Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.043
Filter
1.
Food Chem ; 460(Pt 1): 140413, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39033641

ABSTRACT

Aging is a universal biological process characterized by a decline in physiological functions, leading to increased susceptibility to diseases. With global aging trends, understanding and mitigating the aging process is paramount. Recent studies highlight marine peptides as promising bioactive substances with potential anti-aging properties. This review critically examines the potential of marine peptides as novel food ingredients in anti-aging, exploring their sources, preparation methods, physicochemical properties, and the underlying mechanisms through which they impact the aging process. Marine peptides exhibit significant potential in targeting aging, extending lifespan, and enhancing healthspan. They act through mechanisms such as reducing oxidative stress and inflammation, modulating mitochondrial dysfunction, inducing autophagy, maintaining extracellular matrix homeostasis, and regulating longevity-related pathways. Despite challenges in stability, bioavailability, and scalability, marine peptides offer significant potential in health, nutraceuticals, and pharmaceuticals, warranting further research and development in anti-aging.

2.
Food Chem ; 460(Pt 1): 140510, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39033639

ABSTRACT

Tea drinking impacts aging and aging-related diseases. However, knowledge of anti-aging molecules other than the major catechins in complex tea extracts remains limited. Here we used Caenorhabditis elegans to analyze the longevity effects of tea extracts and constituents comprehensively. We found that the hot water extract of green tea prolonged lifespan and heathspan. Further, the MeOH fraction prolonged lifespan significantly longer than other fractions. Correlation analysis between mass spectroscopic data and anti-aging activity suggests that ester-type catechins (ETCs) are the major anti-aging components, including 4 common ETCs, 6 phenylpropanoid-substituted ester-type catechins (PSECs), 5 cinnamoylated catechins (CCs), 7 ester-type flavoalkaloids (ETFs), and 4 cinnamoylated flavoalkaloids (CFs). CFs (200 µM) are the strongest anti-aging ETCs (with the longest 73% lifespan extension). Green tea hot water extracts and ETCs improved healthspan by enhancing stress resistance and reducing ROS accumulation. The mechanistic study suggests that they work by multiple pathways. Moreover, ETCs modulated gut microbial homeostasis, increased the content of short-chain fatty acids, and reduced fat content. Altogether, our study provides new evidence for the anti-aging benefits of green tea and insights into a deep understanding of the chemical truth and multi-target mechanism.

3.
Biogerontology ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017748

ABSTRACT

Aging, a natural biological process, presents challenges in maintaining physiological well-being and is associated with increased vulnerability to diseases. Addressing aging mechanisms is crucial for developing effective preventive and therapeutic strategies against age-related ailments. Rosmarinus officinalis L. is a medicinal herb widely used in traditional medicine, containing diverse bioactive compounds that have been studied for their antioxidant and anti-inflammatory properties, which are associated with potential health benefits. Using network pharmacology, this study investigates the anti-aging function and underlying mechanisms of R. officinalis. Through network pharmacology analysis, the top 10 hub genes were identified, including TNF, CTNNB1, JUN, MTOR, SIRT1, and others associated with the anti-aging effects. This analysis revealed a comprehensive network of interactions, providing a holistic perspective on the multi-target mechanism underlying Rosemary's anti-aging properties. GO and KEGG pathway enrichment analysis revealed the relevant biological processes, molecular functions, and cellular components involved in treating aging-related conditions. KEGG pathway analysis shows that anti-aging targets of R. officinalis involved endocrine resistance, pathways in cancer, and relaxin signaling pathways, among others, indicating multifaceted mechanisms. Genes like MAPK1, MMP9, and JUN emerged as significant players. These findings enhance our understanding of R. officinalis's potential in mitigating aging-related disorders through multi-target effects on various biological processes and pathways. Such approaches may reduce the risk of failure in single-target and symptom-based drug discovery and therapy.

4.
Microb Cell Fact ; 23(1): 196, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987741

ABSTRACT

BACKGROUND: Telomerase activators are promising agents for the healthy aging process and the treatment/prevention of short telomere-related and age-related diseases. The discovery of new telomerase activators and later optimizing their activities through chemical and biological transformations are crucial for the pharmaceutical sector. In our previous studies, several potent telomerase activators were discovered via fungal biotransformation, which in turn necessitated optimization of their production. It is practical to improve the production processes by implementing the design of experiment (DoE) strategy, leading to increased yield and productivity. In this study, we focused on optimizing biotransformation conditions utilizing Camarosporium laburnicola, a recently discovered filamentous fungus, to afford the target telomerase activators (E-CG-01, E-AG-01, and E-AG-02). RESULTS: DoE approaches were used to optimize the microbial biotransformation processes of C. laburnicola. Nine parameters were screened by Plackett-Burman Design, and three significant parameters (biotransformation time, temperature, shaking speed) were optimized using Central Composite Design. After conducting validation experiments, we were able to further enhance the production yield of target metabolites through scale-up studies in shake flasks (55.3-fold for E-AG-01, 13-fold for E-AG-02, and 1.96-fold for E-CG-01). CONCLUSION: Following a process optimization study using C. laburnicola, a significant increase was achieved in the production yields. Thus, the present study demonstrates a promising methodology to increase the production yield of potent telomerase activators. Furthermore, C. laburnicola is identified as a potential biocatalyst for further industrial utilization.


Subject(s)
Biotransformation , Telomerase , Telomerase/metabolism , Enzyme Activators/metabolism
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000517

ABSTRACT

Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).


Subject(s)
Aging , Bone and Bones , Cellular Senescence , Inflammation , Humans , Cellular Senescence/genetics , Inflammation/genetics , Inflammation/metabolism , Aging/genetics , Bone and Bones/metabolism , Bone and Bones/pathology , Animals , Senescence-Associated Secretory Phenotype/genetics , Signal Transduction
6.
J Biomed Mater Res B Appl Biomater ; 112(8): e35456, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031923

ABSTRACT

Tissue engineered scaffolds aimed at the repair of critical-sized bone defects lack adequate consideration for our aging society. Establishing an effective aged in vitro model that translates to animals is a significant unmet challenge. The in vivo aged environment is complex and highly nuanced, making it difficult to model in the context of bone repair. In this work, 3D nanofibrous scaffolds generated by the thermally-induced self-agglomeration (TISA) technique were functionalized with polydopamine nanoparticles (PD NPs) as a tool to improve drug binding capacity and scavenge reactive oxygen species (ROS), an excessive build-up that dampens the healing process in aged tissues. PD NPs were reduced by ascorbic acid (rPD) to further improve hydrogen peroxide (H2O2) scavenging capabilities, where we hypothesized that these functionalized scaffolds could rescue ROS-affected osteoblastic differentiation in vitro and improve new bone formation in an aged mouse model. rPDs demonstrated improved H2O2 scavenging activity compared to neat PD NPs, although both NP groups rescued the alkaline phosphatase activity (ALP) of MC3T3-E1 cells in presence of H2O2. Additionally, BMP2-induced osteogenic differentiation, both ALP and mineralization, was significantly improved in the presence of PD or rPD NPs on TISA scaffolds. While in vitro data showed favorable results aimed at improving osteogenic differentiation by PD or rPD NPs, in vivo studies did not note similar improvements in ectopic bone formation an aged model, suggesting that further nuance in material design is required to effectively translate to improved in vivo results in aged animal models.


Subject(s)
Bone Regeneration , Indoles , Nanoparticles , Osteogenesis , Polymers , Reactive Oxygen Species , Tissue Scaffolds , Animals , Mice , Indoles/chemistry , Indoles/pharmacology , Osteogenesis/drug effects , Polymers/chemistry , Polymers/pharmacology , Tissue Scaffolds/chemistry , Bone Regeneration/drug effects , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Nanofibers/chemistry , Hydrogen Peroxide/chemistry , Aging/metabolism , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Cell Differentiation/drug effects , Cell Line , Osteoblasts/metabolism
7.
Heliyon ; 10(13): e33604, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040309

ABSTRACT

Perilla seed meal is an important agricultural by-product of perilla oil extraction. The antioxidant and anti-aging activities of perilla seed meal protein hydrolysate were investigated, and the bioactive peptides were identified to maximize the utilization of perilla seed meal resources. Anti-aging peptides were identified using a combination of peptidomics and in silico bioinformatics. Furthermore, the potential molecular mechanism of these peptides was explored through molecular docking and RT-PCR. The results showed a significant anti-aging properties of F2 (MW 3 kDa ∼5 kDa) by inhibition of reactive oxygen species (ROS) production and ß-galactosidase activity. Nine novel peptides were identified from F2 and subsequently synthesized to explore their bioactivities. The two peptides, NFF and PMR, were found to promote the proliferation of keratinocytes (HaCaT cells) and suppress the level of ROS and the activity of ß-galactosidase. Both peptides exhibited a strong binding affinity with the Keap1 protein. Additionally, NFF and PMR downregulated the expression of matrix metalloproteinases (MMPs) and the degradation of collagens (COLs). The potential molecular mechanism underlying the anti-aging properties of perilla seed meal peptides might involve the competitive binding of Keap1 to facilitate the release of Nrf2 and activation of NF-κB signal pathway. This study provides a theoretical basis for the application of perilla seed meal peptides in functional cosmetics and presents a novel perspective for the investigation of additional food-derived peptides.

9.
J Cosmet Dermatol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992992

ABSTRACT

OBJECTIVE: This study aims to fill the knowledge gap regarding the effects of high frequency facial neuromuscular electrical stimulation (fNMES) on facial aging, using a device equipped with CERTEC (Cell Energy Regeneration Technology) operating between 40 and 190 kHz. METHODS: This prospective split-face study was conducted at Tokyo University Hospital between March and May 2023 with 24 healthy adult women aged 30-59. The intervention group used the fNMES device along with basic skin care on one side of the face, and basic skin care alone on the other side for 8 weeks. Evaluations included changes in skin wrinkles, sagging, and blood flow. RESULTS: This study found significant improvements in skin elasticity and degree of wrinkles in the areas intervened with fNMES (p < 0.05, respectively). In addition, the intervention resulted in significant improvements in jawline angle (p < 0.01), submental volume (p < 0.05), cheek volume (p < 0.05), maximum nasolabial fold depth (p = 0.03), and total volume of the nasolabial folds (p = 0.03). The fNMES intervention also showed improvement in blood flow (p < 0.05). These improvements were also subjectively assessed by the participants in subject questionnaires at 8 weeks after the intervention (p < 0.05). CONCLUSION: This study suggests that high frequency fNMES effectively improves facial skin elasticity, reduces wrinkles and sagging, promotes blood flow, and contributes to overall facial appearance rejuvenation. Although further studies are needed, high frequency fNMES appeared promising as a noninvasive anti-aging therapy.

10.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000417

ABSTRACT

Metabolites resulting from the bacterial fermentation of dietary fibers, such as short-chain fatty acids, especially butyrate, play important roles in maintaining gut health and regulating various biological effects in the skin. However, butyrate is underutilized due to its unpleasant odor. To circumvent this organoleptic unfavorable property, phenylalanine butyramide (PBA), a butyrate precursor, has been synthesized and is currently available on the market. We evaluated the inhibition of mushroom tyrosinase by butyrate and PBA through in vitro assays, finding IC50 values of 34.7 mM and 120.3 mM, respectively. Docking calculations using a homology model of human tyrosinase identified a putative binding mode of PBA into the catalytic site. The anti-aging and anti-spot efficacy of topical PBA was evaluated in a randomized, double-blind, parallel-arm, placebo-controlled clinical trial involving 43 women affected by photo-damage. The results of this study showed that PBA significantly improved skin conditions compared to the placebo and was well tolerated. Specifically, PBA demonstrated strong skin depigmenting activity on both UV and brown spots (UV: -12.7% and -9.9%, Bs: -20.8% and -17.7% after 15 and 30 days, respectively, p < 0.001). Moreover, PBA brightened and lightened the skin (ITA°: +12% and 13% after 15 and 30 days, respectively, p < 0.001). Finally, PBA significantly improved skin elasticity (Ua/Uf: +12.4% and +32.3% after 15 and 30 days, respectively, p < 0.001) and firmness (Uf: -3.2% and -14.9% after 15 and 30 days, respectively, p < 0.01).


Subject(s)
Monophenol Monooxygenase , Phenylalanine , Skin Aging , Skin Pigmentation , Adult , Female , Humans , Middle Aged , Agaricales/enzymology , Butyrates/chemistry , Butyrates/pharmacology , Double-Blind Method , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Monophenol Monooxygenase/antagonists & inhibitors , Phenylalanine/chemistry , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Skin Aging/drug effects , Skin Pigmentation/drug effects
11.
Polymers (Basel) ; 16(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000647

ABSTRACT

High-density polyethylene (HDPE) waste poses a significant environmental challenge due to its non-biodegradable nature and the vast quantities generated annually. However, conventional recycling methods are energy-intensive and often yield low-quality products. Herein, HDPE waste is upcycled into anti-aging, superhydrophobic thin films suitable for outdoor applications. A two-layer spin-casting method combined with heating-induced crosslinking is utilized to produce an exceptionally rough superhydrophobic surface, featuring a root mean square (RMS) roughness of 50 nm, an average crest height of 222 nm, an average trough depth of -264 nm, and a contact angle (CA) of 148°. To assess durability, weathering tests were conducted, revealing the films' susceptibility to degradation under harsh conditions. The films' resistance to environmental factors is improved by incorporating a UV absorber, maintaining their hydrophobic properties and mechanical strength. Our research demonstrates a sustainable method for upcycling waste into high-performance, weather-resistant, superhydrophobic films.

12.
ESC Heart Fail ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034866

ABSTRACT

Systemic aging influences various physiological processes and contributes to structural and functional decline in cardiac tissue. These alterations include an increased incidence of left ventricular hypertrophy, a decline in left ventricular diastolic function, left atrial dilation, atrial fibrillation, myocardial fibrosis and cardiac amyloidosis, elevating susceptibility to chronic heart failure (HF) in the elderly. Age-related cardiac dysfunction stems from prolonged exposure to genomic, epigenetic, oxidative, autophagic, inflammatory and regenerative stresses, along with the accumulation of senescent cells. Concurrently, age-related structural and functional changes in the vascular system, attributed to endothelial dysfunction, arterial stiffness, impaired angiogenesis, oxidative stress and inflammation, impose additional strain on the heart. Dysregulated mechanosignalling and impaired nitric oxide signalling play critical roles in the age-related vascular dysfunction associated with HF. Metabolic aging drives intricate shifts in glucose and lipid metabolism, leading to insulin resistance, mitochondrial dysfunction and lipid accumulation within cardiomyocytes. These alterations contribute to cardiac hypertrophy, fibrosis and impaired contractility, ultimately propelling HF. Systemic low-grade chronic inflammation, in conjunction with the senescence-associated secretory phenotype, aggravates cardiac dysfunction with age by promoting immune cell infiltration into the myocardium, fostering HF. This is further exacerbated by age-related comorbidities like coronary artery disease (CAD), atherosclerosis, hypertension, obesity, diabetes and chronic kidney disease (CKD). CAD and atherosclerosis induce myocardial ischaemia and adverse remodelling, while hypertension contributes to cardiac hypertrophy and fibrosis. Obesity-associated insulin resistance, inflammation and dyslipidaemia create a profibrotic cardiac environment, whereas diabetes-related metabolic disturbances further impair cardiac function. CKD-related fluid overload, electrolyte imbalances and uraemic toxins exacerbate HF through systemic inflammation and neurohormonal renin-angiotensin-aldosterone system (RAAS) activation. Recognizing aging as a modifiable process has opened avenues to target systemic aging in HF through both lifestyle interventions and therapeutics. Exercise, known for its antioxidant effects, can partly reverse pathological cardiac remodelling in the elderly by countering processes linked to age-related chronic HF, such as mitochondrial dysfunction, inflammation, senescence and declining cardiomyocyte regeneration. Dietary interventions such as plant-based and ketogenic diets, caloric restriction and macronutrient supplementation are instrumental in maintaining energy balance, reducing adiposity and addressing micronutrient and macronutrient imbalances associated with age-related HF. Therapeutic advancements targeting systemic aging in HF are underway. Key approaches include senomorphics and senolytics to limit senescence, antioxidants targeting mitochondrial stress, anti-inflammatory drugs like interleukin (IL)-1ß inhibitors, metabolic rejuvenators such as nicotinamide riboside, resveratrol and sirtuin (SIRT) activators and autophagy enhancers like metformin and sodium-glucose cotransporter 2 (SGLT2) inhibitors, all of which offer potential for preserving cardiac function and alleviating the age-related HF burden.

13.
Macromol Rapid Commun ; : e2400296, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058043

ABSTRACT

A series of poly(ethylene glycol)-block-poly(propylene glycol) (PEG/PPG)- and 5,6-di(9H-carbazol-9-yl)isoindoline-1,3-dione (2CZPImide)-based crosslinked rubbery polymer membranes, denoted as PEG/PPG-2CZPImide (x:y), are prepared from the norbornene-functionalized PEG/PPG oligomer (NB-PEG/PPG-NB) and 2-(bicyclo[2.2.1]hept-5-en-2-ylmethyl)-5,6-di(9H-carbazol-9-yl)isoindoline-1,3-dione (2CZPImide-NB) via ring-opening metathesis polymerization (ROMP). The molar ratio (x:y) of the NB-PEG/PPG-NB (x) to 2CZPImide-NB (y) monomers is varied from 10:1 to 6:1. X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and pure gas permeability studies reveal that the comonomer 2CZPImide-NB successfully increases the d-spacing among the crystalline PEG/PPG segments, hence enhancing the diffusivity of gases through the membranes. The synthesized membranes exhibit good CO2 separation performance, with CO2 permeabilities ranging from 311.1 to 418.1 Barrer and CO2/N2 and CO2/CH4 selectivities of 39.4-52.0 and 13.4-16.0, respectively, approaching the 2008 Robeson upper bound. Moreover, PEG/PPG-2CZPImide (6:1), displaying optimal CO2 permeability and CO2/N2 and CO2/CH4 selectivities, shows long-term stability against physical aging and plasticization resistance up to 20 days and 10 atm, respectively.

14.
Nat Prod Res ; : 1-8, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967008

ABSTRACT

Natural plant extracts have gained significant attention in research due to their low toxicity, and potent antioxidant, and anti-aging properties. The present study investigated the phytochemical composition of a fermented rose extract (FRE), and evaluated its antioxidant, skin whitening, and anti-aging activities in vitro. The results showed that the FRE was rich in polyphenols and flavonoids. A total of 13 major compounds were identified by Liquid Chromatography-Mass Spectrometry (LC-MS), with astragalin as the primary component. In vitro, analysis of antioxidant activity showed that FRE effectively eliminated 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and dose-dependent reduced intracellular reactive oxygen species (ROS) levels. The FRE dose-dependent inhibited tyrosinase, collagenase, and hyaluronidase activity, reduced intracellular melanin synthesis, up-regulated the expression of collagen type I alpha 1 (COL1A1) and collagen type III alpha 1 (COL3A1), and down-regulated matrix metalloproteinases (MMPs) expression. Additionally, treatment with FRE significantly downregulated the expression of mitogen-activated protein kinase 1 (MAPK1), suggesting that FRE may modulate MAPK signaling pathways for skin anti-aging.

15.
Photobiomodul Photomed Laser Surg ; 42(7): 473-479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38836757

ABSTRACT

Objective: This study aimed to evaluate physical skin changes and patients' subjective perception of treatment with photothermal bioactivated platelet-rich plasma (MCT Plasma) for hand rejuvenation. Background: Age-related changes in the dorsum of the hand include volume loss, dyschromia, and soft-tissue atrophy, which result in wrinkles and prominent deep structures. Methods: We conducted a prospective, single-center, randomized pilot study on 10 healthy female volunteers from 30 to 65 years with hand aging signs. Patients received two sessions of MCT Plasma on the treated hand and two sessions of standard platelet-rich plasma (PRP) on the control hand. Results were assessed through high-frequency ultrasonography, photographs, a patient satisfaction survey, patient perception of skin aspect, and patient perception of amelioration survey. Results: Ten women with a mean age of 57.5 years (standard deviation 10.5, range 31 - 67) were included, and seven (70%) completed the study. The treated hands' skin subepidermal low-echogenic band (SLEB) decreased from 20% to 60%, and 57.1% (n = 4) had better results than control. Twenty percent of patients were very satisfied with the results, 40% were satisfied, 40% were neutral, and none were unsatisfied or very unsatisfied. Patients perceived the skin of the treated hand (MCT Plasma) as "much better" (20%), "better" (60%), and "no changes" (20%) compared with the skin of the control hand (standard PRP). No treatment-related adverse events were reported during the study. Conclusions: Hands treated with MCT Plasma tended to have better outcomes in reducing SLEB compared with those treated with standard PRP. Patients were satisfied and the treatment was safe with no technical complications. However, further randomized controlled trials with larger sample sizes are mandatory to validate the extent of improvement provided by this device based on photothermal biomodulation.


Subject(s)
Hand , Platelet-Rich Plasma , Rejuvenation , Skin Aging , Humans , Female , Pilot Projects , Middle Aged , Prospective Studies , Skin Aging/radiation effects , Adult , Aged , Patient Satisfaction , Photothermal Therapy , Treatment Outcome
16.
Eur J Pharm Biopharm ; : 114362, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871091

ABSTRACT

Skin aging occurs naturally as essential skin components gradually decline, leading to issues such as fine lines, wrinkles, and pigmentation. Fucoidan, a natural bioactive compound, holds potential for addressing these age-related concerns. However, its hydrophilic nature and substantial molecular weight hinder its absorption into the skin. In this study, we utilized polyvinyl pyrrolidone K30 (PVP) and polyvinyl alcohol (PVA) as polymers to fabricate dissolving microneedles loaded with fucoidan (DMN-F). The DMN-F formulations were examined for physical characteristics, stability, permeability, toxicity, and efficacy in animal models. These formulations exhibited consistent polymer blends with a conical structure and uniform cone-shaped design. Microneedle structure and penetration capability gradually decreased with increasing fucoidan concentration, with storage recommended at approximately 33 % relative humidity (RH). Ex vivo studies showed that DMN-F efficiently delivered up to 95.03 ±â€¯2.36 % of the total fucoidan concentration into the skin. In vivo investigations revealed that DMN-F effectively reduced wrinkles, improved skin elasticity, maintained moisture levels, and increased epidermal thickness. Histological images provided additional evidence of DMN-F's positive effects on these aging parameters. The results confirm that the DMN-F formulation effectively delivers fucoidan into the skin, allowing it to treat and mitigate signs of aging.

17.
Saudi Pharm J ; 32(7): 102107, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38873335

ABSTRACT

Aging is a natural process that occurs in all living organisms. Particularly, the skin embodies aging since it serves as a barrier between the body and its surroundings. Previously, we reported the wound healing effect of Launaea procumbens and identified compounds therein. The study aims to explore the skin anti-aging properties of the plant extract. To that effect, the antioxidant potential of L. procumbens methanolic extract (LPM) was assessed using two complementary DPPH and FRAP assays. The enzyme inhibitory effect of the extract on collagenase, elastase, hyaluronidase, and tyrosinase was evaluated to assess the direct skin anti-aging effects. Similarly, the anti-inflammatory activity was evaluated to explore the indirect anti-aging effects via the assessment of extract inhibitory effects on cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX). In addition, ADMET and molecular docking studies were performed to explore the interaction mechanisms of identified compounds in LPM with target enzymes. LPM demonstrated significant antioxidant activity in DPPH (IC50 = 29.08 µg/mL) and FRAP (1214.67 µM FeSO4/g extract) assays. Plant extract showed significant inhibition of collagenase, elastase, hyaluronidase, and tyrosinase (IC50 = 52.68, 43.76, 31.031, and 37.13 µg/mL, respectively). The extract demonstrated significant COX-2 and 5-LOX inhibition capacity with IC50 values of 8.635 and 10.851 µg/mL, respectively. The molecular docking study revealed the high potential of the identified compounds to bind to the active sites of enzymes crucially involved in the skin aging process. ADMET analysis of the compounds revealed their good absorption, distribution, and metabolism profiles, and they were found to be safe as well. Study findings suggest L. procumbens as a promising source for the development of natural skin anti-aging and antioxidant compounds. This, in turn, may facilitate its incorporation into cosmetic formulations after further investigation.

18.
Geroscience ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879847

ABSTRACT

Recently, DNA methylation clocks have been proven to be precise age predictors, and the application of these clocks in cancer tissue has revealed a global age acceleration in a majority of cancer subtypes when compared to normal tissue from the same individual. The polycomb repressor complex 2 plays a pivotal role in the aging process, and its targets have been shown to be enriched in CpG sites that gain methylation with age. This complex is further regulated by the chromatin remodeling complex SWItch/Sucrose Non-Fermentable and its core subunit, notably the tumor suppressor gene SMARCB1, which under physiological conditions inhibits the activity of the polycomb repressor complex 2. Hence, the loss of function of core members of the SWItch/sucrose non-fermentable complex, such as the tumor suppressor gene SMARCB1, results in increased activity of polycomb repressor complex 2 and interferes with the aging process. SMARCB1-deficient neoplasms represent a family of rare tumors, including amongst others malignant rhabdoid tumors, atypical teratoid and rhabdoid tumors, and epithelioid sarcomas. As aging pathways have recently been proposed as therapeutic targets for various cancer types, these tumors represent candidates for testing such treatments. Here, by deriving epigenetic age scores from more than 1000 tumor samples, we identified epigenetic age acceleration as a hallmark feature of epithelioid sarcoma. This observation highlights the potential of targeting aging pathways as an innovative treatment approach for patients with epithelioid sarcoma.

19.
Medicina (Kaunas) ; 60(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38929564

ABSTRACT

The prevalence of skin aging and the request for effective treatments have driven dermatological research towards natural solutions. This study investigates the anti-aging efficacy of two bioactive natural polyphenols, Oleocanthal and Oleacein, in a skincare formulation. A single-blind, randomized clinical trial involved 70 participants, using a comprehensive exclusion criterion to ensure participant safety and study integrity. Participants applied the Oleocanthal and Oleacein 1% serum formulation twice daily for 30 days. The efficacy was objectively assessed using the VISIA® Skin Analysis System at baseline, after 15 days, and after 30 days. Results indicated significant wrinkle reduction in most groups. For women aged 45-79 years, the mean change was -33.91% (95% CI: -46.75% to -21.07%). For men aged 20-44 years, it was -51.93% (95% CI: -76.54% to -27.33%), and for men aged 45-79 years, it was -46.56% (95% CI: -58.32% to -34.81%). For women aged 20-44 years, the change was -25.68% (95% CI: -63.91% to 12.54%), not statistically significant. These findings highlight the potential of EVOO-derived polyphenols in anti-aging skincare, particularly for older adults. This research paves the way for further exploration into natural compounds in dermatology, particularly for aging skin management.


Subject(s)
Aldehydes , Cyclopentane Monoterpenes , Phenols , Skin Aging , Humans , Middle Aged , Female , Male , Aged , Adult , Skin Aging/drug effects , Single-Blind Method , Phenols/therapeutic use , Phenols/pharmacology
20.
Skin Res Technol ; 30(7): e13790, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38932444

ABSTRACT

BACKGROUND: The delicate periorbital region is susceptible to skin dehydration, wrinkles, and loss of elasticity. Thus, targeted and effective anti-aging interventions are necessary for the periorbital area. AIM: To evaluate the efficacy and safety of a new anti-aging eye cream formulated with the active complex (Yeast/rice fermentation filtrate, N-acetylneuraminic acid, palmityl tripeptide-1, and palmitoyl tetrapeptide-7). METHODS: The cell viability and expressions of key extracellular matrix (ECM) components of the active complex were evaluated using a human skin fibroblast model. In the 12-week clinical trial, skin hydration, elasticity, facial photographs, and collagen density following eye cream application were assessed using Corneometer, Cutometer, VISIA, and ultrasound device, respectively. Dermatologists and participants evaluated clinical efficacy and safety at baseline, and after 4, 8, and 12 weeks. RESULTS: PCR and immunofluorescent analyses revealed that the active complex significantly stimulated fibroblast proliferation (p < 0.05) and markedly promote the synthesis of collagen and elastin. Clinical findings exhibited a substantial enhancement in skin hydration (28.12%), elasticity (18.81%), and collagen production (54.99%) following 12 weeks of eye cream application. Dermatological evaluations and participants' assessments reported a significant improvement in skin moisture, roughness, elasticity, as well as fine lines and wrinkles by week 8. CONCLUSION: The new anti-aging eye cream, enriched with the active complex, demonstrates comprehensive rejuvenating effects, effectively addressing aging concerns in the periorbital area, coupled with a high safety profile.


Subject(s)
Fibroblasts , Skin Aging , Skin Cream , Humans , Skin Aging/drug effects , Fibroblasts/drug effects , Female , Middle Aged , Skin Cream/administration & dosage , Adult , Elasticity/drug effects , Collagen , Cell Survival/drug effects , Elastin , Male , Skin/drug effects , Skin/pathology , Treatment Outcome , Administration, Topical , Cell Proliferation/drug effects , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...