHNPs (AAHNPsopt) displayed 384.5 ± 6.36nm of PS, 0.376 of PDI, 23.0 mV of ZP, and 80.01 ± 1.89% of EE. FTIR and X-ray diffraction study results revealed that AA was encapsulated into a HNPs matrix. The AAHNPsopt showed significant (P < 0.05) high and sustained release of AA (86.72 ± 4.92%) than pure AA (29.87 ± 3.11%) in 24h. AAHNPsopt showed an initial fast release of AA (20.12 ± 3.07% in 2h), which succeeded in reaching the therapeutic concentration. The AAHNPsopt showed 2.49-fold higher ex-vivo gut permeation flux than pure AA due to the presence of lipid and surfactant. The AAHNPsopt exhibited significantly (P < 0.05, P < 0.01, P < 0.001) higher antioxidant activity as compared to pure AA at each concentration. AAHNPsopt formulation displayed a significantly (P < 0.05) higher anti-inflammatory effect (21.51 ± 2.23% swelling) as compared to pure AA (46.51 ± 1.74% swelling). From the in-vitro and in-vivo finding, it was concluded that HNPs might be a suitable carrier for the improvement of the therapeutic efficacy of the drug.


Subject(s)
Abietanes , Anti-Inflammatory Agents , Antioxidants , Drug Carriers , Lipids , Nanoparticles , Polymers , Nanoparticles/chemistry , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/administration & dosage , Antioxidants/pharmacokinetics , Rats , Polymers/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Lipids/chemistry , Drug Carriers/chemistry , Abietanes/pharmacology , Abietanes/administration & dosage , Abietanes/chemistry , X-Ray Diffraction/methods , Drug Liberation , Administration, Oral , Male , Particle Size , Rats, Wistar , Chemistry, Pharmaceutical/methods
14.
Inflammopharmacology ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922526

ABSTRACT

The endoplasmic reticulum (ER) is an intracellular organelle that contributes to the folding of proteins and calcium homeostasis. Numerous elements can disrupt its function, leading to the accumulation of proteins that are unfolded or misfolded in the lumen of the ER, a condition that is known as ER stress. This phenomenon can trigger cell death through the activation of apoptosis and inflammation. Glucoraphanin (GRA) is the predominant glucosinolate found in cruciferous vegetables. Various mechanical and biochemical processes activate the enzyme myrosinase, leading to the hydrolysis of glucoraphanin into the bioactive compound sulforaphane. Sulforaphane is an organosulfur compound that belongs to the isothiocyanate group. It possesses a wide range of activities and has shown remarkable potential as an anti-inflammatory, antioxidant, antitumor, and anti-angiogenic substance. Additionally, sulforaphane is resistant to oxidation, has been demonstrated to have low toxicity, and is considered well-tolerable in individuals. These properties make it a valuable natural dietary supplement for research purposes. Sulforaphane has been demonstrated as a potential candidate drug molecule for managing a range of diseases, primarily because of its potent antioxidant, anti-inflammatory, and anti-apoptotic properties, which can be mediated by modulation of ER stress pathways. This review seeks to cover a wealth of data supporting the broad range of protective functions of sulforaphane, improving various diseases, such as cardiovascular, central nervous system, liver, eye, and reproductive diseases, as well as diabetes, cancer, gastroenteritis, and osteoarthritis, through the amelioration of ER stress in both in vivo and in vitro studies.

15.
Iran J Basic Med Sci ; 27(8): 1033-1039, 2024.
Article in English | MEDLINE | ID: mdl-38911241

ABSTRACT

Objectives: Rhabdomyolysis, a potentially life-threatening condition, occurs when myoglobin is released from damaged muscle cells, leading to acute kidney injury (AKI). Alpha lipoic acid (ALA), an organosulfur compound known for its anti-oxidant and anti-inflammatory properties, was examined in this study for its potential impact on rhabdomyolysis-induced AKI in rats. Materials and Methods: Six groups of rats were included in the study, with each group consisting of six rats (n=6): Control, rhabdomyolysis, rhabdomyolysis treated with different doses of ALA (5, 10, and 20 mg/kg), and ALA alone (20 mg/kg) groups. Rhabdomyolysis was induced by intramuscular injection of glycerol on the first day of the experiment, while ALA was administered intraperitoneally for four consecutive days. Renal function parameters, oxidative stress markers, and histological changes in the kidneys were evaluated. Western blot analysis was performed to measure the levels of neutrophil gelatinase-associated lipocalin (NGAL) and tumor necrosis factor-alpha (TNF-α) proteins. Results: A significant increase in serum urea, creatinine, renal malondialdehyde, NGAl, and TNF-α protein levels was observed in glycerol-injected rats. In addition, a significant decrease in glutathione was recorded. Compared to the rhabdomyolysis group, treatment with ALA recovered kidney histological and biochemical abnormalities. Conclusion: Results suggest that rhabdomyolysis-induced AKI is associated with increased oxidative stress and inflammation. Treatment with ALA improved kidney histological abnormalities and reduced oxidative stress markers in rats. Therefore, ALA may have a potential protective effect against rhabdomyolysis-induced AKI.

16.
J Inorg Biochem ; 259: 112636, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38943843

ABSTRACT

The dyshomeostasis of metal ions in the brain leads to the accumulation of excess metals in extracellular and inter-neuronal locations and the Amyloid ß peptide (Aß) binds these transition metals, which ultimately cause the Aß aggregation and severe oxidative stress in the brain. The aggregation of Aß and oxidative stress are important factors to trigger Alzheimer's disease (AD). Metal chelation therapy is a promising approach to removing metals from Aß-M species and relieve the oxidative stress. Therefore, 4 tetrahydrosalens containing benzothiazole moiety were designed and synthesized. Their biological activities for Alzheimer's disease therapy in vitro were determined by Turbidity assay, BCA protein assay, MTT assay and fluorescent probe of DCFH-DA. The results were comparing with that of non-specific chelator (cliquinol, CQ) and non-benzothiazole functionalized tetrahydrosalens, the results demonstrated that benzothiazole functionalized chelators had more efficient bio-activities in preventing Cu2+-induced Aß aggregation, attenuating cytotoxicity mediated by Aß-Cu2+ species and decrease the level of reactive oxygen species (ROS) in Cu2+-Aß treated PC12 cells than that of cliquinol and non-benzothiazole functionalized analogues.

17.
J Complement Integr Med ; 21(2): 248-257, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38721816

ABSTRACT

OBJECTIVES: This work was carried out with a view to determining the antioxidant, anti-inflammatory and anti-ulcer properties of the aqueous lyophilized extract of Markhamia lutea. METHODS: In vitro proteinases inhibition, albumin denaturation, hemolysis of red blood cells by heat, inhibition of the proton pump H+/K+ATPase, FRAP (Ferric reducing antioxidant power) and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays were performed. In vivo, cold water immersion-induced ulceration and methylene blue-induced ulceration was used to determine the anti-ulcer properties of the lyophilizate (100, 200 and 300 mg/kg). RESULTS: In vitro, the lyophilizate (400 µg/mL) significantly inhibited protein denaturation (66.65 %), hemolysis of red blood cells (56.54 %), proteinase activity (69.22 %); then the IC50 was 26.31 µg/mL on proton pump activity. It has also developed a strong ferric reducing antioxidant power (EC50=52.96 mmol FeSO4/g) as well as free radicals scavenging activity (EC50=22.38 µg/mL). In vivo, the aqueous lyophilizate (200 and 300 mg/kg) protected the gastric mucosa (70.68 and 79.00 % protection respectively) and reduced (p<0.05) acetylcholine, calcium and corticosterone concentrations. A decrease in malondialdehyde level, an increased glutathione level and an increased in catalase and SOD activities were recorded. In the methylene blue test, it significantly increased gastric fluid pH, while reducing gastric volume and improving hematological parameters in ulcer animals. In addition, the histological sections show that the aqueous lyophilizate of M. lutea protected the gastric mucosa from the deleterious effects of stress. CONCLUSIONS: The aqueous lyophilizate of M. lutea has anti-ulcer properties thanks to its anti-inflammatory, antioxidant and anti-secretory properties.


Subject(s)
Anti-Inflammatory Agents , Anti-Ulcer Agents , Antioxidants , Freeze Drying , Plant Extracts , Stomach Ulcer , Antioxidants/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Ulcer Agents/pharmacology , Male , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Rats, Wistar , Rats , Mice
18.
Eur J Med Chem ; 273: 116523, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38795518

ABSTRACT

In the current study, a series of fluorine-substituted piperidine derivatives (1-8) has been synthesized and characterized by various spectroscopic techniques. In vitro and in vivo enzyme inhibitory studies were conducted to elucidate the efficacy of these compounds, shedding light on their potential therapeutic applications. To the best of our knowledge, for the first time, these heterocyclic structures have been investigated against α-glucosidase and cholinesterase enzymes. The antioxidant activity of the synthesized compounds was also assessed. Evaluation of synthesized compounds revealed notable inhibitory effects on α-glucosidase and cholinesterases. Remarkably, the target compounds (1-8) exhibited extraordinary α-glucosidase inhibitory activity as compared to the standard acarbose by several-fold. Subsequently, the potential antidiabetic effects of compounds 2, 4, 5, and 6 were validated using a STZ-induced diabetic rat model. Kinetic studies were also performed to understand the mechanism of inhibition, while structure-activity relationship analyses provided valuable insights into the structural features governing enzyme inhibition. Kinetic investigations revealed that compound 4 displayed a competitive mode of inhibition against α-glucosidase, whereas compound 2 demonstrated mixed-type behavior against AChE. To delve deeper into the binding interactions between the synthesized compounds and their respective enzyme targets, molecular docking studies were conducted. Overall, our findings highlight the promising potential of these densely substituted piperidines as multifunctional agents for the treatment of diseases associated with dysregulated glucose metabolism and cholinergic dysfunction.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Diabetes Mellitus, Experimental , Fluorine , Glycoside Hydrolase Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Piperidines , alpha-Glucosidases , Animals , Piperidines/chemistry , Piperidines/pharmacology , Piperidines/chemical synthesis , Piperidines/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Structure-Activity Relationship , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/therapeutic use , Rats , Fluorine/chemistry , alpha-Glucosidases/metabolism , Molecular Structure , Male , Acetylcholinesterase/metabolism , Dose-Response Relationship, Drug , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Cholinesterases/metabolism , Streptozocin
19.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731476

ABSTRACT

Although the wide variety of bioactivities of curcumin has been reported by researchers, the clinical application of curcumin is still limited due to its poor aqueous solubility. In view of this, a series of dimethylaminomethyl-substituted curcumin derivatives were designed and synthesized (compounds 1-15). Acetate of these derivatives were prepared (compounds 1a-15a). The Mannich reaction and aldol condensation reaction are the main reactions involved in this study. Compounds 6, 10, 12, 3a, 5a, 6a, 7a, 8a, 10a, 11a, 12a, 13a, 14a, and 15a exhibited better in vitro anti-inflammatory activity compared to curcumin in the RAW264.7 cell line. Compounds 5, 1a, 5a, 8a, and 12a exhibited better in vitro antioxidant activity compared to curcumin in the PC 12 cell line. Compounds 11, 13, 5a, 7a, and 13a exhibited better in vitro radiation protection compared to curcumin in the PC 12 cell line. The aqueous solubilities of all the curcumin derivative acetates were greatly improved compared to curcumin.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Curcumin , Radiation-Protective Agents , Solubility , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/chemical synthesis , Curcumin/analogs & derivatives , Animals , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemical synthesis , Radiation-Protective Agents/chemistry , Drug Design , Structure-Activity Relationship , Molecular Structure , PC12 Cells , Rats , Water/chemistry
20.
Article in English | MEDLINE | ID: mdl-38818921

ABSTRACT

One lucrative method for overcoming challenges in drug discovery or for enhancing undesirable properties of already-approved medications is prodrug design. The goal of this review is to present researchers with a profile of naturally occurring Phytophenols as carriers that would be used for prodrug synthesis as well as their advantages. Phytophenols offer several advantages when used as promoieties as they also possess antioxidant and analgesic properties, they are obtained naturally and their safety profile is well established. Several phytophenols like menthol, thymol, eugenol, guaiacol, sesamol, vanillin, and umbelliferone are some of the phytophenols that have several beneficial properties and are extensively employed in the field of food processing and medicine. In the current review, we have listed all types of promoieties that are used for prodrug synthesis and phytophenols are reviewed in detail, which may help researchers to select phytophenols based on their need and suitability for drug candidates.

SELECTION OF CITATIONS
SEARCH DETAIL
...