Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 769
Filter
1.
Front Microbiol ; 15: 1415449, 2024.
Article in English | MEDLINE | ID: mdl-38841065

ABSTRACT

Phosphorylation is a major post-translation modification (PTM) of proteins which is finely tuned by the activity of several hundred kinases and phosphatases. It controls most if not all cellular pathways including anti-viral responses. Accordingly, viruses often induce important changes in the phosphorylation of host factors that can either promote or counteract viral replication. Among more than 500 kinases constituting the human kinome only few have been described as important for the hepatitis B virus (HBV) infectious cycle, and most of them intervene during early or late infectious steps by phosphorylating the viral Core (HBc) protein. In addition, little is known on the consequences of HBV infection on the activity of cellular kinases. The objective of this study was to investigate the global impact of HBV infection on the cellular phosphorylation landscape early after infection. For this, primary human hepatocytes (PHHs) were challenged or not with HBV, and a mass spectrometry (MS)-based quantitative phosphoproteomic analysis was conducted 2- and 7-days post-infection. The results indicated that while, as expected, HBV infection only minimally modified the cell proteome, significant changes were observed in the phosphorylation state of several host proteins at both time points. Gene enrichment and ontology analyses of up- and down-phosphorylated proteins revealed common and distinct signatures induced by infection. In particular, HBV infection resulted in up-phosphorylation of proteins involved in DNA damage signaling and repair, RNA metabolism, in particular splicing, and cytoplasmic cell-signaling. Down-phosphorylated proteins were mostly involved in cell signaling and communication. Validation studies carried out on selected up-phosphorylated proteins, revealed that HBV infection induced a DNA damage response characterized by the appearance of 53BP1 foci, the inactivation of which by siRNA increased cccDNA levels. In addition, among up-phosphorylated RNA binding proteins (RBPs), SRRM2, a major scaffold of nuclear speckles behaved as an antiviral factor. In accordance with these findings, kinase prediction analysis indicated that HBV infection upregulates the activity of major kinases involved in DNA repair. These results strongly suggest that HBV infection triggers an intrinsic anti-viral response involving DNA repair factors and RBPs that contribute to reduce HBV replication in cell culture models.

2.
Placenta ; 152: 39-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788480

ABSTRACT

INTRODUCTION: Several factors influence transmission of 2019-nCoV from mother to fetus during pregnancy, thus the dynamics of vertical transmission is unclear. The role of cellular protective factors, namely a 90 KDa glycoprotein, Early pregnancy-associated protein (Epap-1), expressed by placental endothelial cells in women during early pregnancy would provide an insight into role of placental factors in virus transmission. Since viral spike protein binding to the ACE2 receptors of the host cells promotes virus invasion in placental tissue, an analysis of effects of Epap-1 on the Spike-ACE2 protein binding was studied. METHODS: Epap-1 was isolated from MTP placental tissue. Molecular interaction of Epap-1 and variants of the spike was analyzed in silco. The interaction of Epap-1 with Spike and RBD were analyzed using ELISA and immunofluorescence studies. RESULTS: The results in silico showed an interaction of Epap-1 with S-protein at RBD region involving K417, Y449, Y453, Y456, Y473, Q474, F486, Q498, N501 residues of spike with Y61, F287, I302, N303, N305, S334, N465, G467, N468 residues of Epap-1 leading to interference of S-protein and ACE2 interaction [1]. Further, the interaction is conserved among the variants. The studies in vitro confirm that Epap-1 affects S protein-ACE2 and RBD- ACE2 binding, thus suggesting that during early pregnancy, SARS CoV-2 infection may be protected by Epap-1 protein present in placental tissue. The results were further confirmed by pseudovirus expressing Spike and RBD in an infection assay. DISCUSSION: Epap-1 interferes with Spike and RBD interaction with ACE2, suggesting a possible mechanism of the antiviral environment during pregnancy.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Infectious Disease Transmission, Vertical , Placenta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Female , Humans , Pregnancy , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2/metabolism , COVID-19/transmission , COVID-19/metabolism , Placenta/metabolism , Placenta/virology , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/virology , Protein Binding , Pregnancy Proteins/metabolism , Betacoronavirus/metabolism , Peptidyl-Dipeptidase A/metabolism , Coronavirus Infections/transmission , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Pneumonia, Viral/metabolism , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Pandemics
3.
Antiviral Res ; 227: 105907, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772503

ABSTRACT

Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology.


Subject(s)
Antiviral Agents , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/virology , Animals , Humans , Virus Replication/drug effects , Respiratory Syncytial Virus, Human/drug effects , Sheep , Drug Resistance, Viral , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Viral Proteins/genetics , Lung/virology
4.
J Virol ; 98(6): e0053124, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38709106

ABSTRACT

Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE: The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Camelids, New World , Coronavirus Infections , Coronavirus OC43, Human , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Viral Load , Animals , Single-Domain Antibodies/immunology , Mice , Antibodies, Neutralizing/immunology , Coronavirus OC43, Human/immunology , Humans , Antibodies, Viral/immunology , Camelids, New World/immunology , Spike Glycoprotein, Coronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Female , Epitopes/immunology , Crystallography, X-Ray , Virus Internalization/drug effects , Disease Models, Animal , Mice, Inbred BALB C
5.
Front Immunol ; 15: 1338218, 2024.
Article in English | MEDLINE | ID: mdl-38742109

ABSTRACT

Cytotoxic T lymphocyte (CTL) motility is an important feature of effective CTL responses and is impaired when CTLs become exhausted, e.g. during chronic retroviral infections. A prominent T cell exhaustion marker is programmed cell death protein 1 (PD-1) and antibodies against the interaction of PD-1 and PD-ligand 1 (PD-L1) are known to improve CTL functions. However, antibody blockade affects all PD-1/PD-L1-expressing cell types, thus, the observed effects cannot be attributed selectively to CTLs. To overcome this problem, we performed CRISPR/Cas9 based knockout of the PD-1 coding gene PDCD1 in naïve Friend Retrovirus (FV)-specific CTLs. We transferred 1,000 of these cells into mice where they proliferated upon FV-infection. Using intravital two-photon microscopy we visualized CTL motility in the bone marrow and evaluated cytotoxic molecule expression by flow cytometry. Knockout of PDCD1 improved the CTL motility at 14 days post infection and enhanced the expression of cytotoxicity markers. Our data show the potential of genetic tuning of naive antiviral CTLs and might be relevant for future designs of improved T cell-mediated therapies.


Subject(s)
Cell Movement , Mice, Knockout , Programmed Cell Death 1 Receptor , Retroviridae Infections , T-Lymphocytes, Cytotoxic , Animals , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Mice , Cell Movement/genetics , Retroviridae Infections/immunology , T-Lymphocytes, Cytotoxic/immunology , Mice, Inbred C57BL , Friend murine leukemia virus/immunology , Gene Knockout Techniques , CD8-Positive T-Lymphocytes/immunology , CRISPR-Cas Systems , Cytotoxicity, Immunologic
6.
Mar Drugs ; 22(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38786581

ABSTRACT

Influenza A virus (IAV) can cause infection and illness in a wide range of animals, including humans, poultry, and swine, and cause annual epidemics, resulting in thousands of deaths and millions of hospitalizations all over the world. Thus, there is an urgent need to develop novel anti-IAV drugs with high efficiency and low toxicity. In this study, the anti-IAV activity of a marine-derived compound mycophenolic acid methyl ester (MAE) was intensively investigated both in vitro and in vivo. The results showed that MAE inhibited the replication of different influenza A virus strains in vitro with low cytotoxicity. MAE can mainly block some steps of IAV infection post adsorption. MAE may also inhibit viral replication through activating the cellular Akt-mTOR-S6K pathway. Importantly, oral treatment of MAE can significantly ameliorate pneumonia symptoms and reduce pulmonary viral titers, as well as improving the survival rate of mice, and this was superior to the effect of oseltamivir. In summary, the marine compound MAE possesses anti-IAV effects both in vitro and in vivo, which merits further studies for its development into a novel anti-IAV drug in the future.


Subject(s)
Antiviral Agents , Influenza A virus , Mycophenolic Acid , Orthomyxoviridae Infections , Virus Replication , Animals , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Mycophenolic Acid/pharmacology , Mice , Virus Replication/drug effects , Humans , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Mice, Inbred BALB C , Dogs , Female , Madin Darby Canine Kidney Cells , A549 Cells , Aquatic Organisms , Influenza, Human/drug therapy , Influenza, Human/virology
7.
Cell Mol Immunol ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684766

ABSTRACT

Innate lymphocytes (ILCs) rapidly respond to and protect against invading pathogens and cancer. ILCs include natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells and include type I, type II, and type III immune cells. While NK cells have been well recognized for their role in antiviral immunity, other ILC subtypes are emerging as players in antiviral defense. Each ILC subset has specialized functions that uniquely impact the antiviral immunity and health of the host depending on the tissue microenvironment. This review focuses on the specialized functions of each ILC subtype and their roles in antiviral immune responses across tissues. Several viruses within infection-prone tissues will be highlighted to provide an overview of the extent of the ILC immunity within tissues and emphasize common versus virus-specific responses.

8.
Adv Healthc Mater ; : e2304186, 2024 Apr 27.
Article in Catalan | MEDLINE | ID: mdl-38676697

ABSTRACT

In viral infections, natural killer (NK) cells exhibit anti-viral activity by inducing apoptosis in infected host cells and impeding viral replication through heightened cytokine release. Extracellular vesicles derived from NK cells (NK-EVs) also contain the membrane composition, homing capabilities, and cargo that enable anti-viral activity. These characteristics, and their biocompatibility and low immunogenicity, give NK-EVs the potential to be a viable therapeutic platform. This study characterizes the size, EV-specific protein expression, cell internalization, biocompatibility, and anti-viral miRNA cargo to evaluate the anti-viral properties of NK-EVs. After 48 h of NK-EV incubation in inflamed A549 lung epithelial cells, or conditions that mimic lung viral infections such as during COVID-19, cells treated with NK-EVs exhibit upregulated anti-viral miRNA cargo (miR-27a, miR-27b, miR-369-3p, miR-491-5p) compared to the non-treated controls and cells treated with control EVs derived from lung epithelial cells. Additionally, NK-EVs effectively reduce expression of viral RNA and pro-inflammatory cytokine (TNF-α, IL-8) levels in SARS-CoV-2 infected Vero E6 kidney epithelial cells and in infected mice without causing tissue damage while significantly decreasing pro-inflammatory cytokine compared to non-treated controls. Herein, this work elucidates the potential of NK-EVs as safe, anti-viral nanomaterials, offering a promising alternative to conventional NK cell and anti-viral therapies.

9.
J Infect ; 88(5): 106151, 2024 May.
Article in English | MEDLINE | ID: mdl-38582127

ABSTRACT

BACKGROUND: Immunological non-responders (INRs) among people living with HIV have inherently higher mortality and morbidity rates. The underlying immunological mechanisms whereby failure of immune reconstitution occurs in INRs require elucidation. METHOD: HIV-1 DNA and HIV-1 cell-associated RNA (CA-HIV RNA) quantifications were conducted via RT-qPCR. Transcriptome sequencing (RNA-seq), bioinformatics, and biological verifications were performed to discern the crosstalk between host and viral factors. Flow cytometry was employed to analyze cellular activation, proliferation, and death. RESULTS: HIV-1 DNA and CA-HIV RNA levels were observed to be significantly higher in INRs compared to immunological responders (IRs). Evaluation of CD4/CD8 ratios showed a significantly negative correlation with HIV-1 DNA in IRs, but not in INRs. Bioinformatics analyses and biological verifications showed IRF7/INF-α regulated antiviral response was intensified in INRs. PBMCs of INRs expressed significantly more HIV integrase-mRNA (p31) than IRs. Resting (CD4+CD69- T-cells) and activated (CD4+CD69+ T-cells) HIV-1 reservoir harboring cells were significantly higher in INRs, with the co-occurrence of significantly higher cellular proliferation and cell death in CD4+ T-cells of INRs. CONCLUSION: In INRs, the systematic crosstalk between the HIV-1 reservoir and host cells tends to maintain a persistent antiviral response-associated inflammatory environment, which drives aberrant cellular activation, proliferation, and death of CD4+ T-cells.


Subject(s)
Cell Proliferation , HIV Infections , HIV-1 , Interferon Regulatory Factor-7 , Humans , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Transcriptome , Cell Death , Male , RNA, Viral , Homeostasis , Adult , DNA, Viral/genetics , Female , CD4-Positive T-Lymphocytes/immunology , Middle Aged , T-Lymphocytes/immunology , Lymphocyte Activation , CD4-CD8 Ratio , Viral Load
10.
Int J Biol Macromol ; 268(Pt 1): 131628, 2024 May.
Article in English | MEDLINE | ID: mdl-38631577

ABSTRACT

MicroRNAs (miRNAs) play important roles in plant defense against various pathogens. ε-poly-l-lysine (ε-PL), a natural anti-microbial peptide produced by microorganisms, effectively suppresses tobacco mosaic virus (TMV) infection. To investigate the anti-viral mechanism of ε-PL, the expression profiles of miRNAs in TMV-infected Nicotiana tabacum after ε-PL treatment were analyzed. The results showed that the expression levels of 328 miRNAs were significantly altered by ε-PL. Degradome sequencing was used to identify their target genes. Integrative analysis of miRNAs target genes and gene-enriched GO/KEGG pathways indicated that ε-PL regulates the expression of miRNAs involved in critical pathways of plant hormone signal transduction, host defense response, and plant pathogen interaction. Subsequently, virus induced gene silencing combined with the short tandem targets mimic technology was used to analyze the function of these miRNAs and their target genes. The results indicated that silencing miR319 and miR164 reduced TMV accumulation in N. benthamiana, indicating the essential roles of these miRNAs and their target genes during ε-PL-mediated anti-viral responses. Collectively, this study reveals that microbial source metabolites can inhibit plant viruses by regulating crucial host miRNAs and further elucidate anti-viral mechanisms of ε-PL.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs , Nicotiana , Polylysine , Tobacco Mosaic Virus , Nicotiana/genetics , Nicotiana/virology , MicroRNAs/genetics , MicroRNAs/metabolism , Polylysine/pharmacology , Transcriptome , Plant Diseases/virology , Plant Diseases/genetics , Antiviral Agents/pharmacology , Gene Expression Profiling
11.
Microbiol Spectr ; 12(6): e0351623, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38687064

ABSTRACT

Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE: In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.


Subject(s)
COVID-19 , Coinfection , Epithelial Cells , Interferon Type I , Interleukin-17 , SARS-CoV-2 , Humans , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-17/immunology , COVID-19/immunology , Coinfection/immunology , Coinfection/microbiology , Coinfection/virology , Interferon Type I/metabolism , Interferon Type I/immunology , Male , SARS-CoV-2/immunology , Middle Aged , Female , Epithelial Cells/immunology , Epithelial Cells/microbiology , Adult , Nasal Mucosa/immunology , Nasal Mucosa/microbiology , Aged , Nasopharynx/microbiology , Candidiasis/immunology , Candidiasis/microbiology , Mycoses/immunology
12.
Cureus ; 16(3): e56025, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38606261

ABSTRACT

Ivermectin was first discovered in the 1970s by Japanese microbiologist Satoshi Omura and Irish parasitologist William C. Campbell. Ivermectin has become a versatile pharmaceutical over the past 50 years. Ivermectin is a derivative of avermectin originally used to treat parasitic infections. Emerging literature has suggested that its role goes beyond this and may help treat inflammatory conditions, viral infections, and cancers. Ivermectin's anti-parasitic, anti-inflammatory, anti-viral, and anticancer effects were explored. Its traditional mechanism of action in parasitic diseases, such as scabies and malaria, rests on its ability to interfere with the glutamate-gated chloride channels in invertebrates and the lack of P-glycoprotein in many parasites. More recently, it has been discovered that the ability of ivermectin to block the nuclear factor kappa-light-chain enhancer of the activated B (NF-κB) pathway that modulates the expression and production of proinflammatory cytokines is implicated in its role as an anti-inflammatory agent to treat rosacea. Ivermectin has also been evaluated for treating infections caused by viruses, such as SARS-CoV-2 and adenoviruses, through inhibition of viral protein transportation and acting on the importin α/ß1 interface. It has also been suggested that ivermectin can inhibit the proliferation of tumorigenic cells through various pathways that lead to the management of certain cancers. The review aimed to evaluate its multifaceted effects and potential clinical applications beyond its traditional use as an anthelmintic agent.

13.
Geroscience ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589671

ABSTRACT

Reduced insulin/IGF-1 signalling (rIIS) improves survival across diverse taxa and there is a growing interest in its role in regulating immune function. Whilst rIIS can improve anti-bacterial resistance, the consequences for anti-viral immunity are yet to be systematically examined. Here, we show that rIIS in adult Caenorhabditis elegans increases the expression of key genes in two different anti-viral immunity pathways, whilst reducing viral load in old age, increasing survival and reducing rate-of-senescence under infection by naturally occurring positive-sense single-stranded RNA Orsay virus. We found that both drh-1 in the anti-viral RNA interference (RNAi) pathway and cde-1 in the terminal uridylation-based degradation of viral RNA pathway were upregulated in early adulthood under rIIS and increased anti-viral resistance was not associated with reproductive costs. Remarkably, rIIS increased anti-viral gene expression only in infected worms, potentially to curb the costs of constitutively upregulated immunity. RNA viruses are found across taxa from plants to mammals and we demonstrate a novel role for rIIS in regulating resistance to viral infection. We therefore highlight this evolutionarily conserved signalling pathway as a promising therapeutic target to improve anti-viral immunity.

14.
Comput Biol Med ; 175: 108487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653064

ABSTRACT

Drug repurposing is promising in multiple scenarios, such as emerging viral outbreak controls and cost reductions of drug discovery. Traditional graph-based drug repurposing methods are limited to fast, large-scale virtual screens, as they constrain the counts for drugs and targets and fail to predict novel viruses or drugs. Moreover, though deep learning has been proposed for drug repurposing, only a few methods have been used, including a group of pre-trained deep learning models for embedding generation and transfer learning. Hence, we propose DeepSeq2Drug to tackle the shortcomings of previous methods. We leverage multi-modal embeddings and an ensemble strategy to complement the numbers of drugs and viruses and to guarantee the novel prediction. This framework (including the expanded version) involves four modal types: six NLP models, four CV models, four graph models, and two sequence models. In detail, we first make a pipeline and calculate the predictive performance of each pair of viral and drug embeddings. Then, we select the best embedding pairs and apply an ensemble strategy to conduct anti-viral drug repurposing. To validate the effect of the proposed ensemble model, a monkeypox virus (MPV) case study is conducted to reflect the potential predictive capability. This framework could be a benchmark method for further pre-trained deep learning optimization and anti-viral drug repurposing tasks. We also build software further to make the proposed model easier to reuse. The code and software are freely available at http://deepseq2drug.cs.cityu.edu.hk.


Subject(s)
Antiviral Agents , Deep Learning , Drug Repositioning , Drug Repositioning/methods , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Software , Benchmarking
15.
Expert Rev Clin Immunol ; 20(7): 703-714, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38477887

ABSTRACT

INTRODUCTION: The etiology of multiple sclerosis (MS) remains unknown. Pathogenesis likely relies on a complex interaction between multiple environmental, genetic, and behavioral risk factors. However, a growing body of literature supports the role of a preceding Epstein-Barr virus (EBV) infection in the majority of cases. AREAS COVERED: In this narrative review, we summarize the latest findings regarding the potential role of EBV as a predisposing event inducing new onset of MS. EBV interactions with the genetic background and other infectious agents such as human endogenous retrovirus are explored. Additional data regarding the role of EBV regarding the rate of mid- and long-term disease progression is also discussed. Lastly, the effect of currently approved disease-modifying therapies (DMT) for MS treatment on the EBV-based molecular mechanisms and the development of new EBV-specific therapies are further reviewed. EXPERT OPINION: Recent strong epidemiological findings support that EBV may be the primary inducing event in certain individuals that shortly thereafter develop MS. More studies are needed in order to better understand the significant variability in susceptibility based on environmental factors such as EBV exposure. Future investigations should focus on determining the specific EBV-related risk antigen(s) and phenotyping people with likely EBV-induced MS. Targeting EBV via several different avenues, including development of an EBV vaccine, may become the mainstay of MS treatment in the future.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Multiple Sclerosis/virology , Multiple Sclerosis/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Animals
16.
Front Oncol ; 14: 1329986, 2024.
Article in English | MEDLINE | ID: mdl-38469236

ABSTRACT

Purpose: Mounting evidence has revealed the anti-cancer activity of various anti-viral drugs. Oseltamivir phosphate (OP), namely Tamiflu®, is routinely used to combat influenza infections. Although evidence has indicated the anti-cancer effects of OP in vitro and in vivo, little information is known about the effect of OP use on cancers in humans. Methods: A nationwide population-based cohort study involving 13,977,101 cases with 284,733 receiving OP was performed to examine the association between OP use and cancers using the National Health Insurance Research Database in Taiwan between 2009 and 2018. Results: The cohort study found that OP users showed a significantly lower incidence of lung cancer, colon cancer, liver, and intrahepatic bile duct cancer, oral cancer, pancreas cancer, esophagus cancer, stomach cancer, and prostate cancer. Additionally, OP users exhibited a lower risk of cancer-related mortality (adjusted HR=0.779; 95% confidence interval [CI] 0.743-0.817; p<0.001) and a reduced risk of developing liver cancer (adjusted HR=0.895; 95% CI 0.824-0.972; p=0.008), esophagus cancer (adjusted HR=0.646; 95% CI 0.522-0.799; p<0.001) and oral cancer (adjusted HR=0.587; 95% CI 0.346-0.995; p=0.048). Notably, OP users had a significant reduction in liver cancer occurrence over a 10-year period follow-up and a lower cancer stage at liver cancer diagnosis. Conclusion: These findings first suggest the beneficial effects and therapeutic potential of OP use for certain cancers, especially liver cancer.

17.
Cell Rep ; 43(4): 113994, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38530856

ABSTRACT

Distinct dendritic cell (DC) subsets play important roles in shaping immune responses. Circulating DC precursors (pre-DCs) are more susceptible to HIV infection in vitro, which may explain the inefficiency of immune responses against HIV. However, the interplay between HIV and pre-DC is not defined in vivo. We identify human pre-DC equivalents in the cynomolgus macaque and then analyze their dynamics during simian immunodeficiency virus (SIV) infection to illustrate a sharp decrease of blood pre-DCs in early SIV infection and accumulation in lymph nodes (LNs), where they neglect to upregulate CD83/CD86 or MHC-II. Additionally, SIV infection attenuates the capacity of stimulated LN pre-DCs to produce IL-12p40. Analysis of HIV cohorts provides correlation between costimulatory molecule expression on pre-DCs and T cell activation in spontaneous HIV controllers. These findings pinpoint certain dynamics and functional changes of pre-DCs during SIV infection, providing a deeper understanding of immune dysregulation mechanisms elicited in people living with HIV.


Subject(s)
Dendritic Cells , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/pathology , Dendritic Cells/immunology , Simian Immunodeficiency Virus/immunology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , HIV Infections/immunology , HIV Infections/virology , HIV Infections/blood , HIV Infections/pathology , Macaca fascicularis , Lymphocyte Activation/immunology
18.
Microorganisms ; 12(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38543629

ABSTRACT

Viruses are minuscule infectious agents that reproduce exclusively within the living cells of an organism and are present in almost every ecosystem. Their continuous interaction with humans poses a significant threat to the survival and well-being of everyone. Apart from the common cold or seasonal influenza, viruses are also responsible for several important diseases such as polio, rabies, smallpox, and most recently COVID-19. Besides the loss of life and long-term health-related issues, clinical viral infections have significant economic and social impacts. Viral enzymes, especially proteases which are essential for viral multiplication, represent attractive drug targets. As a result, screening of viral protease inhibitors has gained a lot of interest in the development of anti-viral drugs. Despite the availability of anti-viral therapeutics, there is a clear need to develop novel curative agents that can be used against a given virus or group of related viruses. This review highlights the importance of yeasts as an in vivo model for screening viral enzyme inhibitors. We also discuss the advantages of yeast-based screening platforms over traditional assays. Therefore, in the present article, we discuss why yeast is emerging as a model of choice for in vivo screening of anti-viral molecules and why yeast-based screening will become more relevant in the future for screening anti-viral and other molecules of clinical importance.

19.
Virology ; 593: 110036, 2024 05.
Article in English | MEDLINE | ID: mdl-38432047

ABSTRACT

Due to the pandemic of COVID-19 and subsequent emerging of new mutant strains, there has been a worldwide hunt for therapeutic and protective agents for its inhibition. In this short communication, for the first time, we report the coal-derived carbon quantum dot (CQD) for the possible therapeutic application against SARS-CoV-2. The synthesized C1-CQD is observed to be safe towards the normal cell line at highest dose, while effectively inhibiting growth of SARS-CoV2 (>95%) with IC50 value of 5.469 µg/mL. Moreover, C1-CQD showed activity against SARS-CoV-2 infection which is comparable to known inhibitory antiviral drug i.e., Remdesivir. These novel findings indicate that coal-based CQDs have highly potent anti-viral activity and could be investigated further for developing cheap and safer alternative therapeutic strategies for inhibition of SARS-CoV-2.


Subject(s)
COVID-19 , Quantum Dots , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Carbon , RNA, Viral
20.
Microbiol Spectr ; 12(4): e0322023, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441979

ABSTRACT

Equid alphaherpesvirus 8 (EqHV-8) is one of the most economically important viruses that is known to cause severe respiratory disease, abortion, and neurological syndromes in equines. However, no effective vaccines or therapeutic agents are available to control EqHV-8 infection. Heme oxygenase-1 (HO-1) is an antioxidant defense enzyme that displays significant cytoprotective effects against different viral infections. However, the literature on the function of HO-1 during EqHV-8 infection is little. We explored the effects of HO-1 on EqHV-8 infection and revealed its potential mechanisms. Our results demonstrated that HO-1 induced by cobalt-protoporphyrin (CoPP) or HO-1 overexpression inhibited EqHV-8 replication in susceptible cells. In contrast, HO-1 inhibitor (zinc protoporphyria) or siRNA targeting HO-1 reversed the anti-EqHV-8 activity. Furthermore, biliverdin, a metabolic product of HO-1, mediated the anti-EqHV-8 effect of HO-1 via both the protein kinase C (PKC)ß/extracellular signal-regulated kinase (ERK)1/ERK2 and nitric oxide (NO)-dependent cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signaling pathways. In addition, CoPP protected the mice by reducing the EqHV-8 infection in the lungs. Altogether, these results indicated that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.IMPORTANCEEqHV-8 infections have threatened continuously donkey and horse industry worldwide, which induces huge economic losses every year. However, no effective vaccination strategies or drug against EqHV-8 infection until now. Our present study found that one host protien HO-1 restrict EqHV-8 replication in vitro and in vivo. Furthermore, we demonstrate that HO-1 and its metabolite biliverdin suppress EqHV-8 relication via the PKCß/ERK1/ERK2 and NO/cGMP/PKG pathways. Hence, we believe that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.


Subject(s)
Cyclic GMP-Dependent Protein Kinases , Heme Oxygenase-1 , Horses , Animals , Mice , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP-Dependent Protein Kinases/pharmacology , Biliverdine/pharmacology , Signal Transduction , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...