Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
World J Biol Psychiatry ; : 1-17, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38900601

ABSTRACT

OBJECTIVE: Syzygium aromaticum and Coffea canephora are acknowledged for their outstanding antioxidant, anti-inflammatory, and nerve-stimulant properties, showcasing potential in brain protection. Therefore, this study aims to quantitatively review existing literature and assess the potential of using it to formulate a herbal tea blend for managing stress and anxiety. METHODS: Data was retrieved from the Scopus database, and a bibliometric analysis was performed using VOSviewer software. RESULTS: Following a screening process, a total of 121 articles were identified, with S. aromaticum yielding a higher number compared to C. canephora. A detailed exploration of each plant revealed active components such as eugenol, ß-caryophyllene, α-humulene, caffeine, mangiferin, and chlorogenic acids, each exhibiting stimulatory effects alongside antioxidant and anti-inflammatory properties. The neuroprotective effects were attributed to the reduction of oxidative stress and inflammation, coupled with the stimulation of neurotransmitters and hormones like dopamine, serotonin, cortisol, and adrenaline. CONCLUSIONS: The review showed that these plants positively affect mood and cognition by influencing the brain's pleasure system. This suggests the need for further research to combine these plant extracts for developing 'Tenang tea', a potential herbal blend for managing stress and anxiety.

2.
Front Microbiol ; 15: 1367084, 2024.
Article in English | MEDLINE | ID: mdl-38666259

ABSTRACT

Astaxanthin has multiple physiological functions and is applied widely. The yeast Phaffia rhodozyma is an ideal source of microbial astaxanthin. However, the stress conditions beneficial for astaxanthin synthesis often inhibit cell growth, leading to low productivity of astaxanthin in this yeast. In this study, 1 mg/L melatonin (MT) could increase the biomass, astaxanthin content, and yield in P. rhodozyma by 21.9, 93.9, and 139.1%, reaching 6.9 g/L, 0.3 mg/g DCW, and 2.2 mg/L, respectively. An RNA-seq-based transcriptomic analysis showed that MT could disturb the transcriptomic profile of P. rhodozyma cell. Furthermore, differentially expressed gene (DEG) analysis show that the genes induced or inhibited significantly by MT were mainly involved in astaxanthin synthesis, metabolite metabolism, substrate transportation, anti-stress, signal transduction, and transcription factor. A mechanism of MT regulating astaxanthin synthesis was proposed in this study. The mechanism is that MT entering the cell interacts with components of various signaling pathways or directly regulates their transcription levels. The altered signals are then transmitted to the transcription factors, which can regulate the expressions of a series of downstream genes as the DEGs. A zinc finger transcription factor gene (ZFTF), one of the most upregulated DEGs, induced by MT was selected to be overexpressed in P. rhodozyma. It was found that the biomass and astaxanthin synthesis of the transformant were further increased compared with those in MT-treatment condition. Combining MT-treatment and ZFTF overexpression in P. rhodozyma, the biomass, astaxanthin content, and yield were 8.6 g/L, 0.6 mg/g DCW, and 4.8 mg/L and increased by 52.1, 233.3, and 399.7% than those in the WT strain under MT-free condition. In this study, the synthesis and regulation theory of astaxanthin is deepened, and an efficient dual strategy for industrial production of microbial astaxanthin is proposed.

3.
J Anim Sci Biotechnol ; 15(1): 4, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38238856

ABSTRACT

BACKGROUND: The benefits of combining benzoic acid and essential oils (BAO) to mitigate intestinal impairment during the weaning process have been well established, while the detailed underlying mechanism has not been fully elucidated. Previous research has primarily focused on the reparative effects of BAO on intestinal injury, while neglecting its potential in enhancing intestinal stress resistance. METHODS: In this study, we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure. Piglets were pre-supplemented with BAO for 14 d, followed by a challenge with LPS or saline to collect blood and intestinal samples. RESULTS: Our findings demonstrated that BAO supplementation led to significant improvements in piglets' final weight, average daily gain, and feed intake/body gain ratio. Additionally, BAO supplementation positively influenced the composition of intestinal microbiota, increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota, Prevotella and Oscillospira. Furthermore, BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge. This was evidenced by elevated levels of T-AOC, SOD, and GSH, as well as decreased levels of MDA, TNF-α, and IL-6 in the plasma. Moreover, piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity, as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts. Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway. Additionally, the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO. CONCLUSIONS: In summary, our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition, reinforcing the intestinal barrier, and enhancing antioxidative and anti-inflammatory capabilities. These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.

4.
Clin Oral Investig ; 27(8): 4653-4658, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37328611

ABSTRACT

OBJECTIVE: The aim of this study is to evaluate the effect of using anti-stress balls in reducing patients' pain during injection of the inferior alveolar nerve block (IANB). MATERIALS AND METHODS: In this randomized clinical trial, 32 individuals were divided into two groups. The conventional method of anesthesia injection was performed using IANB conventional injection technique. During the injection, individuals in the anti-stress ball group were asked to use the anti-stress ball as a distraction technique. For the control group, no supersede methods were used for pain control. Finally, both groups were asked to record their pain utilizing the numerical rating scale (NRS). The participants' vital signs were monitored before and after injection. Kolmogorov-Smirnov test, independent T-test, and Fisher's exact chi-square test were performed for statistical analysis (α = 0.05). RESULTS: Sixteen females and 16 males in the age range of 40 to 20 years old participated in this study. The mean pain score in the anti-stress ball group was significantly lower (p < 0.001). In both sexes, the pain score in the anti-stress ball group was significantly lower (males p < 0.001 and females p = 0.001). In addition, in all age ranges, the pain score in the control group was higher except for the above 35 years old participants (p = 0.078). Moreover, there were no significant differences in individuals' vital signs (p > 0.05). CONCLUSION AND CLINICAL RELEVANCE: Utilizing an anti-stress ball reduces patients' pain significantly during IANB in both sexes and individuals who are below 35 years without changing vital signs. CLINICAL REGISTRATION NUMBER: IRCT20220815055704N1.


Subject(s)
Anesthesia, Dental , Nerve Block , Pulpitis , Male , Female , Humans , Adult , Anesthetics, Local/pharmacology , Nerve Block/methods , Mandibular Nerve , Pain , Anesthesia, Local/methods , Anesthesia, Dental/methods , Pulpitis/surgery , Double-Blind Method
5.
Antioxidants (Basel) ; 12(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37371899

ABSTRACT

Plant-derived exosomes (PDEs) are receiving much attention as a natural source of antioxidants. Previous research has shown that PDEs contain a series of bioactives and that their content varies depending on the fruit or vegetable source. It has also been shown that fruits and vegetables derived from organic agriculture produce more exosomes, are safer, free of toxic substances, and contain more bioactives. The aim of this study was to investigate the ability of orally administered mixes of PDE (Exocomplex®) to restore the physiological conditions of mice treated for two weeks with hydrogen peroxide (H2O2), compared with mice left untreated after the period of H2O2 administration and mice that received only water during the experimental period. The results showed that Exocomplex® had a high antioxidant capacity and contained a series of bioactives, including Catalase, Glutathione (GSH), Superoxide Dismutase (SOD), Ascorbic Acid, Melatonin, Phenolic compounds, and ATP. The oral administration of Exocomplex® to the H2O2-treated mice re-established redox balance with reduced serum levels of both reactive oxygen species (ROS) and malondialdehyde (MDA), but also a general recovery of the homeostatic condition at the organ level, supporting the future use of PDE for health care.

6.
Anim Nutr ; 13: 342-360, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37214213

ABSTRACT

In swine production, stress is a common encounter that leads to serious bacterial infection and adverse effects on growth performance. Though antibiotics have been frequently used to control pathogen spread, sustained negative impacts from antibiotics have been found to affect intestinal integrity and the immune system. Multiple nutritional strategies have shown potential to counteract stress and replace antibiotics, including functional amino acids, low protein diet, plant extracts, organic acids, prebiotics, probiotics, minerals and vitamins. These additives relieve the stress response in swine via different mechanisms and signal transduction pathways. Based on the overview of signaling pathways and stress models, this review highlights the potential of nutritional strategies in swine for preventing or treating stress-related health problems. For wider application in the pig industry, the dose ranges measured require for further validation in different physiological contexts and formulations. In the future, microfluid devices and novel stress models are expected to enhance the efficiency of screening for new anti-stress candidates.

7.
J Fungi (Basel) ; 9(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36836257

ABSTRACT

Aphanomyces invadans is an aquatic oomycete pathogen and the causative agent of epizootic ulcerative syndrome (EUS) in fresh and brackish water fish, which is responsible for severe mortalities and economic losses in aquaculture. Therefore, there is an urgent need to develop anti-infective strategies to control EUS. An Oomycetes, a fungus-like eukaryotic microorganism, and a susceptible species, i.e., Heteropneustes fossilis, are used to establish whether an Eclipta alba leaf extract is effective against the EUS-causing A. invadans. We found that treatment with methanolic leaf extract, at concentrations between 50-100 ppm (T4-T6), protects the H. fossilis fingerlings against A. invadans infection. These optimum concentrations induced anti-stress and antioxidative response in fish, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) levels in treated animals, as compared with the controls. We further demonstrated that the A. invadans-protective effect of methanolic leaf extract was caused by its immunomodulatory effect and is linked to the enhanced survival of fingerlings. The analysis of non-specific and specific immune factors confirms that methanolic leaf extract-induced HSP70, HSP90 and IgM levels mediate the survival of H. fossilis fingerlings against A. invadans infection. Taken together, our study provides evidence that the generation of anti-stress and antioxidative responses, as well as humoral immunity, may play a role in protecting H. fossilis fingerlings against A. invadans infection. It is probable that E. alba methanolic leaf extract treatment might become part of a holistic strategy to control EUS in fish species.

8.
Article in Russian | MEDLINE | ID: mdl-36801873

ABSTRACT

The analysis of main approaches to determining essence of health-improving tourism in works of national scientists and researchers is presented. The conclusions are made that the most widespread classification of health-improving tourism is its division into medical and health-improving tourism. The medical tourism includes such its types as medical and sanatorium-health resort, and health-improving tourism covers balneologic, SPA-tourism, Wellness-tourism. The difference between medical and health-improving tourism is determined in order to regulate received services. The author's structure of medical and health-improving services, types of tourism and specialized organizations is developed. The analysis of supply and demand for health-improving tourism in 2014-2020 is presented. The main trends of development of health-improving segment in context of such its directions as increasing of SPA and Wellness industry, development of medical tourism, increasing of return on health tourism are formulated. The factors constraining development and reducing competitiveness of health-improving tourism in Russia are identified and structured.


Subject(s)
Medical Tourism , Tourism , Health Resorts , Health Services , Russia
9.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677645

ABSTRACT

Women have a high susceptibility to the negative effects of stress. Hormonal changes experienced throughout their reproductive life partially contribute to a higher incidence of anxiety and depression symptoms, particularly, during natural or surgical menopause. In preclinical research, the flavonoid chrysin (5,7-dihydroxyflavone) exerts anxiolytic- and anti-despair-like effects; however, it is unknown whether chrysin exerts a protective effect against the behavioral changes produced by acute stress on locomotor activity and behavioral despair in rats at 12-weeks post-ovariectomy. Ovariectomized female Wistar rats were assigned to eight groups: vehicle group (10% DMSO), three groups with chrysin and three groups with the same dose of allopregnanolone (0.5, 1, and 2 mg/kg), and one group with diazepam (2 mg/kg). The treatments were administered for seven consecutive days and the effects were evaluated in the locomotor activity and swimming tests. Chrysin (2 mg/kg) increased the latency to first immobility and decreased the total immobility time in the swimming test as the reference drugs allopregnanolone and diazepam (2 mg/kg); while locomotor activity prevented the behavioral changes produced by swimming. In conclusion, chrysin exerts a protective effect against the behavioral changes induced by acute stress, similarly to the neurosteroid allopregnanolone and the benzodiazepine diazepam in rats subjected to a surgical menopause model.


Subject(s)
Flavonoids , Pregnanolone , Rats , Female , Animals , Rats, Wistar , Pregnanolone/pharmacology , Flavonoids/pharmacology , Diazepam/pharmacology , Menopause
10.
Avian Pathol ; 52(1): 12-24, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35980124

ABSTRACT

The aim of this study was to evaluate the effects of anti-stress agents on the growth performance and immune function of broilers under immune stress conditions induced by vaccination. A total of 128, 1-day-old Arbor Acres broilers were randomly divided into four groups. Group normal control (NC) was the control group. Group vaccination control (VC), T 0.5%, and T 1% were the treatment groups, which were nasally vaccinated with two doses of the Newcastle disease virus (NDV) vaccine. The chicks in groups T 0.5% and T 1% were fed conventional diets containing 0.5% and 1% anti-stress agents. Thereafter, these broilers were slaughtered on 1, 7, 14, and 21 days post-vaccination. The results indicated that anti-stress agents could significantly reduce serum adrenocorticotropic hormone (ACTH) (P < 0.01) and cortisol (CORT) (P < 0.05) levels, and improve the growth performance (P < 0.05) and immune function of broilers (P < 0.05); However, the levels of malondialdehyde (MDA) (P < 0.05) were decreased, and the decreased total antioxidant capacity (T-AOC) (P < 0.01) levels mediated by vaccination were markedly improved. In addition, anti-stress agents could attenuate apoptosis in spleen lymphocytes (P < 0.01) by upregulating the ratio of Bcl-2 to BAX (P < 0.01) and downregulating the expression of caspase-3 and -9 (P < 0.01), which might be attributed to the inhibition of the enzymatic activities of caspase-3 and -9 (P < 0.05). In conclusion, anti-stress agents may improve growth performance and immune function in broilers under immune-stress conditions.RESEARCH HIGHLIGHTS Investigation of effects and mechanism of immune stress induced by vaccination.Beneficial effect of anti-stress agents on growth performance, immune function, oxidative stress, and regulation of lymphocyte apoptosis.Demonstration of the effects of apoptosis on immune function in the organism.


Subject(s)
Antioxidants , Chickens , Animals , Caspase 3/metabolism , Antioxidants/metabolism , Diet/veterinary , Vaccination/veterinary , Immunity , Animal Feed/analysis , Dietary Supplements
11.
Front Vet Sci ; 10: 1342630, 2023.
Article in English | MEDLINE | ID: mdl-38283372

ABSTRACT

Introduction: Captivity serves as the primary method for enhancing animal survival and productivity. However, the stress induced by confinement can hinder animal growth and reproduction. The administration of drugs to captive animals can effectively regulate their stress response and can also be used inartificial breeding, reproduction, and experimental animalization of wild species. The plateau zokor (Eospalax baileyi), a subterranean herbivore, experiences significant stress during the captive process owing to its unique habitat. Methods: In our study, we utilized Radix astragali (RA) and Acanthopanax senticosus (AS) extracts to intervene in the stress response of plateau zokors. Results: Our findings demonstrated that RA and AS treatment considerably improved food intake and reduced weight loss, stress-related behavior, and stress hormone levels in plateau zokors. Furthermore, the excitatory pathway of amphetamine addition in the hypothalamus was suppressed by RA and AS treatment, acting through the Grin and Prkc gene families. Notably, after RA treatment, the extracellular matrix-receptor interaction pathway, enriched by the Col1a1/3a1/1a2/6a1 gene, was significantly upregulated, potentially enhancing the immune function of captive plateau zokors. Discussion: In conclusion, our research demonstrates that RA and AS treatment can effectively alleviate the stress response of plateau zokors in captive environments. The downregulation of the excitation pathway and upregulation of the immune pathway offer valuable insights into the response and potential mechanisms of plant-based drugs in mitigating animal stress.

12.
Front Pharmacol ; 13: 990799, 2022.
Article in English | MEDLINE | ID: mdl-36386131

ABSTRACT

Baicalein is a flavonoid mainly obtained from plants with wide range of biological activities, including neuroprotection. An acute and unexpected chronic stress (UCS) protocol has recently been adapted to zebrafish, a popular vertebrate model in brain research. The present study was aimed to evaluate baicalein's anti-anxiety potential in a zebrafish model by induction, which included neuropharmacological evaluation to determine behavioural parameters in the novel tank diving test (NTDT) and light-dark preference test (LDPT). The toxicity was also assessed using the brine shrimp lethality assay, and the 50% lethal concentration (LC50) was determined. The animals were then stressed for 7 days before being treated with different doses of baicalein (1 and 2 mg/L) for another 7 days in UCS condition. Due to acute stress and UCS, the frequency of entries and time spent in the 1) top region and 2) light area of the novel tank reduced significantly, indicating the existence of elevated anxiety levels. The biological activity of baicalein was demonstrated by its high LC50 values (1,000 µg/ml). Additionally, baicalein administration increased the frequency of entries and duration spent in the light region, indicating a significant decrease in anxiety levels. Overall, the present results showed that baicalein has a therapeutic advantage in reversing the detrimental consequences of UCS and acute stress, making it is a promising lead molecule for new drug design, development, and therapy for stress.

13.
Front Immunol ; 13: 956478, 2022.
Article in English | MEDLINE | ID: mdl-36119096

ABSTRACT

Ichthyophthirius multifiliis, a ciliated parasite causing ichthyophthiriasis (white spot disease) in freshwater fishes, results in significant economic loss to the aquaculture sector. One of the important predisposing factors for ichthyophthiriasis is low water temperature (i.e., below 20°C), which affects the health and makes freshwater fishes more susceptible to parasitic infections. During ichthyophthiriasis, fishes are stressed and acute immune reactions are compromised, which enables the aquatic bacterial pathogens to simultaneously infect the host and increase the severity of disease. In the present work, we aimed to understand the parasite-bacteria co-infection mechanism in fish. Later, Curcuma longa (turmeric) essential oil was used as a promising management strategy to improve immunity and control co-infections in fish. A natural outbreak of I. multifiliis was reported (validated by 16S rRNA PCR and sequencing method) in Pangasianodon hypophthalmus from a culture facility of ICAR-CIFRI, India. The fish showed clinical signs including hemorrhage, ulcer, discoloration, and redness in the body surface. Further microbiological analysis revealed that Aeromonas hydrophila was associated (validated by 16S rRNA PCR and sequencing method) with the infection and mortality of P. hypophthalmus, confirmed by hemolysin and survival assay. This created a scenario of co-infections, where both infectious agents are active together, causing ichthyophthiriasis and motile Aeromonas septicemia (MAS) in P. hypophthalmus. Interestingly, turmeric oil supplementation induced protective immunity in P. hypophthalmus against the co-infection condition. The study showed that P. hypophthalmus fingerlings supplemented with turmeric oil, at an optimum concentration (10 ppm), exhibited significantly increased survival against co-infection. The optimum concentration induced anti-stress and antioxidative response in fingerlings, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) in treated animals as compared with the controls. Furthermore, the study indicated that supplementation of turmeric oil increases both non-specific and specific immune response, and significantly higher values of immune genes (interleukin-1ß, transferrin, and C3), HSP70, HSP90, and IgM were observed in P. hypophthalmus treatment groups. Our findings suggest that C. longa (turmeric) oil modulates stress, antioxidant, and immunological responses, probably contributing to enhanced protection in P. hypophthalmus. Hence, the application of turmeric oil treatment in aquaculture might become a management strategy to control co-infections in fishes. However, this hypothesis needs further validation.


Subject(s)
Catfishes , Ciliophora Infections , Coinfection , Fish Diseases , Hymenostomatida , Oils, Volatile , Aeromonas hydrophila , Animals , Antioxidants/therapeutic use , Catalase , Ciliophora Infections/parasitology , Ciliophora Infections/veterinary , Curcuma , Disease Outbreaks , Hemolysin Proteins , Hydrocortisone/therapeutic use , Immunoglobulin M/therapeutic use , Interleukin-1beta , Iron-Dextran Complex/therapeutic use , Oils, Volatile/pharmacology , RNA, Ribosomal, 16S , Superoxide Dismutase , Transferrins/therapeutic use , Water
14.
Int J Mol Sci ; 23(15)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35955797

ABSTRACT

Phytoecdysteroids (PEs) are naturally occurring polyhydroxylated compounds with a structure similar to that of insect molting hormone and the plant hormone brassinosteroids. PEs have a four-ringed skeleton composed of 27, 28, 29, or 30 carbon atoms (derived from plant sterols). The carbon skeleton of ecdysteroid is known as cyclopentanoperhydrophenanthrene and has a ß-sidechain on C-17. Plants produce PEs via the mevalonate pathway with the help of the precursor acetyl-CoA. PEs are found in algae, fungi, ferns, gymnosperms, and angiosperms; more than 500 different PEs are found in over 100 terrestrial plants. 20-hydroxyecdysone is the most common PE. PEs exhibit versatile biological roles in plants, invertebrates, and mammals. These compounds contribute to mitigating biotic and abiotic stresses. In plants, PEs play a potent role in enhancing tolerance against insects and nematodes via their allelochemical activity, which increases plant biological and metabolic responses. PEs promote enzymatic and non-enzymatic antioxidant defense systems, which decrease reactive oxygen species in the form of superoxide radicals and hydroxyl radicals and reduce malondialdehyde content. PEs also induce protein biosynthesis and modulate carbohydrate and lipid synthesis. In humans, PEs display biological, pharmacological, and medicinal properties, such as anti-diabetic, antioxidant, anti-microbial, hepatoprotective, hypoglycemic, anti-cancer, anti-inflammatory, antidepressant, and tissue differentiation activity.


Subject(s)
Insect Hormones , Plant Growth Regulators , Animals , Antioxidants/metabolism , Carbon/metabolism , Humans , Insect Hormones/metabolism , Insecta/metabolism , Mammals/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Stress, Physiological
16.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35848108

ABSTRACT

Saccharomyces cerevisiae plays a decisive role in the brewing of alcohol products, and the ideal growth and fermentation characteristics can give the pure flavor of alcohol products. However, S. cerevisiae can be affected profoundly by environmental factors during the brewing process, which have negative effects on the growth and fermentation characteristics of S. cerevisiae, and seriously hindered the development of brewing industry. Therefore, we summarized the environmental stress factors (ethanol, organic acids, temperature and osmotic pressure) that affect S. cerevisiae during the brewing process. Their impact mechanisms and the metabolic adaption of S. cerevisiae in response to these stress factors. Of note, S. cerevisiae can increase the ability to resist stress factors by changing the cell membrane components, expressing transcriptional regulatory factors, activating the anti-stress metabolic pathway and enhancing ROS scavenging ability. Meantime, the strategies and methods to improve the stress- tolerant ability of S. cerevisiae during the brewing process were also introduced. Compared with the addition of exogenous anti-stress substances, mutation breeding and protoplast fusion, it appears that adaptive evolution and genetic engineering are able to generate ideal environmental stress tolerance strains of S. cerevisiae and are more in line with the needs of the current brewing industry.

17.
Molecules ; 27(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35684552

ABSTRACT

Natural cytokinines are a promising group of cytoprotective and anti-tumor agents. In this research, we synthesized a set of aryl carbamate, pyridyl urea, and aryl urea cytokinine analogs with alkyl and chlorine substitutions and tested their antiproliferative activity in MDA-MB-231, A-375, and U-87 MG cell lines, and cytoprotective properties in H2O2 and CoCl2 models. Aryl carbamates with the oxamate moiety were selectively anti-proliferative for the cancer cell lines tested, while the aryl ureas were inactive. In the cytoprotection studies, the same aryl carbamates were able to counteract the CoCl2 cytotoxicity by 3-8%. The possible molecular targets of the aryl carbamates during the anti-proliferative action were the adenosine A2 receptor and CDK2. The obtained results are promising for the development of novel anti-cancer therapeutics.


Subject(s)
Carbamates , Urea , Carbamates/pharmacology , Cell Line , Chlorine/chemistry , Halogens/chemistry , Hydrogen Peroxide/chemistry , Structure-Activity Relationship , Urea/pharmacology
18.
Molecules ; 27(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35744983

ABSTRACT

Amber is a fossilized tree resin historically used in wound healing and stress relief. Unfortunately, there is no concrete scientific evidence supporting such efficacy. Here, the stress buffering and longevity effect of Amber extract (AE) in Caenorhabditis elegans (C. elegans) was investigated. Survival assays, health span assays, Enzyme-Linked Immunosorbent Assay (ELISA), Stress biomarker detection assays, Green Fluorescence Proteins (GFP), Real Time quantitative PCR (RT-qPCR) and C. elegans mutants were employed to investigate the stress buffering and longevity effect of AE. In the study, it was observed that AE supplementation improved health span and survival in both normal and stressed worms. Additionally, AE positively regulated stress hormones (cortisol, oxytocin, and dopamine) and decreased fat and reactive oxygen species (ROS) accumulation. Through the Insulin/IGF-1 signaling (IIS) pathway, AE enhanced the nuclear localization of DAF-16 and the expression of heat shock proteins and antioxidant genes in GFP-tagged worms and at messenger RNA levels. Finally, AE failed to increase the survival of daf-16, daf-2, skn-1 and hsf-1 loss-of-function mutants, confirming the involvement of the IIS pathway. Evidently, AE supplementation relieves stress and enhances longevity. Thus, amber may be a potent nutraceutical for stress relief.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Amber/pharmacology , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/genetics , Insulin/metabolism , Longevity , Oxidative Stress , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism
19.
J Diet Suppl ; 19(2): 149-167, 2022.
Article in English | MEDLINE | ID: mdl-33272042

ABSTRACT

This randomized double-blind controlled study aimed to investigate the effects of a standardized Kaempferia parviflora (KP) extract on the physical fitness and heart rate variability (HRV) parameters in adolescent sport school students. 194 male students were recruited and randomized into two groups (n = 97), matched by age and sports. The KP-treated group received KP extract capsules at a dose of 360 mg/day and the control group received placebo capsules, continuously for 12 weeks. Physical fitness performance and HRV parameters were monitored with blood biochemical analysis for product safety. KP extract significantly increased the right-hand grip strength, the back-leg strength and maximal oxygen consumption (VO2 max) and decreased the time used for 50-meter sprint test without changing the sit-and-reach test and the 40 yard technical test. For HRV parameters, KP extract significantly increased standard deviation of normal to normal intervals (SDNN), square root of the mean of square of successive normal to normal interval differences (RMSSD) and high frequency (HF) norm, without changing low frequency (LF) norm and LF/HF ratio. The increase in stress resistance and decrease in stress index were found in the KP-treated group, without changing the autonomic nervous system (ANS) activity and balance. Blood biochemical analysis showed normal values of all participants. This data indicates the safety and positive effects of KP on muscle strength, endurance and speed, but not on the flexibility and agility. The modulatory effects of KP extract on HRV parameters suggest its anti-stress effects and would encourage the application in a sport training and exercise.


Subject(s)
Hand Strength , Zingiberaceae , Adolescent , Athletes , Dietary Supplements , Heart Rate , Humans , Male , Physical Fitness , Plant Extracts/pharmacology , Students
20.
Biol Trace Elem Res ; 200(1): 339-347, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33598892

ABSTRACT

The aim of present study was to investigate the beneficial effect of chromium (III) picolinate (CrPic) and chromium (III) picolinate nanoparticles (NCrPic) addition on growth performance, stress-related hormonal changes, and serum levels of various immunity biomarkers, as well as the gene expression of IFN-γ in broilers exposed to heat stress conditions. Treatments included T1 which received the basal diet with no feed additive; T2 exposed to heat stress; T3, T4, and T5 containing 500, 1000, and 1500 ppb CrPic; as well as T6, T7, and T8 containing 500, 1000, and 1500 ppb NCrPic, respectively. After 2 weeks from CrPic and NCrPic supplementation, IFN-γ mRNA expression was assayed using the RT-PCR technique. The results showed that the lower body weight, daily weight gain, daily feed intake by heat stress, and the feed conversion ratio were recovered remarkably by CrPic and NCrPic supplements. The stress-elevated levels of cortisol and immunoglobulin were reduced significantly using CrPic and NCrPic supplementation (P ≤ 0.05). The gene expression profile showed that the upregulated expression of IFN-γ was regulated by the addition of CrPic and NCrPic, in particular, to the diet; however, a full downregulation of IFN-γ expression was observed after week 2 of NCrPic supplementation. In conclusion, the results indicated that nanoparticle supplementation could be effective in reducing heat stress-induced detrimental alterations, thereby attributing to substantial changes to the immune system, including IFN-γ expression.


Subject(s)
Chickens , Nanoparticles , Animal Feed/analysis , Animals , Chromium/pharmacology , Diet , Dietary Supplements , Heat-Shock Response , Picolinic Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...