Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 621
Filter
1.
Sci Rep ; 14(1): 22897, 2024 10 02.
Article in English | MEDLINE | ID: mdl-39358462

ABSTRACT

Antibiotics are extensively used in human medicine, aquaculture, and animal husbandry, leading to the release of antimicrobial resistance into the environment. This contributes to the rapid spread of antibiotic-resistant genes (ARGs), posing a significant threat to human health and aquatic ecosystems. Conventional wastewater treatment methods often fail to eliminate ARGs, prompting the adoption of advanced oxidation processes (AOPs) to address this growing risk. The study investigates the efficacy of visible light-driven photocatalytic systems utilizing two catalyst types (TiO2-Pd/Cu and g-C3N4-Pd/Cu), with a particular emphasis on their effectiveness in eliminating blaTEM, ermB, qnrS, tetM. intl1, 16 S rDNA and 23 S rDNA through photocatalytic ozonation and peroxone processes. Incorporating O3 into photocatalytic processes significantly enhances target removal efficiency, with the photocatalyst-assisted peroxone process emerging as the most effective AOP. The reemergence of targeted contaminants following treatment highlights the pivotal importance of AOPs and the meticulous selection of catalysts in ensuring sustained treatment efficacy. Furthermore, Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) analysis reveals challenges in eradicating GC-rich bacteria with TiO2 and g-C3N4 processes, while slight differences in Cu/Pd loadings suggest g-C3N4-based ozonation improved antibacterial effectiveness. Terminal Restriction Fragment Length Polymorphism analysis highlights the efficacy of the photocatalyst-assisted peroxone process in treating diverse samples.


Subject(s)
Titanium , Titanium/chemistry , Titanium/pharmacology , Catalysis , Wastewater/microbiology , Wastewater/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water Purification/methods , Ozone/chemistry , Ozone/pharmacology , Drug Resistance, Microbial/genetics , Nitrogen Compounds/chemistry , Light , Nitriles/chemistry , Nitriles/pharmacology , Copper/chemistry , Copper/pharmacology , Genes, Bacterial , Drug Resistance, Bacterial/genetics , Oxidation-Reduction , Graphite
2.
Int J Hyg Environ Health ; 263: 114478, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369488

ABSTRACT

The use of wastewater for non-potable purposes is an important alternative for addressing water scarcity, especially in developing regions. However, minimizing the risks, particularly those associated with emerging contaminants that may induce resistance among pathogens in wastewater, is crucial. This study assessed the occurrence of antibiotic-resistant bacteria in untreated wastewater used for agricultural purposes and evaluated the quantifiable health risks associated with this practice in Tamale, Ghana. The resistance of some Enterobacteriaceae, such as E. coli, Klebsiella, and Salmonella-Shigella, to four commonly used antibiotics in Ghana was assessed using a conventional microbiological culture approach and the Kirby Bauer disk diffusion method. A Quantitative Microbial Risk Assessment (QMRA) was performed to estimate the health risks associated with two distinct scenarios of wastewater reuse: (1) accidental ingestion of contaminated wastewater and soil, and (2) consumption of vegetables irrigated with wastewater. This approach applied a Monte Carlo simulation based on 10,000 interactions and identified E. coli O157:H7 as the reference pathogen. Among Enterobacteriaceae, Klebsiella pneumoniae, Salmonella-Shigella and E. coli were isolated, in concentrations exceeding the limit recommended by the World Health Organization (103 CFU/100 ml). All the isolated bacteria were resistant to metronidazole (5 µg). Thirty-three per cent of Klebsiella pneumoniae isolates were intermediate/moderately susceptible, and all other bacteria were resistant to amoxicillin (30 µg). All Klebsiella pneumoniae and the majority of Salmonella-Shigella (69.8 %) isolates were resistant to trimethoprim-sulfamethoxazole (25 µg) and tetracycline (30 µg). When assessing health risks, the mean annual probability of infection associated with consuming vegetables irrigated with wastewater varied between 5.14 × 10-2 and 9.79 × 10-1 per person per year. Conversely, for the accidental ingestion scenario, the probability was 1.00 per person per year. In these scenarios, the probability of illness ranged from 1.29 × 10-2 to 2.4 × 10-1 and 2.5 × 10-1 per person per year. The health risks posed by these findings surpass the maximum threshold prescribed by the World Health Organization, thereby emphasizing the need for prompt mitigation strategies.

3.
Mar Environ Res ; 202: 106777, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368156

ABSTRACT

As emerging pollutants, microplastics can aggregate microorganisms on their surfaces and form biofilms, enriching antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Consequently, microplastic biofilms have become a focal point of research. Horizontal gene transfer is one of the primary mechanisms by which bacteria acquire antibiotic resistance, with much of the research focusing on suspended bacteria. However, microplastic biofilms, as hotspots for horizontal gene transfer, also merit significant investigation. This study primarily explored and compared the frequency of ARG conjugative transfer between suspended bacteria and microplastic biofilms. The results demonstrated that, compared to suspended bacteria, microplastic biofilms enhanced the frequency of ARG conjugative transfer by 7.2-19.6 times. Among them, biofilms on polyethylene microplastics showed the strongest promotion of conjugation. After the formation of microplastic biofilms, there was a significant increase in bacterial density within the biofilms, which raised the collision frequency of donor and recipient bacteria. Then microplastic biofilms facilitated the gene expression levels of outer membrane proteins, enhanced bacterial gene transfer capabilities, promoted the synthesis of conjugative pili, accelerated the formation of conjugative pairing systems, and elevated the expression levels of genes related to DNA replication and transfer systems, thereby enhancing the conjugative transfer of ARGs within microplastic biofilms. Among different types of microplastic biofilms, polyethylene biofilms exhibited the highest bacterial density, thus showing the highest frequency of ARG conjugation. This study highlights the risks associated with ARG conjugative transfer following the formation of microplastic biofilms and provides insights into the risks of microplastic and antibiotic resistance propagation in estuarine environments.

4.
Environ Res ; 262(Pt 2): 119992, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276829

ABSTRACT

Antibiotic residues, their mixture toxicity, and the potential selection for antibiotic-resistant bacteria could pose a problem for water use and the ecosystem of reservoirs. This study aims to provide a comprehensive understanding of the occurrence, concentration, distribution, and ecological risks associated with various antibiotics in the Cirata reservoir, Indonesia. In our water and sediment samples, we detected 24 out of the 65 antibiotic residues analyzed, revealing a diverse range of antibiotic classes present. Notably, sulphonamides, diaminopyrimidine, and lincosamides were frequently found in the water, while the sediment predominantly contained tetracyclines and fluoroquinolones. Most antibiotic classes reached their highest concentrations in the water during the dry season. However, fluoroquinolones and tetracyclines showed their highest concentrations in the water during the wet season. Ecotoxicological risk assessments indicated that the impact of most antibiotic residues on aquatic organisms was negligible, except for fluoroquinolones. Looking at the impact on cyanobacteria, however, varying risks were indicated, ranging from medium to critical, with antibiotics like sulfamethoxazole, ciprofloxacin, norfloxacin, and lincomycin posing substantial threats. Among these, ciprofloxacin emerged as the antibiotic with the strongest risk. Furthermore, fluoroquinolones may have the potential to contribute to the selection of antibiotic-resistant bacteria. The presence of mixtures of antibiotic residues during the wet season significantly impacted species loss, with Potentially Affected Fraction of Species (msPAF) values exceeding 0.75 in almost 90% of locations. However, the impact of mixtures of antibiotic residues in sediment remained consistently low across all locations and seasons. Based on their occurrences and associated risks, 12 priority antibiotic residues were identified for monitoring in the reservoir and its tributaries. Moreover, the study suggests that river inflow serves as the most significant source of antibiotic residues in the reservoir. Further investigations into the relative share attribution of antibiotic sources in the reservoir is recommended to help identify effective interventions.

5.
J AOAC Int ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292599

ABSTRACT

BACKGROUND: Aquaculture water plays an important role in the dissemination of antibiotic-resistant bacteria during harvest of shrimps. Mitigation of bacteria through discharge is essential to prevent dissemination downstream. Chemical disinfection of culture water is feasible compared to other methods of bacterial inactivation. OBJECTIVE: To study the effect of different disinfectant agent's viz., chlorine, Fenton's reagent, and hydrogen peroxide (H2O2) on inactivation of bacteria from shrimp pond water. METHODS: The water samples were subjected to treatment with various concentrations of chlorine (0.0, 1.0, 2.5, 5.0 and 10.0 mg L-1), Fenton's reagent (1:10 mM ratio of Fe2+:H2O2; 2:20, 3:30, 4:40, 5:50) and H2O2 (20, 30, 40 and 50 mM) for different time durations (5 min, 15 min, 30 min and 60 min). RESULTS: The results indicated that all the disinfecting agents inactivated both the total heterotrophic bacteria and tetracycline-resistant bacteria with increased concentrations and time. At the end of 60 min treatment with chlorination (2.5 mg Cl2 L-1), Fenton's reagent (2 mM Fe2+ + 20 mM H2O2) and H2O2 (50 mM H2O2), the total heterotrophic bacterial count in the water samples gradually decreased by 2.35, 2.65, and 1.38 log10 CFU mL-1, and tetracycline-resistant bacteria count reduced by 1.57, 1.66, and 1.43 log10 CFU mL-1, respectively from initial bacterial load. CONCLUSIONS: The study revealed that disinfection agents can be successfully employed in the inactivation of antibiotic-resistant bacteria discharged through aquaculture water. Among three disinfection agents, Fenton's reagent has been found effective in inhibiting both heterotrophic bacteria and tetracycline-resistant bacteria from water samples. HIGHLIGHTS: Bacterial inactivation studies were carried with Chlorination, Fenton's reagent, and Hydrogen peroxide. The highest decrease in HPC (2.65 log) and tetracycline-resistant bacterial (1.66 log) was noticed in the water samples treated with Fenton's reagent. The use of disinfection agents effectively mitigates antibiotic-resistant bacteria from aquaculture wastewater.

6.
Water Res ; 266: 122353, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39241380

ABSTRACT

Antimicrobial resistance (AMR) is a global challenge that has impacted aquaculture and surrounding marine environments. In this study, a year-long monitoring program was implemented to evaluate AMR in two different aquaculture settings (i.e., open cage farming, recirculating aquaculture system (RAS)) and surrounding marine environment within a tropical coastal region. The objectives of this study are to (i) investigate the prevalence and co-occurrence of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), antibiotics (AB) and various associated chemical compounds at these study sites; (ii) explore the contributing factors to development and propagation of AMR in the coastal environment; and (iii) assess the AMR risks from different perspectives based on the three AMR determinants (i.e., ARB, ARGs and AB). Key findings revealed a distinct pattern of AMR across the different aquaculture settings, notably a higher prevalence of antibiotic-resistant Vibrio at RAS outfalls, suggesting a potential accumulation of microorganisms within the treatment system. Despite the relative uniform distribution of ARGs across marine sites, specific genes such as qepA, blaCTX-M and bacA, were found to be abundant in fish samples, especially from the RAS. Variations in chemical contaminant prevalence across sites highlighted possible anthropogenic impacts. Moreover, environmental and seasonal variations were found to significantly influence the distribution of ARGs and chemical compounds in the coastal waters. Hierarchical cluster analysis that was based on ARGs, chemical compounds and environmental data, categorized the sites into three distinct clusters which reflected strong association with location, seasonality and aquaculture activities. The observed weak correlations between ARGs and chemical compounds imply that low environmental concentrations may be insufficient for resistance selection. A comprehensive risk assessment using methodologies such as the multiple antibiotic resistance (MAR) index, comparative AMR risk index (CAMRI) and Risk quotient (RQ) underscored the complexity of AMR risks. This research significantly contributes to the understanding of AMR dynamics in natural aquatic systems and provides valuable insights for managing and mitigating AMR risks in coastal environments.

7.
Sci Rep ; 14(1): 20894, 2024 09 08.
Article in English | MEDLINE | ID: mdl-39245771

ABSTRACT

This study proposes an innovative approach to combat the escalating threat of antibiotic resistance in bacteria by introducing a novel ZnO-propolis nanocomposite (ZnO-P NCs). The overuse of antibiotics, particularly during events like the COVID-19 pandemic, has intensified bacterial resistance, necessitating innovative solutions. The study employs a cost-effective and controllable biosynthesis method to produce ZnO nanoparticles (ZnO-NPs), with propolis extract crucially contributing to the reduction and stabilization of Zn2+ ions. A biodegradable nano-propolis matrix is then created by incorporating ZnO-NPs, forming the ZnO-P NCs. Structural stability is confirmed through FT-IR and Zeta potential analysis, while nanoscale properties are validated via TEM, SEM, and XRD analyses. The antimicrobial efficacy of various substances, including propolis, nano propolis, ethanolic propolis extract, ZnO-NPs, and ZnO-P NCs, is assessed against Gram-negative and Gram-positive bacteria, alongside a comparison with 28 antibiotics. Among the bacteria tested, Pseudomonas aeruginosa PAO1 ATCC15692 was more sensitive (40 mm) to the biosynthesized nanocomposite ZnO-P NCs than to ZnO-NPs (38 mm) and nanopropolis (32 mm), while Escherichia coli was resistant to nanopropolis (0 mm) than to ZnO-NPs (31 mm), and ZnO-P NCs (34 mm). The study reveals a synergy effect when combining propolis with green-synthesized ZnO-NPs in the form of ZnO-P NCs, significantly improving their efficiency against all tested bacteria, including antibiotic-resistant strains like E. coli. The nanocomposite outperforms other materials and antibiotics, demonstrating remarkable antibacterial effectiveness. SEM imaging confirms the disruption of bacterial cell membranes by ZnO-NPs and ZnO-P NCs. The study emphasizes the potential applications of ZnO-NPs integrated into biodegradable materials and underscores the significance of the zinc oxide-propolis nanocomposite in countering antimicrobial resistance. Overall, this research offers a comprehensive solution to combat multidrug-resistant bacteria, opening avenues for novel approaches in infection control.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Nanocomposites , Propolis , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Propolis/chemistry , Propolis/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanocomposites/chemistry , Pseudomonas aeruginosa/drug effects , Drug Resistance, Bacterial/drug effects , Humans , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry
8.
Water Res ; 267: 122524, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39348725

ABSTRACT

Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) pose a significant threat to both ecosystems and human health. Owing to the excellent catalytic activity, eco-safety, and convenience for defect engineering, BiOBr with oxygen vacancies (OVs) of different density thus were fabricated and employed to activate H2O2 for ARB disinfection/ARGs degradation in present study. We found that BiOBr with OVs of appropriate density induced via ethanol reduction (BOB-E) could effectively activate H2O2, achieving excellent ARB disinfection and ARGs degradation efficiency. Moreover, this disinfection system exhibited remarkable tolerance to complex water environments and actual water conditions. In-situ characterization and theoretical calculations revealed that OVs in BOB-E could effectively capture and activate aqueous H2O2 into HO· and O2·-. The generated reactive oxygen species combined with electron transfer could damage the cell membrane system and degrade genetic materials of ARB, leading to effective disinfection. The impressive reusability, high performance achieved in two immobilized reaction systems (packed column and baffled ditch reactor), excellent degradation of emerging organic pollutants supported the feasibility of BOB-E/H2O2 system towards practical water decontamination. Overall, this study not only provides insights into fabrication of bismuth-based catalysts for efficient ARB disinfection/ARGs degradation via OVs regulation, but also paves the way for their practical applications.

9.
Environ Monit Assess ; 196(10): 992, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39349711

ABSTRACT

Rivers serve as a significant habitat and water sources for diverse organisms, including humans. An important environmental and public health concern is the increase in antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquatic ecosystems brought about by excessive pollutant flow. The research highlighted that river water, which is receiving discharge from wastewater treatment plants, is harbouring multidrug-resistant bacteria. River water samples were collected in January, April, July and October 2022 from three separate locations of each Gomti and Ganga river. A total of 114 bacteria were isolated from Gomti as well as the Ganga River. All the isolates were tested for their resistance to various antibiotics by disc diffusion method. The isolated bacteria were tested for the antibiotic resistance genes using PCR and were identified by 16s rRNA sequencing. The ARBs percentages for each antibiotic were as follows: ampicillin (100%); cefotaxime (96.4, 63.1%); erythromycin (52.6, 57.8%); amikacin (68.4, 50.8%); tetracycline (47.3, 54.3%); nalidixic acid (47.3, 45.6%); streptomycin (68.4, 49.1%); gentamycin (43.8, 35%); chloramphenicol (26.3, 33.3%); neomycin (49.1, 29.8%) and ciprofloxacin (24.5, 7.01%). Further, antibiotic resistance genes in Gomti and Ganga water samples disclose distinctive patterns, including resistance to ermB (25, 40%); tetM (25, 33.3%); ampC (44.4, 40%) and cmlA1 (16.6%). Notably cmlA1 resistant genes were absent in all bacterial strains of the Gomti River. Additionally, gyrA gene was not found in both the river water samples. The presence of ARGs in the bacteria from river water shows threat of transferring these genes to native environmental bacteria. To protect the environment and public health, constant research is necessary to fully understand the extent and consequences of antibiotic resistance in these aquatic habitats.


Subject(s)
Anti-Bacterial Agents , Bacteria , Public Health , Rivers , Rivers/microbiology , Bacteria/genetics , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Anti-Bacterial Agents/pharmacology , Environmental Monitoring , Water Quality , Water Microbiology , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Humans , Drug Resistance, Bacterial/genetics , Water Pollutants, Chemical/analysis , Drug Resistance, Microbial/genetics
10.
Microorganisms ; 12(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39338470

ABSTRACT

Pseudomonas aeruginosa is a common cause of hospital-acquired infections and exhibits a strong resistance to antibiotics. An alternative treatment option for bacterial infections is the use of bacteriophages (or phages). In this study, two distinct phages, VB_PaD_phPA-G (phPA-G) and VB_PaN_phPA-Intesti (phPA-Intesti), were used as single suspensions or in a phage cocktail to inactivate the planktonic cells and biofilms of P. aeruginosa. Preliminary experiments in culture medium showed that phage phPA-Intesti (reductions of 4.5-4.9 log CFU/mL) outperformed phPA-G (reductions of 0.6-2.6 log CFU/mL) and the phage cocktail (reduction of 4.2 log CFU/mL). Phage phPA-Intesti caused a maximum reduction of 5.5 log CFU/cm2 in the P. aeruginosa biofilm in urine after 4 h of incubation. The combination of phage phPA-Intesti and ciprofloxacin did not improve the efficacy of bacterial inactivation nor reduce the development of resistant mutants. However, the development of resistant bacteria was lower in the combined treatment with the phage and the antibiotic compared to treatment with the antibiotic alone. This phage lacks known toxins, virulence, antibiotic resistance, and integrase genes. Overall, the results suggest that the use of phage phPA-Intesti could be a potential approach to control urinary tract infections (UTIs), namely those caused by biofilm-producing and multidrug-resistant strains of P. aeruginosa.

11.
Antibiotics (Basel) ; 13(9)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39334995

ABSTRACT

Recent studies introduced the importance of using machine learning algorithms in research focused on the identification of antibiotic resistance. In this study, we highlight the importance of building solid machine learning foundations to differentiate antimicrobial resistance among microorganisms. Using advanced machine learning algorithms, we established a methodology capable of analyzing the FTIR structural profile of the samples of Streptococcus pyogenes and Streptococcus mutans (Gram-positive), as well as Escherichia coli and Klebsiella pneumoniae (Gram-negative), demonstrating cross-sectional applicability in this focus on different microorganisms. The analysis focuses on specific biomolecules-Carbohydrates, Fatty Acids, and Proteins-in FTIR spectra, providing a multidimensional database that transcends microbial variability. The results highlight the ability of the method to consistently identify resistance patterns, regardless of the Gram classification of the bacteria and the species involved, reinforcing the premise that the structural characteristics identified are universal among the microorganisms tested. By validating this approach in four distinct species, our study proves the versatility and precision of the methodology used, in addition to bringing support to the development of an innovative protocol for the rapid and safe identification of antimicrobial resistance. This advance is crucial for optimizing treatment strategies and avoiding the spread of resistance. This emphasizes the relevance of specialized machine learning bases in effectively differentiating between resistance profiles in Gram-negative and Gram-positive bacteria to be implemented in the identification of antibiotic resistance. The obtained result has a high potential to be applied to clinical procedures.

12.
Environ Res ; 263(Pt 1): 120075, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39341535

ABSTRACT

Environmental matrices have been considered of paramount importance in the spread of antibiotic-resistance; however, the role of drinking waters is still underexplored. Therefore, a scoping review was performed using a systematic approach based on PRISMA guidelines, with the aim of identifying and characterizing antibiotic-resistance in tap water, specifically, water treated at a potabilization plant and provided for drinking use through a water distribution system. The review included 45 studies, the majority of which were conducted in upper-middle-income economies (42.2%), mainly from the Western Pacific region (26.7%), followed by Europe (24.4%). Most of the papers focused on detecting antibiotic-resistant bacteria (ARB), either alone (37.8%) or in combination with antibiotic-resistant genes (ARGs) (26.7%). Multidrug-resistance profile was often identified in heterotrophic bacteria, including various species of nontuberculous mycobacteria, Pseudomonas spp., and Aeromonas spp., which were especially resistant to penicillins, cephalosporins (including 3rd-generation), and also to macrolides (erythromycin) and tetracyclines. Resistance to a wide range of antibiotics was also prevalent in fecal bacteria, e.g., the Enterobacteriaceae family, with common resistance to (fluoro)quinolones and sulfonamide groups. ARGs were investigated either in bacterial strains isolated from tap waters or directly in water samples, and the most frequently detected ARGs belonged to ß-lactam, sulfonamide, and tetracycline types. Additionally, mobile genetic elements were found (i.e., int1 and tnpA). Sulfonamides and macrolides were the most frequently detected antibiotics across countries, although their concentrations were generally low (<10 ng/L) in Europe and the United States. From a health perspective, tap water hosted ARB of health concern based on the 2024 WHO bacterial priority pathogens list, mainly Enterobacteriaceae resistant to 3rd-generation cephalosporin and/or carbapenem. Despite the fact that tap water is treated to meet chemical and microbiological quality standards, current evidence suggests that it can harbor antibiotic-resistance determinants, thus supporting its potential role in environmental pathways contributing to antibiotic resistance.

13.
Sci Total Environ ; 953: 176077, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39244052

ABSTRACT

Dams, constructed globally for energy production and water conservation, fragment rivers, and modify flow regimes, thereby altering the composition of biological communities and ecosystem functions. Despite the extensive use of dams, few studies have explored their potential health impacts, particularly concerning changes in health-related genes, such as antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), and their hosts (i.e., ARB and potential pathogens). Understanding these health-related effects is crucial because they can impact human health through water quality and pathogen prevalence. In this study, we investigated the planktonic microbial community in the Three Gorges Reservoir (TGR) and adjacent upstream and downstream areas of the Yangtze River during both the dry and wet season. Our metagenomic analysis showed that dam construction significantly decreased the abundance of ARGs, but it had an insignificant effect on VFGs. The observed reduction in ARGs abundance could be mainly attributed to the decrease abundance of the major ARGs carrier - Limnohabitansin the TGR and downstream areas due to high grazing pressure and fitness cost. Conversely, the abundance of microbes carrying VFGs (potential pathogens) remained stable from upstream to the dam reservoir, which may explain the negligible impact on VFG abundance. Overall, our results provide a detailed understanding of the ecological health implications of dam construction in large river ecosystems.


Subject(s)
Rivers , Rivers/microbiology , China , Water Microbiology , Drug Resistance, Microbial/genetics , Microbiota , Environmental Monitoring , Ecosystem , Virulence Factors/genetics
14.
Environ Sci Technol ; 58(40): 17838-17849, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39333059

ABSTRACT

Active antibiotic-resistant bacteria (ARB) play a major role in spreading antimicrobial resistance (AMR) in the environment; however, they have remained largely unexplored. Herein, we coupled bio-orthogonal noncanonical amino acid tagging with high-throughput fluorescence-activated single-cell sorting (FACS) and sequencing to characterize the phenome and genome of active ARB in complex environmental matrices. Active ARB, conferring resistance to six antibiotics throughout wastewater treatment, were distinguished and quantified. The percentage and concentration of active ARB ranged from 0.28% to 45.3% and from 1.1 × 104 to 2.09 × 107 cells/mL, respectively. Notably, the final effluents retained up to 4.79 × 104 cells/mL of active ARB. Targeted FACS and genomic sequencing revealed a distinct taxonomic composition of active ARB compared with that of the overall population. The coexistence of antibiotic resistome and mobilome in active ARB was also identified, including three high-quality metagenomic assembly genomes assigned to pathogenic bacteria, highlighting the substantial health risks due to their activity, phenotypic resistance, mobility, and pathogenicity. This study advances our understanding of previously overlooked active ARB in the environment by linking their resistance phenotype to their genotype. This high-throughput method will enable efficient quantitative surveillance of active AMR, providing valuable insights into risk control and management.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Single-Cell Analysis , Drug Resistance, Microbial/genetics , Wastewater/microbiology
15.
J Hazard Mater ; 480: 135854, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39316921

ABSTRACT

In this study, we elucidated the chemical and biological inactivation mechanisms of peroxydisulfate (PDS) activated by UVA and Fe2+ (UVA/Fe2+/PDS) in wild-type antibiotic-resistant bacteria (ARB) isolated from a river in Inner Mongolia. Among the screened wild-type ARB, the relative abundance of unidentified Enterobacteriaceae, Stenotrophomonas, and Ralstonia was high. A ratio of 1:1 for Fe2+ and PDS under 18 W·m-2 UVA radiation (sunny days) completely inactivated the environmental ARB isolates. In the macro view of the inactivation process, Fe2+ first activates PDS rapidly, and later the UVA energy accumulated starts to activate PDS; HO• then becomes the main active species at a rate-limiting step. From a micro perspective, damage to the cell wall, intracellular proteins, inactivation of antioxidant enzymes, and genetic material degradation are the inactivation series of events by UVA/Fe2+/PDS, contributing to the 97.8 % inactivation of ARB at the initial stage. No regrowth of sublethal ARBs was observed. The transfer of tetracycline resistance genes from ARB to lab E. coli was evaluated by horizontal gene transfer (HGT), in which no HGT occurred when ARB was eliminated by UVA/Fe2+/PDS. Moreover, the sulfate and iron residuals in the effluents of treated water were lower than the drinking water standards. In summary, PDS, UVA, and Fe2+ activation effectively inactivated wild ARB with a low concentration of reagents, while inhibiting their regrowth and spread of resistance due to the contribution of intracellular inactivation pathways.

16.
Heliyon ; 10(15): e35666, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170521

ABSTRACT

"An impregnable stronghold where one or more warrior clans can evade enemy attacks" may serve as a description of bacterial biofilm on a smaller level than human conflicts. Consider this hypothetical conflict: who would emerge victorious? The occupants of secure trenches or those carrying out relentless assault? Either faction has the potential for triumph; the defenders will prevail if they can fortify the trench with unwavering resolve, while the assailants will succeed if they can devise innovative means to breach the trench. Hence, bacterial biofilms pose a significant challenge and are formidable adversaries for medical professionals, often leading to the failure of antibiotic treatments in numerous hospital infections. Phage engineering has become the foundation for the targeted enhancement of various phage properties, facilitating the eradication of biofilms. Researchers across the globe have studied the impact of engineered phages and phage-derived enzymes on biofilms formed by difficult-to-treat bacteria. These novel biological agents have shown promising results in addressing biofilm-related challenges. The compilation of research findings highlights the impressive capabilities of engineered phages in combating antibiotic-resistant bacteria, superbugs, and challenging infections. Specifically, these engineered phages exhibit enhanced biofilm destruction, penetration, and prevention capabilities compared to their natural counterparts. Additionally, the engineered enzymes derived from phages demonstrate improved effectiveness in addressing bacterial biofilms. As a result, these novel solutions, which demonstrate high penetration, destruction, and inhibition of biofilms, can be regarded as a viable option for addressing infectious biofilms in the near future.

17.
Microorganisms ; 12(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39203393

ABSTRACT

Groundwater is one of the important freshwater resources on Earth and is closely related to human activities. As a good biological vector, a more diverse repertory of antibiotic resistance genes in the water environment would have a profound impact on human medical health. Therefore, this study conducted a metagenomic sequencing analysis of water samples from groundwater monitoring points in the middle and lower reaches of the Yangtze River to characterize microbial community composition and antibiotic resistance in the groundwater environment. Our results show that different microbial communities and community composition were the driving factors in the groundwater environment, and a diversity of antibiotic resistance genes in the groundwater environment was detected. The main source of antibiotic resistance gene host was determined by correlation tests and analyses. In this study, metagenomics was used for the first time to comprehensively analyze microbial communities in groundwater systems in the middle and lower reaches of the Yangtze River basin. The data obtained from this study serve as an invaluable resource and represent the basic metagenomic characteristics of groundwater microbial communities in the middle and lower reaches of the Yangtze River basin. These findings will be useful tools and provide a basis for future research on water microbial community and quality, greatly expanding the depth and breadth of our understanding of groundwater.

18.
Microorganisms ; 12(8)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39203584

ABSTRACT

Quaternary ammonium compounds (QACs) are active ingredients in hundreds of disinfectants for controlling the epidemic of infectious diseases like SARS-CoV-2 (COVID-19), and are also widely used in shale gas exploitation. The occurrence of QAC-resistant bacteria in the environment could enlarge the risk of sterilization failure, which is not fully understood. In this study, QAC-resistant bacteria were enumerated and characterized in 25 soils collected from shale gas exploitation areas. Total counts of QAC-resistant bacteria ranged from 6.81 × 103 to 4.48 × 105 cfu/g, accounting for 1.59% to 29.13% of the total bacteria. In total, 29 strains were further purified and identified as Lysinibacillus, Bacillus, and Klebsiella genus. There, bacteria covering many pathogenic bacteria showed different QACs tolerance with MIC (minimum inhibition concentration) varying from 4 mg/L to 64 mg/L and almost 58.6% of isolates have not previously been found to tolerate QACs. Meanwhile, the QAC-resistant strains in the produced water of shale gas were also identified. Phylogenetic trees showed that the resistant species in soil and produced water are distinctly different. That is the first time the distribution and characterization of QAC-resistant bacteria in the soil environment has been analyzed.

19.
Water Res ; 265: 122298, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39173362

ABSTRACT

The UV/chlorine (UV/Cl2) process is a developing advanced oxidation process and can efficiently remove antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, the transportation and storage of chlorine solutions limit the application of the UV/Cl2 process, especially for decentralized water treatment. To overcome the limitation, an electrochemically driven UV/Cl2 process (E-UV/Cl2) where Cl2 can be electrochemically produced in situ from anodic oxidation of chloride (Cl-) ubiquitously present in various water matrices was evaluated in this study. >5-log inactivation of the ARB (E. coli) was achieved within 5 s of the E-UV/Cl2 process, and no photoreactivation of the ARB was observed after the treatment. In addition to the ARB, intracellular and extracellular ARGs (tetA, sul1, sul2, and ermB) could be effectively degraded (e.g., log(C0/C) > 4 for i-ARGs) within 5 min of the E-UV/Cl2 process. Atomic force microscopy showed that the most of the i-ARGs were interrupted into short fragments (< 30 nm) during the E-UV/Cl2 process, which can thus effectively prevent the self-repair of i-ARGs and the horizontal gene transfer. Modelling results showed that the abatement efficiencies of i-ARG correlated positively with the exposures of •OH, Cl2-•, and ClO• during the E-UV/Cl2 process. Due to the short treatment time (5 min) required for ARB and ARG removal, insignificant concentrations of trihalomethanes (THMs) were generated during of the E-UV/Cl2 process, and the energy consumption (EEO) of ARG removal was ∼0.20‒0.27 kWh/m3-log, which is generally comparable to that of the UV/Cl2 process (0.18-0.23 kWh/m3-log). These results demonstrate that the E-UV/Cl2 process can provide a feasible and attractive alternative to the UV/Cl2 process for ARB and ARG removal in decentralized water treatment system.


Subject(s)
Chlorine , Ultraviolet Rays , Water Purification , Water Purification/methods , Chlorine/chemistry , Chlorine/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria , Drug Resistance, Bacterial/genetics
20.
J Glob Antimicrob Resist ; 38: 368-375, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117142

ABSTRACT

BACKGROUND: Macrolides inhibit the growth of bacterial cells by preventing the elongation of polypeptides during protein biosynthesis and include natural, synthetic, and semi-synthetic products. Elongation prevention occurs by blocking the passage of the polypeptide chain as the macrolides bind at the nascent peptide exit tunnel. OBJECTIVE: Recent data of ribosome profiling via ribo-seq further proves that, other than blocking the polypeptide chain, macrolides are also able to affect the synthesis of individual proteins. Thus, this shows that the mode of action of macrolides is more complex than we initially thought. Since the discovery of macrolides in the 1950s, they have been widely used in veterinary practice, agriculture, and medicine. Due to misuse and overuse of antibiotics, bacteria have acquired resistance against them. Hence, it is of utmost importance for us to fully understand the mode of action of macrolides as well as the mechanisms of resistance against macrolides in order to mitigate antibiotic-resistance issues. RESULTS: Chemical modifications can be performed to improve macrolide potency if we have a better understanding of their mode of action. Furthermore, a complete and detailed understanding of the mode of action of macrolides has remained vague, as new findings have challenged theories that are already in existence-due to this obscurity, research into macrolide modes of action continues to this day. CONCLUSION: In this review, we present an overview of macrolide antibiotics, with an emphasis on the latest knowledge regarding the mode of action of macrolides as well as the mechanisms of resistance employed by bacteria against macrolides.


Subject(s)
Anti-Bacterial Agents , Bacteria , Drug Resistance, Bacterial , Macrolides , Macrolides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/genetics , Humans , Ribosomes/drug effects , Ribosomes/metabolism , Protein Biosynthesis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL