Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Molecules ; 29(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999189

ABSTRACT

Advanced techniques can accelerate the pace of natural product discovery from microbes, which has been lagging behind the drug discovery era. Therefore, the present review article discusses the various interdisciplinary and cutting-edge techniques to present a concrete strategy that enables the high-throughput screening of novel natural compounds (NCs) from known microbes. Recent bioinformatics methods revealed that the microbial genome contains a huge untapped reservoir of silent biosynthetic gene clusters (BGC). This article describes several methods to identify the microbial strains with hidden mines of silent BGCs. Moreover, antiSMASH 5.0 is a free, accurate, and highly reliable bioinformatics tool discussed in detail to identify silent BGCs in the microbial genome. Further, the latest microbial culture technique, HiTES (high-throughput elicitor screening), has been detailed for the expression of silent BGCs using 500-1000 different growth conditions at a time. Following the expression of silent BGCs, the latest mass spectrometry methods are highlighted to identify the NCs. The recently emerged LAESI-IMS (laser ablation electrospray ionization-imaging mass spectrometry) technique, which enables the rapid identification of novel NCs directly from microtiter plates, is presented in detail. Finally, various trending 'dereplication' strategies are emphasized to increase the effectiveness of NC screening.


Subject(s)
Biological Products , High-Throughput Screening Assays , Biological Products/chemistry , High-Throughput Screening Assays/methods , Computational Biology/methods , Multigene Family , Drug Discovery/methods , Data Mining , Bacteria/metabolism , Bacteria/genetics
2.
BMC Genomics ; 25(1): 603, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886660

ABSTRACT

BACKGROUND: A growing number of studies have demonstrated that the polar regions have the potential to be a significant repository of microbial resources and a potential source of active ingredients. Genome mining strategy plays a key role in the discovery of bioactive secondary metabolites (SMs) from microorganisms. This work highlighted deciphering the biosynthetic potential of an Arctic marine-derived strain Aspergillus sydowii MNP-2 by a combination of whole genome analysis and antiSMASH as well as feature-based molecular networking (MN) in the Global Natural Products Social Molecular Networking (GNPS). RESULTS: In this study, a high-quality whole genome sequence of an Arctic marine strain MNP-2, with a size of 34.9 Mb was successfully obtained. Its total number of genes predicted by BRAKER software was 13,218, and that of non-coding RNAs (rRNA, sRNA, snRNA, and tRNA) predicted by using INFERNAL software was 204. AntiSMASH results indicated that strain MNP-2 harbors 56 biosynthetic gene clusters (BGCs), including 18 NRPS/NRPS-like gene clusters, 10 PKS/PKS-like gene clusters, 8 terpene synthse gene clusters, 5 indole synthase gene clusters, 10 hybrid gene clusters, and 5 fungal-RiPP gene clusters. Metabolic analyses of strain MNP-2 grown on various media using GNPS networking revealed its great potential for the biosynthesis of bioactive SMs containing a variety of heterocyclic and bridge-ring structures. For example, compound G-8 exhibited a potent anti-HIV effect with an IC50 value of 7.2 nM and an EC50 value of 0.9 nM. Compound G-6 had excellent in vitro cytotoxicities against the K562, MCF-7, Hela, DU145, U1975, SGC-7901, A549, MOLT-4, and HL60 cell lines, with IC50 values ranging from 0.10 to 3.3 µM, and showed significant anti-viral (H1N1 and H3N2) activities with IC50 values of 15.9 and 30.0 µM, respectively. CONCLUSIONS: These findings definitely improve our knowledge about the molecular biology of genus A. sydowii and would effectively unveil the biosynthetic potential of strain MNP-2 using genomics and metabolomics techniques.


Subject(s)
Aspergillus , Multigene Family , Aspergillus/genetics , Aspergillus/metabolism , Arctic Regions , Humans , Biological Products/metabolism , Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Cell Line, Tumor , Biosynthetic Pathways/genetics , Secondary Metabolism/genetics , Genome, Fungal
3.
Front Microbiol ; 15: 1407289, 2024.
Article in English | MEDLINE | ID: mdl-38887720

ABSTRACT

Endophytic Streptomyces sp. are recognized as a potential resource for valuable natural products but are less explored. This study focused on exploring endophytic Streptomyces species residing within tomato plants (Solanum lycopersicum) harboring genes for the production of a novel class of antibiotics. Our research involved the isolation and characterization of Streptomyces sp. VITGV156, a newly identified endophytic Streptomyces species that produces antimicrobial products. VITGV156 harbors a genome of 8.18 mb and codes 6,512 proteins, of which 4,993 are of known function (76.67%) and 1,519 are of unknown function (23.32%). By employing genomic analysis, we elucidate the genome landscape of this microbial strain and shed light on various BGCs responsible for producing polyketide antimicrobial compounds, with particular emphasis on the antibiotic kendomycin. We extended our study by evaluating the antibacterial properties of kendomycin. Overall, this study provides valuable insights into the genome of endophytic Streptomyces species, particularly Streptomyces sp. VITGV156, which are prolific producers of antimicrobial agents. These findings hold promise for further research and exploitation of pharmaceutical compounds, offering opportunities for the development of novel antimicrobial drugs.

4.
Antibiotics (Basel) ; 13(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786187

ABSTRACT

Actinomycetes have long been recognized as important sources of clinical antibiotics. However, the exploration of rare actinomycetes, despite their potential for producing bioactive molecules, has remained relatively limited compared to the extensively studied Streptomyces genus. The extensive investigation of Streptomyces species and their natural products has led to a diminished probability of discovering novel bioactive compounds from this group. Consequently, our research focus has shifted towards less explored actinomycetes, beyond Streptomyces, with particular emphasis on Kitasatospora setae (K. setae). The genome of K. setae was annotated and analyzed through whole-genome sequencing using multiple bio-informatics tools, revealing an 8.6 Mbp genome with a 74.42% G + C content. AntiSMASH analysis identified 40 putative biosynthetic gene clusters (BGCs), approximately half of which were recessive and unknown. Additionally, metabolomic mining utilizing mass spectrometry demonstrated the potential for this rare actinomycete to generate numerous bioactive compounds such as glycosides and macrolides, with bafilomycin being the major compound produced. Collectively, genomics- and metabolomics-based techniques confirmed K. setae's potential as a bioactive secondary metabolite producer that is worthy of further exploration.

5.
BMC Genomics ; 25(1): 364, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615000

ABSTRACT

Pseudoalteromonas viridis strain BBR56 was isolated from seawater at Dutungan Island, South Sulawesi, Indonesia. Bacterial DNA was isolated using Promega Genomic DNA TM050. DNA purity and quantity were assessed using NanoDrop spectrophotometers and Qubit fluorometers. The DNA library and sequencing were prepared using Oxford Nanopore Technology GridION MinKNOW 20.06.9 with long read, direct, and comprehensive analysis. High accuracy base calling was assessed with Guppy version 4.0.11. Filtlong and NanoPlot were used for filtering and visualizing the FASTQ data. Flye (2.8.1) was used for de novo assembly analysis. Variant calls and consensus sequences were created using Medaka. The annotation of the genome was elaborated by DFAST. The assembled genome and annotation were tested using Busco and CheckM. Herein, we found that the highest similarity of the BBR56 isolate was 98.37% with the 16 S rRNA gene sequence of P. viridis G-1387. The genome size was 5.5 Mb and included chromosome 1 (4.2 Mbp) and chromosome 2 (1.3 Mbp), which encoded 61 pseudogenes, 4 noncoding RNAs, 113 tRNAs, 31 rRNAs, 4,505 coding DNA sequences, 4 clustered regularly interspaced short palindromic repeats, 4,444 coding genes, and a GC content of 49.5%. The sequence of the whole genome of P. viridis BBR56 was uploaded to GenBank under the accession numbers CP072425-CP072426, biosample number SAMN18435505, and bioproject number PRJNA716373. The sequence read archive (SRR14179986) was successfully obtained from NCBI for BBR56 raw sequencing reads. Digital DNA-DNA hybridization results showed that the genome of BBR56 had the potential to be a new species because no other bacterial genomes were similar to the sample. Biosynthetic gene clusters (BGCs) were assessed using BAGEL4 and the antiSMASH bacterial version. The genome harbored diverse BGCs, including genes that encoded polyketide synthase, nonribosomal peptide synthase, RiPP-like, NRP-metallophore, hydrogen cyanide, betalactone, thioamide-NRP, Lant class I, sactipeptide, and prodigiosin. Thus, BBR56 has considerable potential for further exploration regarding the use of its secondary metabolite products in the human and fisheries sectors.


Subject(s)
Pseudoalteromonas , Humans , Pseudoalteromonas/genetics , Pseudogenes , Gene Library , DNA, Bacterial
6.
Front Microbiol ; 14: 1266620, 2023.
Article in English | MEDLINE | ID: mdl-38088969

ABSTRACT

In this study, a new species Fusarium indicum belonging to the Fusarium concolor species complex is established to accommodate an endophytic fungus isolated from Bambusa sp. and collected from Himachal Pradesh. The identity of this isolate was confirmed based on the asexual morphs, its cultural characteristics, and phylogenetic analyses. This isolate revealed out to be distinct by showing less similarity with described species in the genus Fusarium based on molecular sequence data, approximately 93.9% similarity based on translation elongation factor 1-alpha, and 94.2% similarity based on RNA polymerase II subunit. Furthermore, to increase knowledge about this novel species, whole-genome sequencing was carried out. The results displayed that Fusarium indicum NFCCI 5145 possesses a 40.2 Mb genome and 48.39% of GC content. Approximately 12,963 functional protein-coding genes were carefully predicted and annotated using different BLAST databases, such as Uniprot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), Pathogen Host Interactions (PHI), Clusters of Orthologous Groups (COG), and Carbohydrate-Active enzymes (CAZy). The orthologous proteins were identified using OrthoFinder and used for the phylogenetic analysis. ANIb confirmed that the isolate is closely related to the F. concolor species complex. It is known that Fusarium strains can produce a wide range of bioactive secondary metabolites. Therefore, in-depth mining for biosynthetic gene clusters for secondary metabolite biosynthesis of Fusarium indicum NFCCI 5145 was investigated using Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) annotation. AntiSMASH results displayed that this isolate possesses 45 secondary metabolites of biosynthetic gene clusters (BGCs). These findings significantly improved our understanding of the strain Fusarium indicum NFCCI 5145 and its possible applications in different sectors including industry for the secondary metabolites and enzymes it can produce.

7.
J Microbiol Biotechnol ; 33(10): 1292-1298, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37528562

ABSTRACT

PAMB 00755T, a bacterial strain, was isolated from Korean fir leaves. The strain exhibits yellow colonies and consists of Gram-negative, non-motile, short rods or ovoid-shaped cells. It displays optimal growth conditions at 20°C, 0% NaCl, and pH 6.0. Results of 16S rRNA gene-based phylogenetic analyses showed that strain PAMB 00755T was most closely related to Sphingomonas chungangi MAH-6T (97.7%) and Sphingomonas polyaromaticivorans B2-7T (97.4%), and ≤96.5% sequence similarity to other members of the genus Sphingomonas. The values of average nucleotide identity (79.9-81.3%), average amino acid identity (73.3-75.9%), and digital DNA-DNA hybridization (73.3-75.9%) were significantly lower than the threshold values for species boundaries; these overall genome-related indexes (OGRI) analyses indicated that the strain represents a novel species. Genomic analysis revealed that the strain has a 4.4-Mbp genome encoding 4,083 functional genes, while the DNA G+C content of the whole genome is 66.1%. The genome of strain PAMB 00755T showed a putative carotenoid biosynthetic cluster responsible for its antioxidant activity. The respiratory quinone was identified as ubiquinone 10 (Q-10), while the major fatty acids in the profile were identified as C18:1ω7c and/or C18:1ω6c (summed feature 8). The major polar lipids of strain PAMB 00755T were diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, and phosphatidylcholine. Based on a comprehensive analysis of genomic, phenotypic, and chemotaxonomic characteristics, we proposed the name Sphingomonas abietis sp. nov. for this novel species, with PAMB 00755T as the type strain (= KCTC 92781T = GDMCC 1.3779T).


Subject(s)
Phospholipids , Sphingomonas , Phospholipids/chemistry , Sphingomonas/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Fatty Acids/chemistry , Republic of Korea , Bacterial Typing Techniques
8.
Res Sq ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37461605

ABSTRACT

Background: With the advent of long-term human habitation in space and on the moon, understanding how the built environment microbiome of space habitats differs from Earth habits, and how microbes survive, proliferate and spread in space conditions, is coming more and more important. The Microbial Tracking mission series has been monitoring the microbiome of the International Space Station (ISS) for almost a decade. During this mission series, six unique strains of Gram-positive bacteria, including two spore-forming and three non-spore-forming species, were isolated from the environmental surfaces of the International Space Station (ISS). Results: The analysis of their 16S rRNA gene sequences revealed <99% similarities with previously described bacterial species. To further explore their phylogenetic affiliation, whole genome sequencing (WGS) was undertaken. For all strains, the gyrB gene exhibited <93% similarity with closely related species, which proved effective in categorizing these ISS strains as novel species. Average ucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values, when compared to any known bacterial species, were less than <94% and 50% respectively for all species described here. Traditional biochemical tests, fatty acid profiling, polar lipid, and cell wall composition analyses were performed to generate phenotypic characterization of these ISS strains. A study of the shotgun metagenomic reads from the ISS samples, from which the novel species were isolated, showed that only 0.1% of the total reads mapped to the novel species, supporting the idea that these novel species are rare in the ISS environments. In-depth annotation of the genomes unveiled a variety of genes linked to amino acid and derivative synthesis, carbohydrate metabolism, cofactors, vitamins, prosthetic groups, pigments, and protein metabolism. Further analysis of these ISS-isolated organisms revealed that, on average, they contain 46 genes associated with virulence, disease, and defense. The main predicted functions of these genes are: conferring resistance to antibiotics and toxic compounds, and enabling invasion and intracellular resistance. After conducting antiSMASH analysis, it was found that there are roughly 16 cluster types across the six strains, including ß-lactone and type III polyketide synthase (T3PKS) clusters. Conclusions: Based on these multi-faceted taxonomic methods, it was concluded that these six ISS strains represent five novel species, which we propose to name as follows: Arthrobacter burdickii IIF3SC-B10T (=NRRL B-65660T), Leifsonia virtsii, F6_8S_P_1AT (=NRRL B-65661T), Leifsonia williamsii, F6_8S_P_1BT (=NRRL B- 65662T and DSMZ 115932T), Paenibacillus vandeheii, F6_3S_P_1CT(=NRRL B-65663T and DSMZ 115940T), and Sporosarcina highlanderae F6_3S_P_2 T(=NRRL B-65664T and DSMZ 115943T). Identifying and characterizing the genomes and phenotypes of novel microbes found in space habitats, like those explored in this study, is integral for expanding our genomic databases of space-relevant microbes. This approach offers the only reliable method to determine species composition, track microbial dispersion, and anticipate potential threats to human health from monitoring microbes on the surfaces and equipment within space habitats. By unraveling these microbial mysteries, we take a crucial step towards ensuring the safety and success of future space missions.

9.
Data Brief ; 48: 109228, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383735

ABSTRACT

This study presents the complete genome sequence of Streptomyces californicus TBG-201 isolated from the soil samples of Vandanam sacred groves in Alleppey District, Kerala, India. The organism has potent chitinolytic activity. The genome of S. californicus TBG-201 was sequenced using the Illumina HiSeq-2500 platform with 2 × 150bp pair-end protocol and assembled using Velvet version 1.2.10.0. The assembled genome has a 7.99 Mb total length, a G+C content of 72.60%, and 6683 protein-coding genes, 116 pseudogenes, 31 rRNAs, and 66 tRNAs. AntiSMASH analysis revealed abundant biosynthetic gene clusters, while the dbCAN meta server was used to detect carbohydrate-active enzyme coding genes. The NCBI Prokaryotic Genome Annotation Pipeline was used for genome annotation. The presence of numerous genes coding for chitin degradation indicates the chitinolytic ability of this strain. The genome data have been deposited in NCBI with the accession number JAJDST000000000.

10.
Microorganisms ; 11(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37110391

ABSTRACT

Endophytic fungi are a treasure trove of natural products with great chemical diversity that is largely unexploited. As an alternative to the traditional bioactivity-guided screening approach, the genome-mining-based approach provides a new methodology for obtaining novel natural products from endophytes. In our study, the whole genome of an endophyte, Dactylonectria alcacerensis CT-6, was obtained for the first time. Genomic analysis indicated that D. alcacerensis CT-6 has one 61.8 Mb genome with a G+C content of 49.86%. Gene annotation was extensively carried out using various BLAST databases. Genome collinearity analysis revealed that D. alcacerensis CT-6 has high homology with three other strains of the Dactylonectria genus. AntiSMASH analysis displayed 45 secondary metabolite biosynthetic gene clusters (BGCs) in D. alcacerensis CT-6, and most of them were unknown and yet to be unveiled. Furthermore, only six known substances had been isolated from the fermented products of D. alcacerensis CT-6, suggesting that a great number of cryptic BGCs in D. alcacerensis CT-6 are silent and/or expressed at low levels under conventional conditions. Therefore, our study provides an important basis for further chemical study of D. alcacerensis CT-6 using the gene-mining strategy to awaken these cryptic BGCs for the production of bioactive secondary metabolites.

11.
Front Microbiol ; 14: 1101150, 2023.
Article in English | MEDLINE | ID: mdl-36846770

ABSTRACT

A novel, nostoxanthin-producing, endophytic bacterium, designated as AK-PDB1-5T, was isolated from the needle-like leaves of the Korean fir (Abies koreana Wilson) collected from Mt. Halla in Jeju, South Korea. A 16S rRNA sequence comparison indicated that the closest phylogenetic neighbors were Sphingomonas crusticola MIMD3T (95.6%) and Sphingomonas jatrophae S5-249T (95.3%) of the family Sphingomonadaceae. Strain AK-PDB1-5T had a genome size of 4,298,284 bp with a 67.8% G + C content, and digital DNA-DNA hybridization and OrthoANI values with the most closely related species of only 19.5-21% and 75.1-76.8%, respectively. Cells of the strain AK-PDB1-5T were Gram-negative, short rods, oxidase- and catalase-positive. Growth occurred at pH 5.0-9.0 (optimum pH 8.0) in the absence of NaCl at 4-37°C (optimum 25-30°C). Strain AK-PDB1-5T contained C14:0 2OH, C16:0 and summed feature 8 as the major cellular fatty acids (> 10%), while sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phospholipids and lipids were found to be the major polar lipids. The strain produces a yellow carotenoid pigment; natural products prediction via AntiSMASH tool found zeaxanthin biosynthesis clusters in the entire genome. Biophysical characterization by ultraviolet-visible absorption spectroscopy and ESI-MS studies confirmed the yellow pigment was nostoxanthin. In addition, strain AK-PDB1-5T was found significantly promote Arabidopsis seedling growth under salt conditions by reducing reactive oxygen species (ROS). Based on the polyphasic taxonomic analysis results, strain AK-PDB1-5T was determined to be a novel species in the genus Sphingomonas with the proposed name Sphingomonas nostoxanthinifaciens sp. nov. The type strain is AK-PDB1-5T (= KCTC 82822T = CCTCC AB 2021150T).

12.
AMB Express ; 13(1): 9, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36680648

ABSTRACT

Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 µg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.

13.
Microorganisms ; 12(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38257915

ABSTRACT

Anthropogenic pollution, including residues from the green revolution initially aimed at addressing food security and healthcare, has paradoxically exacerbated environmental challenges. The transition towards comprehensive green biotechnology and bioremediation, achieved with lower financial investment, hinges on microbial biotechnology, with the Rhodococcus genus emerging as a promising contender. The significance of fully annotating genome sequences lies in comprehending strain constituents, devising experimental protocols, and strategically deploying these strains to address pertinent issues using pivotal genes. This study revolves around Rhodococcus erythropolis MGMM8, an associate of winter wheat plants in the rhizosphere. Through the annotation of its chromosomal genome and subsequent comparison with other strains, its potential applications were explored. Using the antiSMASH server, 19 gene clusters were predicted, encompassing genes responsible for antibiotics and siderophores. Antibiotic resistance evaluation via the Comprehensive Antibiotic Resistance Database (CARD) identified five genes (vanW, vanY, RbpA, iri, and folC) that were parallel to strain CCM2595. Leveraging the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) for biodegradation, heavy metal resistance, and remediation genes, the presence of chlorimuron-ethyl, formaldehyde, benzene-desulfurization degradation genes, and heavy metal-related genes (ACR3, arsC, corA, DsbA, modA, and recG) in MGMM8 was confirmed. Furthermore, quorum-quenching signal genes, critical for curbing biofilm formation and virulence elicited by quorum-sensing in pathogens, were also discerned within MGMM8's genome. In light of these predictions, the novel isolate MGMM8 warrants phenotypic assessment to gauge its potential in biocontrol and bioremediation. This evaluation extends to isolating active compounds for potential antimicrobial activities against pathogenic microorganisms. The comprehensive genome annotation process has facilitated the genetic characterization of MGMM8 and has solidified its potential as a biotechnological strain to address global anthropogenic predicaments.

14.
Front Microbiol ; 13: 1054813, 2022.
Article in English | MEDLINE | ID: mdl-36532473

ABSTRACT

Onion bulb rot can be caused by multiple plant pathogens including bacterial pathogens. During our routine survey of commercial onion farms in 2014, 2020, and 2021, seven putative Rouxiella spp. strains were isolated from symptomatic onion samples in Georgia, United States. Upon fulfilling Koch's postulates on onion, a genome analysis was conducted. Whole-genome indices (ANI and dDDH) showed that the strains belonged to Rouxiella badensis. Although the seven R. badensis strains were not pathogenic on onion foliage, the strains were able to cause bulb rot and could also produce necrotic lesions in a red onion scale assay. R. badensis populations increased significantly and to a level comparable to P. ananatis PNA 97-1R in a red onion scale infection assay. The core-genome analysis grouped all onion R. badensis strains from Georgia together, and distinct from R. badensis strains isolated from other sources and locations. Based on the genome analysis of strains (from the current study and available genomes in the repository), type I, III (Ssa-Esc and Inv-Mxi-Spa types), and V secretion systems are present in R. badensis genomes, while type II, IV, and VI secretion systems are absent. However, various secondary metabolite gene clusters were identified from R. badensis genomes, and a thiol/redox-associated enzyme gene cluster similar to the Pantoea alt cluster mediating thiosulfinate tolerance was also present in onion strains of R. badensis. This is the first report of R. badensis as a plant pathogen.

15.
Front Chem ; 10: 1025979, 2022.
Article in English | MEDLINE | ID: mdl-36277345

ABSTRACT

Natural products derived from microorganisms play a prominent role in drug discovery as potential anti-infective agents. Over the past few decades, lipopeptides produced by particularly Bacillus, Pseudomonas, Streptomyces, Paenibacillus, and cyanobacteria species, have been extensively studied for their antimicrobial potential. Subsequently, daptomycin and polymyxin B were approved by the Food and Drug Administration as lipopeptide antibiotics. Recent studies have however, indicated that Serratia, Brevibacillus, and Burkholderia, as well as predatory bacteria such as Myxococcus, Lysobacter, and Cystobacter, hold promise as relatively underexplored sources of novel classes of lipopeptides. This review will thus highlight the structures and the newly discovered scaffolds of lipopeptide families produced by these bacterial genera, with potential antimicrobial activities. Additionally, insight into the mode of action and biosynthesis of these lipopeptides will be provided and the application of a genome mining approach, to ascertain the biosynthetic gene cluster potential of these bacterial genera (genomes available on the National Center for Biotechnology Information) for their future pharmaceutical exploitation, will be discussed.

16.
Microorganisms ; 10(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36144391

ABSTRACT

As one of the commonly isolated endophytic fungi, Alternaria has been known for the production of numerous secondary metabolites (SMs). However, its detailed genomic features and SM biosynthetic potential have not been extensively studied thus far. The present work focuses on the whole-genome sequencing and assembly of an endophytic strain Alternaria sp. SPS-2 derived from Echrysantha chrysantha Lindl. and gene annotation using various bioinformatic tools. The results of this study suggested that the genome of strain SPS-2 was 33.4 Mb in size with a GC content of 51% and an N50 scaffold of 2.6 Mb, and 9789 protein-coding genes, including 644 CAZyme-encoding genes, were discovered in strain SPS-2 through KEGG enrichment analysis. The antiSMASH results indicated that strain SPS-2 harbored 22 SM biosynthetic gene clusters (BGCs), 14 of which are cryptic and unknown. LS-MS/MS and GNPS-based analyses suggested that this endophytic fungus is a potential producer of bioactive SMs and merits further exploration and development.

17.
J Fungi (Basel) ; 8(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35736074

ABSTRACT

Aspergillus niger is one of the most important sources of secondary metabolites (SMs), with a wide array of pharmacological effects, including anti-inflammatory, antitumor, immunomodulatory and antioxidant effects. However, the biosynthetic analysis of these bioactive components has been rarely reported owing to the lack of high-quality genome sequences and comprehensive analysis. In this study, the whole genome of one marine-sponge-derived strain A. niger L14 was sequenced and assembled as well as in-depth bioinformatic analysis. The results indicated that the sequence assembly of strain L14 generated one high-quality genome with a total size of 36.1 Mb, a G + C content of 45.3% and an N50 scaffold of 4.2 Mb. Gene annotation was extensively deployed using various BLAST databases, including non-redudant (Nr) protein sequence, nucleotide (Nt) sequence, Swiss-Prot, Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) as well as Pathogen Host Interactions (PHI) and Carbohydrate-active enzymes (CAZy) databases. AntiSMASH analysis revealed that this marine strain harbors a total of 69 SMs biosynthesis gene clusters (BGCs), including 17 PKSs, 18 NRPSs, 21 NRPS-likes, 9 terpenes, 2 indoles, 1 betalactone and 1 siderophore, suggesting its biosynthetic potential to produce a wide variety of SMs. These findings will assist in future investigations on the genetic basis of strain L14 and provide insights into its new bioactive SMs for new drug discovery.

18.
Metabolites ; 12(6)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35736454

ABSTRACT

Endophytic fungi are one of the most prolific sources of functional biomolecules with therapeutic potential. Besides playing an important role in serious plant diseases, Fusarium strains possess the powerful capability to produce a diverse array of bioactive secondary metabolites (SMs). In order to in-depth mine gene clusters for SM biosynthesis of the genus Fusarium, an endophytic strain Fusarium sp. R1 isolated from Rumex madaio Makino was extensively investigated by whole-genome sequencing and in-depth bioinformatic analysis, as well as antiSMASH annotation. The results displayed that strain R1 harbors a total of 51.8 Mb genome, which consists of 542 contigs with an N50 scaffold length of 3.21 Mb and 50.4% GC content. Meanwhile, 19,333 functional protein-coding genes, 338 tRNA and 111 rRNA were comprehensively predicted and highly annotated using various BLAST databases including non-redundant (Nr) protein sequence, nucleotide (Nt) sequence, Swiss-Prot, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG), as well as Pathogen Host Interactions (PHI) and Carbohydrate-Active enzymes (CAZy) databases. Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) results showed that strain R1 has 37 SM biosynthetic gene clusters (BGCs), including 17 nonribosomal peptide synthetases (NRPSs), 13 polyketide synthetases (PKSs), 3 terpene synthases (Ts), 3 hybrid NRPS + PKS and 1 hybrid indole + NRPS. These findings improve our knowledge of the molecular biology of the genus Fusarium and would promote the discovery of new bioactive SMs from strain R1 using gene mining strategies including gene knockout and heteroexpression.

19.
Mar Biotechnol (NY) ; 24(1): 190-202, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35166965

ABSTRACT

The marine bacterium Pseudoalteromonas xiamenensis STKMTI.2 was isolated from a mangrove soil sediment on Setokok Island, Batam, Indonesia. The genome of this bacterium consisted of 4,563,326 bp (GC content: 43.2%) with 1 chromosome, 2 circular plasmids, 2 linear plasmids, 4,824 protein-coding sequences, 25 rRNAs, 104 tRNAs, 4 ncRNAs, and 1 clustered, regularly interspaced, short palindromic repeated (CRISPR). This strain possessed cluster genes which are responsible for the production of brominated marine pyrroles/phenols (bmp), namely, bmp8 and bmp9. Other gene clusters responsible for the synthesis of secondary metabolites were identified using antiSMASH and BAGEL4, which yielded five results, namely, non-ribosomal peptides, polyketide-like butyrolactone, Lant class I, and RiPP-like, detected in chromosome 1, while prodigiosin was detected in the unnamed plasmid 5. This suggests that these whole genome data will be of remarkable importance for the improved understanding of the biosynthesis of industrially important bioactive and antibacterial compounds produced by P. xiamenensis STKMTI.2.


Subject(s)
Pseudoalteromonas , Soil , Anti-Bacterial Agents/metabolism , Genome, Bacterial , Multigene Family/genetics , Pseudoalteromonas/genetics
20.
Microb Ecol ; 83(2): 470-481, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33987687

ABSTRACT

Research on secondary metabolites (SMs) has been mostly focused on Gram-positive bacteria, especially Actinobacteria. The association of genomics with robust bioinformatics tools revealed the neglected potential of Gram-negative bacteria as promising sources of new SMs. The family Sphingobacteriaceae belongs to the phylum Bacteroidetes having representatives in practically all environments including humans, rhizosphere, soils, wastewaters, among others. Some genera of this family have demonstrated great potential as plant growth promoters, bioremediators and producers of some value-added compounds such as carotenoids and antimicrobials. However, to date, Sphingobacteriaceae's SMs are still poorly characterized, and likewise, little is known about their chemistry. This study revealed that Sphingobacteriaceae pangenome encodes a total of 446 biosynthetic gene clusters (BGCs), which are distributed across 85 strains, highlighting the great potential of this bacterial family to produce SMs. Pedobacter, Mucilaginibacter and Sphingobacterium were the genera with the highest number of BGCs, especially those encoding the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), terpenes, polyketides and nonribosomal peptides (NRPs). In Mucilaginibacter and Sphingobacterium genera, M. lappiensis ATCC BAA-1855, Mucilaginibacter sp. OK098 (both with 11 BGCs) and Sphingobacterium sp. 21 (6 BGCs) are the strains with the highest number of BGCs. Most of the BGCs found in these two genera did not have significant hits with the MIBiG database. These results strongly suggest that the bioactivities and environmental functions of these compounds, especially RiPPs, PKs and NRPs, are still unknown. Among RiPPs, two genera encoded the production of class I and class III lanthipeptides. The last are associated with LanKC proteins bearing uncommon lyase domains, whose dehydration mechanism deserves further investigation. This study translated genomics into functional information that unveils the enormous potential of environmental Gram-negative bacteria to produce metabolites with unknown chemistries, bioactivities and, more importantly, unknown ecological roles.


Subject(s)
Actinobacteria , Bacteroidetes , Actinobacteria/genetics , Bacteroidetes/genetics , Computational Biology , Genomics/methods , Humans , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...