Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Colloids Surf B Biointerfaces ; 245: 114274, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39357389

ABSTRACT

In this study, to address the susceptibility of 3D-printed titanium implants to bacterial infection, we propose to form a chitosan/ZnO composite coating by electrophoretic deposition to enhance its antimicrobial, biocompatible, and mechanical properties. The surface morphology of the composite coating is relatively flat, showing good hydrophilicity and coating adhesion, and the corrosion current density is significantly lower than that of the untreated titanium alloy. According to the results of the study, the composite coatings containing more than 0.1 g of ZnO (Z2, Z3, Z4 groups) showed excellent antibacterial effects against Staphylococcus aureus and Escherichia coli, with antibacterial rates of more than 95 %, and the medium-concentration ZnO coatings (Z2 group) showed good cellular activity, with cell viability rates of more than 80 %. In contrast, the high-concentration ZnO coatings (Z3, Z4 groups) showed a certain degree of cytotoxicity. The inherent film-forming property of the composite coating enabled the cells to adhere well to the coating surface. It was found through SBF body fluid immersion that Zn²âº can increase the rate of hydroxyapatite precipitation and enhance bioactivity. These results emphasize the importance of precise control of the ZnO content in the improved antimicrobial and biocompatible chitosan-ZnO composite coatings to ensure excellent antimicrobial properties and necessary biocompatibility.

2.
ACS Appl Bio Mater ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240218

ABSTRACT

In this study, we synthesized polyelectrolyte complexed nanoparticles using an ion exchange reaction between poly(hexamethylene guanidine hydrochloride) and sodium caffeate. The morphology of the obtained antiparticle was observed by scanning electron microscopy, and FT-IR and XPS were employed for the structural characterization. The antimicrobial properties of E. coli and S. aureus were characterized through minimum inhibitory concentration (MIC), growth curve analysis, plate colony counting method, and crystal violet method. Notably, the sample showed a 100% bactericidal rate against E. coli at 0.095 µg/mL and against S. aureus at 0.375 µg/mL within 1 h, demonstrating excellent antimicrobial performance against E. coli and S. aureus. The CA-PHMG-containing acrylic resin coatings exhibited exceptional antimicrobial and antiadhesive properties when examined under an inverted fluorescence microscope, particularly at a 4% weight concentration of the antibacterial agent. This study holds vast potential for development in the field of antimicrobial coatings.

3.
Small ; : e2401063, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990072

ABSTRACT

Structural colors generated via total internal reflection (TIR) using nanostructure-free micro-concave shapes have garnered increasing attention. However, the application of large micro-concave structures for structural coloration remains limited. Herein, a flexibly tunable structural color film fabricated by casting polydimethylsiloxane (PDMS) on an array of large poly(glycidyl methacrylate) (PGMA) bowl-shaped particles is reported. The resultant film exhibits tunable red to green structural colors with changing observation angles. Moreover, the color can be further tailored by altering the shape of the film itself. The incorporation of the PDMS layer not only facilitates a shift in the locus of TIR from the bottom surface to the top concave surface of the particles, thereby enabling the generation of structural color, but also confers enhanced flexibility to the film. Further decoration with silver nanoparticles imparts antimicrobial properties, yielding a novel antimicrobial coating material with structural colors. The simple and cost-effective strategy for the production of structural color films provides potential applications in antimicrobial coatings, enabling accessible and customizable structural coloration using big-size micro-concave particles.

4.
Polymers (Basel) ; 16(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000741

ABSTRACT

With improvements in living standards, the demand for antibacterial self-cleaning coatings has significantly increased. In this work, self-cleaning coatings with antibacterial properties were fabricated by spray-coating a composite of fluorinated acrylic resin and Ag/SiO2 nanoparticles with quaternary ammonium salts. The synergistic action of the quaternary ammonium salts and silver nanostructures caused the coating to show a dual antibacterial effect. The Ag/SiO2 nanoparticles roughened the coating's surface and, in combination with the fluorinated chains, provided the surface a superhydrophobic self-cleaning property with a contact angle of 156° and a sliding angle of less than 2°. Notably, the composite coating withstood 100 abrasion cycles without losing its superhydrophobicity and the contact angle is still exceeded 150° after 60 h of immersion solutions with different pH values, demonstrating outstanding wear resistance and acid/alkali stability. The incorporation of nanostructured antibacterial agents was effective in improving the roughness and antibacterial properties of the low-surface-energy resin, resulting in a self-cleaning antibacterial composite coating. This method may pave a new route for the design of functional coating materials with excellent overall performance.

5.
ACS Appl Mater Interfaces ; 16(29): 38631-38644, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38980701

ABSTRACT

Achievement of a stable surface coating with long-term resistance to biofilm formation remains a challenge. Catechol-based polymerization chemistry and surface deposition are used as tools for surface modification of diverse materials. However, the control of surface deposition of the coating, surface coverage, coating properties, and long-term protection against biofilm formation remain to be solved. We report a new approach based on supramolecular assembly to generate long-acting antibiofilm coating. Here, we utilized catechol chemistry in combination with low molecular weight amphiphilic polymers for the generation of such coatings. Screening studies with diverse low molecular weight (LMW) polymers and different catechols are utilized to identify lead compositions, which resulted in a thick coating with high surface coverage, smoothness, and antibiofilm activity. We have identified that small supramolecular assemblies (∼10 nm) formed from a combination of polydopamine and LMW poly(N-vinyl caprolactam) (PVCL) resulted in relatively thick coating (∼300 nm) with excellent surface coverage in comparison to other polymers and catechol combinations. The coating properties, such as thickness (10-300 nm) and surface hydrophilicity (with water contact angle: 20-60°), are readily controlled. The optimal coating composition showed excellent antibiofilm properties with long-term (>28 days) antibiofilm activity against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) strains. We further utilized the combination of optimal binary coating with silver to generate a coating with sustained release of silver ions, resulting in killing both adhered and planktonic bacteria and preventing long-term surface bacterial colonization. The new coating method utilizing LMW polymers opens a new avenue for the development of a novel class of thick, long-acting antibiofilm coatings.


Subject(s)
Biofilms , Catechols , Polymers , Staphylococcus aureus , Biofilms/drug effects , Catechols/chemistry , Catechols/pharmacology , Polymers/chemistry , Polymers/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Molecular Weight , Surface Properties , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology
6.
Int J Biol Macromol ; 275(Pt 1): 133330, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908638

ABSTRACT

The persistent global issues of unsafe food and food waste continue to exist. Microbial contamination stands out as a major cause of losses in perishable foods like vegetables and fruits. Herein, we report a self-assembling coating based on disulfide bond cleavage-induced bovine serum albumin (BSA), where the antimicrobial activity of chitosan oligosaccharide (COS) is stably anchored in the coating by electrostatic interactions during the unfolding-aggregation phase of BSA. The intrinsic antimicrobial activity of COS, combined with the positively charged and hydrophobic regions enriched on the BSA coating, significantly disrupts the integrity of bacterial structures. Furthermore, the BSA@COS coating can easily adhere in situ to the grooves on the surface of strawberries through a simple one-step spraying process, extending the shelf life of strawberries and bananas by nearly three times. This makes it a potential economic alternative to current commercial antimicrobial coatings, offering a solution to the rampant global issue of food waste.


Subject(s)
Chitosan , Food Preservation , Oligosaccharides , Serum Albumin, Bovine , Chitosan/chemistry , Chitosan/pharmacology , Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Serum Albumin, Bovine/chemistry , Food Preservation/methods , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Animals , Cattle , Hydrophobic and Hydrophilic Interactions
7.
Nanotechnology ; 35(30)2024 May 07.
Article in English | MEDLINE | ID: mdl-38640906

ABSTRACT

Graphene oxide nanosheet (GO) is a multifunctional platform for binding with nanoparticles and stacking with two dimensional substrates. In this study, GO nanosheets were sonochemically decorated with zinc oxide nanoparticles (ZnO) and self-assembled into a hydrogel of GO-ZnO nanocomposite. The GO-ZnO hydrogel structure is a bioinspired approach for preserving graphene-based nanosheets from van der Waals stacking. X-ray diffraction analysis (XRD) showed that the sonochemical synthesis led to the formation of ZnO crystals on GO platforms. High water content (97.2%) of GO-ZnO hydrogel provided good property of ultrasonic dispersibility in water. Ultraviolet-visible spectroscopic analysis (UV-vis) revealed that optical band gap energy of ZnO nanoparticles (∼3.2 eV) GO-ZnO nanosheets (∼2.83 eV). Agar well diffusion tests presented effective antibacterial activities of GO-ZnO hydrogel against gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus). Especially, GO-ZnO hydrogel was directly used for brush painting on biodegradable polylactide (PLA) thin films. Graphene-based nanosheets with large surface area are key to van der Waals stacking and adhesion of GO-ZnO coating to the PLA substrate. The GO-ZnO/PLA films were characterized using photography, light transmittance spectroscopy, coating stability, scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopic mapping (EDS), antibacterial test and mechanical tensile measurement. Specifically, GO-ZnO coating on PLA substrate exhibited stability in aqueous food simulants for packaging application. GO-ZnO coating inhibited the infectious growth ofE. colibiofilm. GO-ZnO/PLA films had strong tensile strength and elastic modulus. As a result, the investigation of antibacterial GO-ZnO hydrogel and GO-ZnO coating on PLA film is fundamental for sustainable development of packaging and biomedical applications.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Graphite , Hydrogels , Polyesters , Staphylococcus aureus , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Graphite/chemistry , Graphite/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Polyesters/chemistry , Polyesters/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Microbial Sensitivity Tests , Nanocomposites/chemistry , Ultrasonic Waves
8.
J Agric Food Chem ; 72(14): 7861-7869, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38546430

ABSTRACT

The extracellular substance of Bacillus has antibacterial effects inhibiting multiple foodborne pathogens and plays important roles in food production. This study found one Bacillus velezensis BVQ121 strain producing antibacterial lipopeptides (BVAL). After optimization of the fermentation conditions, the BVAL yield was the highest at 1.316 ± 0.03 g/L in reality with the initial pH 6.0, temperature 31 °C, and shaker speed 238 rpm when the optimal nitrogen and carbon sources were used in Landy medium for fermentation. The antibacterial components were identified as iturin, surfactin, and fengycin by HPLC and MALDI-TOF-MS. The MIC was at 2 mg/mL and MBC was at 5 mg/mL. The 6% weight ratio of nanocellulose dosage in chitosan solution could improve the tensile length and strength of the film, and the antibacterial performance was enhanced by the addition of BVAL. The addition of BVAL had no effect on the color and ductility of the film and improved its antibacterial effect. The shelf life of pigeon eggs can be extended by more than 10 days to resist bacterial infections after coating with the chitosan-nanocellulose-BVAL film solution.


Subject(s)
Bacillus , Chitosan , Chitosan/pharmacology , Bacillus/chemistry , Anti-Bacterial Agents/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Lipopeptides/pharmacology , Lipopeptides/chemistry
9.
ChemistryOpen ; 13(8): e202300274, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38426697

ABSTRACT

Nanomaterials based on metal oxides, especially Cu2O, have received much attention in recent years due to the many unique properties of the surface plasmon resonance they provide. The report presented the co-precipitation method, a simple preparation method to produce Cu2O oxide particles. In addition, to improve the unique antibacterial properties of Cu2O, a proposed method is to attach Ag nanoparticles to the surface of Cu2O particles. The Cu2O and Cu2O-Ag particles were synthesized based on redox reactions using ascorbic acid (LAA) as a reducing agent. Moreover, in this experiment, two surfactants, polyethylene glycol 6000 (PEG 6000) and sodium dodecyl sulfate (SDS), were added during the manufacturing process to create particle samples and particle combinations with better properties than the original sample. Changes in the characteristics and properties of particle samples are determined by many different physical and chemical methods such as ultraviolet-visible spectroscopy (UV-Vis), infrared spectroscopy (IR), noise X-ray radiation (XRD), scanning electron microscope (SEM), dynamic light scattering (DLS), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). Finally, the activity against bacteria, including E. coli and S. aureus, was also tested using the agar well diffusion method to determine the zone of inhibition. The results improved the particle size value, which decreased by half to 200 nm when two additional surfactants, PEG and SDS, were added. In addition, the antibacterial ability has also been shown to increase significantly when the diameter of the bacterial inhibition zone increased significantly, reaching values of 20 mm (Cu2O/Ag/SDS) and 32 mm (Cu2O/Ag/PEG) for the E. coli bacterial strain. The initial test sample was only about 14 mm in size. The S. aureus bacterial strain also had a similar improvement trend after adding Ag to the Cu2O surface with the appearance of two surfactants, SDS and PEG. The inhibition zone diameter values reached the optimal value at 36 mm in the Cu2O/Ag/PEG particle combination sample compared to only the initial 26 mm in the Cu2O particle sample. Finally, the particle samples are added to the acrylic emulsion paint film to evaluate the changes. Positive results were obtained, such as improvement in adhesion (1.22 MPa), relative hardness (240/425), and sand drop resistance (100 L/mil) in the Cu2O/Ag/PEG particle combination sample, which showed the correctness and accuracy of the research.

10.
Biomaterials ; 305: 122457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38171117

ABSTRACT

Periprosthetic infection is a devastating postimplantation complication in which a biofilm layer harboring invasive microorganisms forms around orthopedic implants, leading to severe implant failure and patient morbidity. Despite the development of several infection-triggered antibiotic release approaches, most current antibacterial coatings are susceptible to undesired antibiotic leakage or mechanical disintegration during prosthesis installation. Herein, we propose a self-controllable proteinic antibacterial coating capable of both long-lasting adherence onto titanium implant substrates over the implant fixation period and instantaneous bacterial eradication. Importantly, the pH-dependent reversible metal coordination of mussel adhesive protein (MAP) enabled bacterial concentration-dependent antibiotic delivery in response to infection-induced acidification. In addition, the MAP coating exhibited superior self-healable adhesive properties and scratch resistance, which enabled to avert issues associated with mechanical damages, including peeling and cracking, often occurring in conventional implant coating systems. The gentamicin-loaded MAP coating exhibited complete inhibition of bacterial growth in vivo against Staphylococcus aureus penetrations during implantation surgery (immediate infection) and even 4 weeks after implantation (delayed infection). Thus, our antibiotic-loaded MAP hydrogel coating can open new avenues for self-defensive antibiotic prophylaxis to achieve instant and sustainable bacteriocidal activity in orthopedic prostheses. © 2017 Elsevier Inc. All rights reserved.


Subject(s)
Anti-Bacterial Agents , Prostheses and Implants , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metals , Titanium/chemistry , Bacteria , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021729

ABSTRACT

BACKGROUND:Polylactic acid has good biocompatibility and biodegradability,and has become a new orthopedic fixation material.However,the lack of cell recognition signal of this material is not conducive to cell adhesion and osteogenic differentiation,which limits its application in biomaterials. OBJECTIVE:3D-printed polylactic acid-nano-hydroxyapatite(nHA)/chitosan(CS)scaffold to evaluate its drug sustained-release and biological properties. METHODS:The porous polylactic acid scaffold(recorded as PLA scaffold)with interporous pores was printed by fused deposition modeling technique,and the scaffold was soaked in dopamine solution to prepare polylactic acid-dopamine scaffold(recorded as PLA-DA scaffold).Nano-hydroxyapatite was immersed in chitosan solution,and then the PLA-DA scaffold was immersed in it to prepare polylactic acid-nano-hydroxyapatite/chitosan scaffold(recorded as PLA-nHA/CS scaffold).The micro-morphology,porosity,water contact angle,and compressive strength of the three scaffolds were characterized.PLA-nHA/CS scaffold loaded with doxycycline(recorded as PLA-nHA/CS-DOX scaffold)was prepared by freeze-drying method,and its drug release was characterized.PLA,PLA-DA,PLA-nHA/CS,and PLA-nHA/CS-DOX scaffolds were co-cultured with MC3T3-E1 cells,separately,to detect cell proliferation and osteogenic differentiation.Staphylococcus aureus suspensions of different concentrations were co-cultured with four groups of scaffolds.The antibacterial performance of scaffolds was detected by inhibition zone test. RESULTS AND CONCLUSION:(1)Under scanning electron microscopy,the surfaces of PLA and PLA-DA scaffolders were dense and smooth,and nHA particles were observed on PLA-nHA/CS scaffolders.The porosity of PLA,PLA-DA and PLA-nHA/CS scaffolds decreased gradually,and the compressive strength increased gradually.The elastic modulus of PLA-nHA/CS scaffolds met the requirements of cancelous bone.The water contact angle of PLA-DA and PLA-nHA/CS brackets was smaller than that of PLA scaffolds.The PLA-nHA/CS scaffold sustainably released drugs in vitro for 8 days.(2)CCK-8 assay showed that the proliferation of MC3T3-E1 cells was not significantly affected by the four groups of scaffolds.The activity of alkaline phosphatase in PLA-DA group,PLA-nHA/CS group,and PLA-nHA/CS-DOX group was higher than that in PLA group.Alizarin red staining showed that compared with PLA group,the cells in PLA-nHA/CS group and PLA-nHA/CS-DOX group showed higher mineralized water level.(3)Inhibition zone test exhibited that PLA and PLA-DA scaffolds had no antibacterial properties.PLA-nHA/CS scaffolds had certain antibacterial properties.PLA-nHA/CS-DOX scaffolds had super antibacterial properties.(4)The results showed that the PLA-nHA/CS-DOX scaffold had good drug release performance,cell compatibility,osteogenic properties,and antibacterial properties.

12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1021902

ABSTRACT

BACKGROUND:Calcium phosphate(CaP)coatings are widely used to improve the integration of titanium implants into bone but these coatings are associated with risks of infection.It is thus desirable to confer antibacterial properties to CaP coatings. OBJECTIVE:To prepare CaP-MgO composite coatings by impregnating magnesium oxide(MgO)sol into CaP coatings and assess the in vitro antibacterial activities and cytocompatibility. METHODS:An electrolyte was determined by titration and used for CaP coating electrodeposition on titanium(referred to as Ti-CaP).MgO was impregnated into the coating by immersing in an MgO sol with different mass fractions(15%,30%,50%)and subsequently calcined to form MgO-CaP composite coatings,which were recorded as Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg,respectively.Microstructure,tensile properties,critical load,and Mg2+ release of coatings in vitro were characterized.Antibacterial activity was assayed using spread plate method by culturing S.aureus on the pure titanium sheet surface and Ti-CaP,Ti-Cap-15mg,Ti-Cap-30mg and Ti-Cap-50mg surfaces for 24 and 48 hours.Mouse osteoblast suspension was inoculated on pure titanium sheets and Ti-CaP,Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg coated titanium sheets,respectively.Cell proliferation was detected by CCK-8 assay,and cell survival rate was calculated.The morphology of composite coating soaked in DMEM was also observed. RESULTS AND CONCLUSION:(1)Homogeneous,microporous CaP coatings consisting of octacaclium phosphate crystal flakes were prepared on titanium by electrodeposition.After sol impregnation-calcination,MgO aggregates were filled into the inter-flake voids.The extent of MgO filling and Mg concentration in the coating increased with the number of sol impregnation procedures.When immersed in phosphate buffered saline,all composite coatings actively released Mg2+ within 1 day;subsequently,the Mg2+ release slowed down on day 3.A small amount of Mg2+ release was still detected on day 7.The yield strength,tensile strength and fracture growth rate of Ti-CaP-30Mg coated titanium were not significantly different from those of pure titanium(P>0.05).There was no significant difference in the critical load of Ti-CaP,Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg groups(P>0.05).(2)Except that pure titanium sheet and Ti-CaP had no antibacterial properties,the other samples had good antibacterial properties,and the antibacterial rate increased with the increase of MgO content in the coating.(3)After 1 and 3 days of co-culture,the cell survival rate of Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg groups was lower than that of pure titanium group and Ti-CaP group(P<0.05).After 5 and 7 days of culture,there was no significant difference in cell survival rate among five groups(P>0.05).The content of MgO in the coating decreased gradually with the time of immersion in the medium.(4)The MgO sol impregnation added antibacterial properties to the CaP coatings while retained their biocompatibility.

13.
Chemosphere ; 346: 140543, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918530

ABSTRACT

Metal oxide (MO) coatings (e.g. TiO2, ZnO, and CuO) have shown great promise to inactivate pathogenic bacteria, maintain self-cleaning surfaces, and prevent infectious diseases spread via surface contact. Under light illumination, the antibacterial performance of photoactive MO coatings is determined by reactive oxygen species (ROS) generation. However, several drawbacks, such as photo-corrosion and rapid electron-hole recombination, hinder the ROS production of MO coatings and diminish their antibacterial efficiency. In this study, we employed polyaniline (PANI), an inexpensive and easy-to-synthesize conductive polymer, to fabricate polyaniline-metal oxide composite (PMC) films. The antibacterial performance of PMC films was tested using E. coli as the model bacterium and Lake Michigan water (LMW) as the background medium and revealed enhanced antibacterial performance relative to MO coatings alone (approximately 75-90 % kill of E. coli by PMC coatings in comparison to 20-40 % kill by MO coatings), which is explained by an increase in the ROS yields of PMC. However, with repeated use, the antibacterial performance of the PMC coatings is diminished due to deprotonation of the PANI in the neutral/slightly basic aqueous environment of LMW. Overall, PANI can enhance the antibacterial performance of MO coatings, but efforts need to be directed to preserve or regenerate PMC stability under environmental conditions and applications.


Subject(s)
Escherichia coli , Oxides , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Bacteria
14.
ACS Appl Mater Interfaces ; 15(50): 58119-58135, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38055248

ABSTRACT

Implant-associated severe infections can result in catastrophic implant failures; thus, advanced antibacterial coatings are needed to combat infections. This study focuses on harnessing nature-inspired self-assembly of extracellular matrix (ECM)-like coatings on Ti alloy with a combination of jellyfish-derived collagen (J-COLL) and hyaluronic acid (HA) using our customized automated hybrid layer-by-layer apparatus. To improve the anti-infection efficacy of coatings, we have incorporated a natural antibacterial agent methylglyoxal (MGO, a Manuka honey compound) in optimized multilayer coatings. The obtainment of MGO-loaded multilayer coatings was successfully assessed by profilometry, contact angle, attenuated total reflectance (ATR)-Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. In vitro degradation confirmed the controlled release activity of MGO with a range of concentrations from 0.90 to 2.38 mM up to 21 days. A bacterial cell culture study using Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) confirmed that the MGO incorporated within layers 7 and 9 had a favorable effect on preventing bacterial growth and colonization on their surfaces. An in vitro cytocompatibility study confirmed that MGO agents included in the layers did not affect or reduce the cellular functionalities of L929 fibroblasts. In addition, MGO-loaded layers with Immortalized Mesenchymal Stem Cells (Y201 TERT-hMSCs) were found to favor the growth and differentiation of Y201 cells and promote calcium nodule formation. Overall, these surface coatings are promising candidates for delivering antimicrobial activity with bone-inducing functions for future bone tissue engineering applications.


Subject(s)
Honey , Hyaluronic Acid , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Escherichia coli , Magnesium Oxide , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Collagen/chemistry , Staphylococcus epidermidis , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
15.
J Orthop Surg Res ; 18(1): 854, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950251

ABSTRACT

BACKGROUND: Implant-related infections are a challenging complication of orthopedic surgery, primarily due to the formation of bacterial biofilms on the implant surface. An antibacterial coating for titanium implants was developed to provide novel insights into the prevention and treatment of implant-related infections. METHODS: Titanium plates were coated with TiO2 nanotubes by anodization, and iodine was doped onto the coating via electrophoretic deposition. The obtained plates were characterized using a range of analytical techniques. Subsequently, Staphylococcus aureus was inoculated onto the surfaces of untreated titanium plates (control group), TiO2-nanocoated titanium plates (TiO2 group), and iodine-doped TiO2-nanocoated titanium plates (I-TiO2 group) to compare their antibacterial properties. RESULTS: Twenty-four hour in vitro antimicrobial activity test of the I-TiO2 group against Staphylococcus aureus was superior to those of the other groups, and this difference was statistically significant (P < 0.05). CONCLUSIONS: This coating technology provides a new theoretical basis for the development of anti-infective implants against Staphylococcus aureus in orthopedics.


Subject(s)
Anti-Infective Agents , Iodine , Nanotubes , Staphylococcal Infections , Humans , Staphylococcus aureus , Iodine/pharmacology , Titanium , Coated Materials, Biocompatible/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/prevention & control , Surface Properties
16.
ACS Appl Mater Interfaces ; 15(40): 47810-47821, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37782773

ABSTRACT

Developing coating materials with low cytotoxicity and high antimicrobial activity has been recognized as an effective way to prevent medical device-associated infections. In this study, a maleic anhydride terpolymer (PPTM) is synthesized and covalently attached to silicone rubber (SR) surface. The formed coating can be further cross-linked (SPM) through the self-condensation of pendent siloxane groups of terpolymer. No crack or delamination of SPM was observed after 500 cycles of bending and 7 day immersion in deionized water. The sliding friction force of a catheter was reduced by 50% after coating with SPM. The SPM coating without adding any extra antibacterial reagents can kill 99.99% of Staphylococcus aureus and Escherichia coli and also significantly reduce bacterial coverage, while the coating displayed no antimicrobial activity when maleic anhydride groups of SPM were aminated or hydrolyzed. The results of the repeated disinfection tests showed that the SR coated with SPM could maintain 87.3% bactericidal activity within 5 cycles. Furthermore, the SPM coating only imparted slight toxic effect (>85% viability) on L929 cells after 36 h of coculture, which is superior to the coating of aminated SPM conjugated with the antimicrobial peptide E6. The terpolymer containing maleic anhydride units have great potential as a flexible and durable coating against implant infections.


Subject(s)
Anti-Infective Agents , Maleic Anhydrides , Biofilms , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Catheters/microbiology , Silicone Elastomers/chemistry , Escherichia coli , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
17.
Polymers (Basel) ; 15(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37896373

ABSTRACT

Prosthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy. These coatings were successfully applied to additively manufactured Ti6Al4V ELI samples. In the initial phase, the feasibility of the composite coating was assessed using the Thermogravimetric Analysis (TGA) and Attenuated Total Reflection (ATR) techniques. The optimized structures exhibited impressive water uptake in the range of 300-360%. Codeposition with an antibacterial agent proved effective, and scanning electron microscopy (SEM) was used to examine the coating morphology. Biologically, CS coatings demonstrated cytocompatibility when in direct contact with a fibroblast cell line (L929) after 72 h. When exposed to the Staphylococcus epidermidis strain (ATCC 12228), these coatings inhibited bacterial growth and biofilm formation within 24 h. These findings underscore the significant potential of this approach for various applications, including endoprostheses like hip implants, internal medical devices, and transcutaneous prostheses such as osseointegrated limb prosthetics for upper and lower extremities.

18.
Materials (Basel) ; 16(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570009

ABSTRACT

Periprosthetic joint infections (PJIs) in arthroplasty and osteosynthesis-associated infections (OAIs) in reconstructive surgery still represent a challenging complication in orthopaedics and traumatology causing a burden worsening the patient's quality of life, for caregiver and treating physicians, and for healthcare systems. PJIs and OAIs are the result of bacterial adhesion over an implant surface with subsequent biofilm formation. Therefore, the clinical pathological outcome is a difficult-to-eradicate persistent infection. Strategies to treat PJIs and OAIs involve debridement, the replacement of internal fixators or articular prostheses, and intravenous antibiotics. However, long treatments and surgical revision cause discomfort for patients; hence, the prevention of PJIs and OAIs represents a higher priority than treatment. Local antibiotic treatments through coating-release systems are becoming a smart approach to prevent this complication. Hydrophilic coatings, loaded with antibiotics, simultaneously provide a barrier effect against bacterial adhesion and allow for the local delivery of an antibiotic. The intraoperative use of a hyaluronan (HY)-derivative coating in the form of a gel, loaded with antibiotics to prevent PJI, has recently raised interest in orthopaedics. Current evidence supports the use of this coating in the prophylaxis of PJI and IRIs in terms of clinical outcomes and infection reduction. Thus, the purpose of this narrative review is to assess the use of a commercially available HY derivative in the form of a gel, highlighting the characteristics of this biomaterial, which makes it attractive for the management of PJIs and IRIs in orthopaedics and traumatology.

19.
Int J Biol Macromol ; 249: 126090, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37541478

ABSTRACT

To prevent bacterial contamination on solid surfaces, a simple yet efficient antibacterial coating was developed in a substrate-independent manner by using the catechol-conjugated carboxymethyl chitosan (CMC-DOPA). The CMC-DOPA was firstly synthesized via an aza-Michael reaction with methyl acrylate and the subsequent acyl substitution with dopamine. The coating strategy consists of spin-coating-assisted deposition of CMC-DOPA on polydopamine-coated substrates and coordination-driven crosslinks between catechol groups and Fe3+ ions in sequence, producing the multilayered CMC-DOPA films. The film thickness was controllable depending on the concentration of CMC-DOPA. Compared to bare controls, the CMC-DOPA-coated substrates reduced the bacterial adhesion by up to 99.8 % and 96.2 % for E. coli and S. aureus, respectively. It is demonstrated that the CMC-DOPA coating can be a robust antibacterial coating across various pH environments, inhibiting bacterial adhesion by 78.7 %, 95.1 %, and 93.2 %, respectively, compared to the control, even after 7 days of acidic, physiological, and alkaline pH treatment. The current coating approach could be applied to various substrates including silicon dioxide, titanium dioxide, and polyurethane. Given its simple and versatile coating capability, we think that the coordination-driven CMC-DOPA coating could be useful for various medical devices and implants.


Subject(s)
Chitosan , Staphylococcus aureus , Escherichia coli , Anti-Bacterial Agents/pharmacology , Dopamine/pharmacology , Dihydroxyphenylalanine , Coated Materials, Biocompatible/pharmacology
20.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(8): 937-944, 2023 Aug 15.
Article in Chinese | MEDLINE | ID: mdl-37586792

ABSTRACT

Objective: To design and construct a graphene oxide (GO)/silver nitrate (Ag3PO4)/chitosan (CS) composite coating for rapidly killing bacteria and preventing postoperative infection in implant surgery. Methods: GO/Ag3PO4 composites were prepared by ion exchange method, and CS and GO/Ag3PO4 composites were deposited on medical titanium (Ti) sheets successively. The morphology, physical image, photothermal and photocatalytic ability, antibacterial ability, and adhesion to the matrix of the materials were characterized. Results: The GO/Ag3PO4 composites were successfully prepared by ion exchange method and the heterogeneous structure of GO/Ag3PO4 was proved by morphology phase test. The heterogeneous structure formed by Ag3PO4 and GO reduced the band gap from 1.79 eV to 1.39 eV which could be excited by 808 nm near-infrared light. The photothermal and photocatalytic experiments proved that the GO/Ag3PO4/CS coating had excellent photothermal and photodynamic properties. In vitro antibacterial experiments showed that the antibacterial rate of the GO/Ag3PO4/CS composite coating against Staphylococcus aureus reached 99.81% after 20 minutes irradiation with 808 nm near-infrared light. At the same time, the composite coating had excellent light stability, which could provide stable and sustained antibacterial effect. Conclusion: GO/Ag3PO4/CS coating can be excited by 808 nm near infrared light to produce reactive oxygen species, which has excellent antibacterial activity under light.


Subject(s)
Chitosan , Silver Nitrate , Titanium , Anti-Bacterial Agents/pharmacology , Coloring Agents
SELECTION OF CITATIONS
SEARCH DETAIL