Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.547
Filter
1.
Angew Chem Int Ed Engl ; : e202410791, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949226

ABSTRACT

Aurothiomalate (AuTM) is an FDA-approved antiarthritic gold drug with unique anticancer properties. To enhance its anticancer activity, we prepared a bioconjugate with human apoferritin (HuHf) by attaching some AuTM moieties to surface protein residues. The reaction of apoferritin with excess AuTM yielded a single adduct, that was characterized by ESI MS and ICP-OES analysis, using three mutant ferritins and trypsinization experiments. The adduct contains ~3 gold atoms per ferritin subunit, arranged in a small cluster bound to Cys90 and Cys102. MD simulations provide a plausible structural model for the cluster. The adduct was evaluated for its pharmacological properties and was found to be significantly more cytotoxic than free AuTM against A2780 cancer cells mainly due to higher gold uptake. NMR-metabolomics showed that AuTM bound to HuHf and free AuTM induced qualitatively similar changes in treated cancer cells, indicating that the effects on cell metabolism are approximately the same, in agreement with independent biochemical experiments. In conclusion, we have demonstrated here that a molecularly precise bioconjugate formed between AuTM and HuHf exhibits anticancer properties far superior to the free drug, while retaining its key mechanistic features. Evidence is provided that human ferritin can serve as an excellent carrier for this metallodrug.

2.
Curr Top Med Chem ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956915

ABSTRACT

For many centuries, traditional medicine has played an essential role in health care. The treatment of many illnesses, including cancer, has greatly benefited from using herbal remedies derived from traditional medicine. The bioactive compounds, such as curcumin, silibinin, berberine, ginseng, and others present in traditional medicine have shown a wide range of properties, such as anti-inflammatory, antimicrobial, anti-oxidant as well as potent anti-cancer properties both in laboratory studies and animal experiments (in vitro and in vivo). In this review, we mainly emphasized the anticancer role of bioactive compounds present in traditional medicine, such as curcumin, cardamonin, piperine, berberine, ginseng, silibinin, epigallocatechin gallate, and asafoetida. We also discussed molecular evidence of these compounds in chemoprevention and anticancer effects. These compounds have the potential to interfere with cancer growth, proliferation, metastasis, and angiogenesis and induce apoptosis by targeting different pathways and the cell cycle. This review article also focuses on how these compounds can help overcome drug resistance and enhance the availability of other clinically approved drugs. The usage of these compounds synergistically with other forms of treatment is also of great fascination to new and upcoming research. Finally, we have discussed the bioavailability of these compounds and strategies employed to improve them so their full potential can be exploited.

3.
ACS Appl Bio Mater ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958186

ABSTRACT

Metallic nanoparticles are promising candidates for anticancer therapies. Among the different metallic systems studied, copper is an affordable and biologically available metal with a high redox potential. Copper-based nanoparticles are widely used in anticancer studies owing to their ability to react with intracellular glutathione (GSH) to induce a Fenton-like reaction. However, considering the high metastatic potential and versatility of the tumor microenvironment, modalities with a single therapeutic agent may not be effective. Hence, to enhance the efficiency of chemotherapeutic drugs, repurposing them or conjugating them with other modalities is essential. Omeprazole is an FDA-approved proton pump inhibitor used in clinics for the treatment of ulcers. Omeprazole has also been studied for its ability to sensitize cancer cells to chemotherapy and induce apoptosis. Herein, we report a nanosystem comprising of copper nanoparticles encapsulating omeprazole (CuOzL) against B16 melanoma cells. The developed nanoformulation exerted significant synergistic anticancer activity when compared with either copper nanoparticles or omeprazole alone by inducing cell death through excessive ROS generation and subsequent mitochondrial damage.

4.
Nat Prod Res ; : 1-2, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954510

ABSTRACT

The ocean's vast and diverse ecosystem offers a rich reservoir of bioactive compounds with immense clinical potential. Marine organisms produce structurally unique and biologically active compounds, leading to breakthroughs in therapeutic development. Notable examples include anticancer agents like trabectedin and cytarabine, and the analgesic ziconotide. Marine compounds also exhibit potent antimicrobial and antiviral properties, addressing critical challenges like antibiotic resistance and emerging viral infections. Despite the promise, challenges such as sustainable harvesting and complex extraction processes persist. Advances in synthetic biology and metabolic engineering provide solutions for sustainable production, ensuring a stable supply of these valuable compounds. The integration of marine bioactives into modern medicine could revolutionize treatments for cancer, chronic pain, and infectious diseases, underscoring the need for continued investment in marine bioprospecting and biotechnological innovation.

5.
Eur J Med Chem ; 275: 116631, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954961

ABSTRACT

Protein kinases (PKs) including RAF, perform a principal role in regulating countless cellular events such as cell growth, differentiation, and angiogenesis. Overexpression and mutation of RAF kinases are significant contributors to the development and spread of cancer. Therefore, RAF kinase inhibitors show promising outcomes as anti-cancer small molecules by suppressing the expression of RAF protein, blocking RAS/RAF interaction, or inhibiting RAF enzymes. Currently, there are insufficient reports about approving drugs with minimal degree of toxicity. Therefore, it is an urgent need to develop new RAF kinase inhibitors correlated with increased anticancer activity and lower cytotoxicity. This review outlines reported RAF kinase inhibitors for cancer treatment in patents and literature from 2019 to 2023. It highlights the available inhibitors by shedding light on their chemical structures, biochemical profiles, and current status. Additionally, we highlighted the hinge region-binding moiety of the reported compounds by showing the hydrogen bond patterns of representative inhibitors with the hinge region for each class. In recent years, RAF kinase inhibitors have gained considerable attention in cancer research and drug development due to their potential to be studied under clinical trials and their demonstration of various degrees of efficacy and safety profiles across different cancer types. However, addressing challenges related to drug resistance and safety represents a major avenue for the optimization and enhancement of RAF kinase inhibitors. Strategies to overcome such obstacles were discussed such as developing novel pan-RAF inhibitors, RAF dimer inhibitors, and combination treatments.

6.
J Food Sci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955793

ABSTRACT

The wide biological activity of the Moringa oleifera represents a potential opportunity for developing selective cancer treatment drugs. The bioactive phytochemicals in Moringa seed extract (MSE) indicated large numbers of phytochemicals (21 compounds) with dominant abundance for cycloisolongifolene, 8,9-dehydro-9-vinyl, and chamazulene accounting for 12.7% and 12.19% of the total detected compounds. The MSE showed a potent anticancer effect toward Caco-2, MDA, and HepG-2 cells with half-maximal inhibitory concentration (IC50) values of 9.15 ± 1.18, 4.85 ± 0.11, and 7.36 ± 0.22 µg/mL, respectively, with higher safety (≥31-folds) toward normal human cells (IC50 of 150.7 ± 11.11 µg/mL). It appears that MSE stimulates selective-dose-dependent cell shrinkage, and nuclear condensation in the tumor cells, which finally induces the apoptosis pathway to increase its anticancer action. Additionally, MSE showed a potent capability to stimulate cell cycle arrest in both main checkpoint phases (G0/G1 and G2/M) of cell population growth. The apoptotic death stimulation was confirmed through upregulation of tumor protein p53 (p53) and cyclin-dependent kinase inhibitor p21 (p21) expression by more than three- to sixfold and downregulation of B-cell lymphoma 2 expression (threefold) in MSE-treated cells compared to 5-fluorouracil (5-FU)-treated tumor cells. Furthermore, the MSE revealed strong anti-inflammatory activity with significant antioxidant activity by lowering nitric oxide levels and enhancing the superoxide dismutase activity. On the other hand, the MSE revealed broad-spectrum antibacterial activity in a dose-dependent manner against Staphylococcus aureus minimum inhibitory concentration (MIC of 1.25 mg/mL), followed by Salmonella typhimurium (MIC of 1.23 mg/mL), whereas Escherichia coli was the least sensitive to MSE activity (MIC of 22.5 mg/mL) with significant antibiofilm activity against sensitive pathogens.

7.
Cureus ; 16(6): e61492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952587

ABSTRACT

Background MXene is a newly discovered substance consisting of 2D transition metal carbides or nitrides, produced through the disintegration and etching of aluminum layers. It possesses numerous properties, including a high surface area, conductivity, strength, stiffness, negative zeta potential, and excellent volumetric capacitance. MXene is utilized in detecting anti-cancer medicine, while bismuth vanadate (BiVO4) is synthesized to form an optimized material for anti-cancer activity applications. BiVO4 exhibits visible light absorption, strong chemical stability, and non-toxic properties. However, when loaded onto target stem cells, it can cause skin and respiratory irritation. Aim This study aimed to evaluate the facile fabrication of titanium carbide (Ti3C2)-BiVO4 nanomaterials coupled with oxides for anti-cancer activity. Moreover, it aimed to create Ti3C2-BiVO4 nanomaterials in combination with oxides using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to assess their potential as efficient and targeted anti-cancer agents. Methods and materials To prepare the 2D Ti3C2 MXene, 2.5 g of titanium aluminum carbide (Ti3AlC2) powder was dissolved in 60 mL of a 40% hydrofluoric acid (HF) solution in a polytetrafluoroethylene(PTFE) container. The etching process was made more efficient and completed in 24 hours by using a magnetic stirring system to keep the mixture stirred and heated continuously. The centrifugation was performed at 4000 rpm for five minutes. Subsequently, deionized water was used to wash the solution many times until its pH reached around 7. The appropriate Ti3C2 powder was made by vacuum drying the acquired sediment at 80°C for 24 hours. Monoclinic BiVO4 samples were synthesized via a hydrothermal method. Typically, 10 mmol of Bi(NO3)3.5H2O was dissolved in 100 mL of a 2 mol/L HNO3 solution and stirred uniformly. Subsequently, 10 mmol of ammonium metavanadate (NH4VO3) was added to the mixed solution. After being stirred for one hour, the mixture was transferred into a 100 mL sealed Teflon-lined stainless steel autoclave at 180°C for 16 hours. After cooling to room temperature, the sediment was washed three times with deionized water, ethanol, and acetone, respectively. Finally, the suspension was dried at 80°C, followed by calcination at 450°C for three hours to obtain BiVO4. Ti3C2-BiVO4 heterostructures were prepared by surface modification Ti3C2 using BiVO4 suspensions by a simple, cost-effective approach. Results Ti3C2 nanosheets were observed with BiVO4 particles, and the high crystalline nature of the compound was confirmed after XRD analysis and energy-dispersive spectroscopy (EDS) analysis. The compound was found to be pure without any impurities and exhibited anti-cancer activity. Conclusion The XRD, field emission scanning electron microscopy(FESEM), and EDS investigations provide an in-depth analysis of the structural, morphological, and compositional characteristics of Ti3C2-BiVO4 sheets. The XRD analysis proves the successful combination of different materials and the presence of crystalline phases. The FESEM imaging technique exposes the shape and arrangement of particles in sheets, while the EDS analysis verifies the elemental composition and uniform distribution. These investigations show that Ti3C2-BiVO4 composites have been successfully synthesized, indicating their potential for use in anti-cancer applications.

8.
Cancer Innov ; 3(2): e108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38946935

ABSTRACT

Cancer remains a major cause of mortality worldwide, and urological cancers are the most common cancers among men. Several therapeutic agents have been used to treat urological cancer, leading to improved survival for patients. However, this has been accompanied by an increase in the frequency of survivors with cardiovascular complications caused by anticancer medications. Here, we propose the novel discipline of uro-cardio-oncology, an evolving subspecialty focused on the complex interactions between cardiovascular disease and urological cancer. In this comprehensive review, we discuss the various cardiovascular toxicities induced by different classes of antineoplastic agents used to treat urological cancers, including androgen deprivation therapy, vascular endothelial growth factor receptor tyrosine kinase inhibitors, immune checkpoint inhibitors, and chemotherapeutics. In addition, we discuss possible mechanisms underlying the cardiovascular toxicity associated with anticancer therapy and outline strategies for the surveillance, diagnosis, and effective management of cardiovascular complications. Finally, we provide an analysis of future perspectives in this emerging specialty, identifying areas in need of further research.

9.
mLife ; 3(2): 219-230, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948147

ABSTRACT

Human microbiomes, considered as a new emerging and enabling cancer hallmark, are increasingly recognized as critical effectors in cancer development and progression. Manipulation of microbiome revitalizing anticancer therapy from natural products shows promise toward improving cancer outcomes. Herein, we summarize our current understanding of the human microbiome-driven molecular mechanisms impacting cancer progression and anticancer therapy. We highlight the potential translational and clinical implications of natural products for cancer prevention and treatment by developing targeted therapeutic strategies as adjuvants for chemotherapy and immunotherapy against tumorigenesis. The challenges and opportunities for future investigations using modulation of the microbiome for cancer treatment are further discussed in this review.

10.
PeerJ ; 12: e17588, 2024.
Article in English | MEDLINE | ID: mdl-38948224

ABSTRACT

In the present study, zinc oxide nanoparticles (ZnO-NPs) were synthesized using neem leaf aqueous extracts and characterized using transmission electron microscopy (TEM), ultraviolet visible spectroscopy (UV-Vis), and dynamic light scattering (DLS). Then compare its efficacy as anticancer and antibacterial agents with chemically synthesized ZnO-NPs and the neem leaf extract used for the green synthesis of ZnO-NPs. The TEM, UV-vis, and particle size confirmed that the developed ZnO-NPs are nanoscale. The chemically and greenly synthesized ZnO-NPs showed their optical absorbance at 328 nm and 380 nm, respectively, and were observed as spherical particles with a size of about 85 nm and 62.5 nm, respectively. HPLC and GC-MS were utilized to identify the bioactive components in the neem leaf aqueous extract employed for the eco-friendly production of ZnO-NPs. The HPLC analysis revealed that the aqueous extract of neem leaf contains 19 phenolic component fractions. The GC-MS analysis revealed the existence of 21 bioactive compounds. The antiproliferative effect of green ZnO-NPs was observed at different concentrations (31.25 µg/mL-1000 µg/mL) on Hct 116 and A 549 cancer cells, with an IC50 value of 111 µg/mL for A 549 and 118 µg/mL for Hct 116. On the other hand, the antibacterial activity against gram-positive and gram-negative bacteria was estimated. The antibacterial result showed that the MIC of green synthesized ZnO-NPs against gram-positive and gram-negative bacteria were 5, and 1 µg/mL. Hence, they could be utilized as effective antibacterial and antiproliferative agents.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Plant Extracts , Plant Leaves , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Plant Leaves/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Azadirachta/chemistry , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Green Chemistry Technology/methods , Particle Size , Cell Line, Tumor
11.
Biotechnol Rep (Amst) ; 42: e00832, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948352

ABSTRACT

The antioxidant and antiproliferative activity of red tilapia (Oreochromis spp.) viscera hydrolysates (RTVH) was evaluated. For that, the hydrolysates was applied to three cancer cell lines (HepG2, Huh7 and SW480) and the control (CCD-18Co). Finally, the line on which the hydrolysate had the greatest effect (SW480) and the control (CCD-18Co) were subjected to the ApoTox-Glo Triplex Assay to determine apoptosis, toxicity, and cell viability. The result showed that hydrolysate had a dose-dependent cytotoxic effect selective on the three cancer cell lines, compared to the control cells. There is a relationship between the antioxidant capacity of RTVHs and their antiproliferative capacity on cancer cells evaluated, which achieved cell viability by action of RTVH of 34.68 and 41.58 and 25.41 %, to HepG2, Huh7 and SW480, respectively. The action of RTVH on cancer cell line SW480 is not due to the induction of apoptosis but to the rupture of the cell membrane.

12.
Drug Dev Res ; 85(5): e22228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952003

ABSTRACT

Chromone-based compounds have established cytotoxic, antiproliferative, antimetastatic, and antiangiogenic effects on various cancer cell types via modulating different molecular targets. Herein, 17 novel chromone-2-carboxamide derivatives were synthesized and evaluated for their in vitro anticancer activity against 15 human cancer cell lines. Among the tested cell lines, MDA-MB-231, the triple-negative breast cancer cell line, was found to be the most sensitive, where the N-(2-furylmethylene) (15) and the α-methylated N-benzyl (17) derivatives demonstrated the highest growth inhibition with GI50 values of 14.8 and 17.1 µM, respectively. In vitro mechanistic studies confirmed the significant roles of compounds 15 and 17 in the induction of apoptosis and suppression of EGFR, FGFR3, and VEGF protein levels in MDA-MB-231 cancer cells. Moreover, compound 15 exerted cell cycle arrest at both the G0-G1 and G2-M phases. The in vivo efficacy of compound 15 as an antitumor agent was further investigated in female mice bearing Solid Ehrlich Carcinoma. Notably, administration of compound 15 resulted in a marked decrease in both tumor weight and volume, accompanied by improvements in biochemical, hematological, histological, and immunohistochemical parameters that verified the repression of both angiogenesis and inflammation as additional Anticancer mechanisms. Moreover, the binding interactions of compounds 15 and 17 within the binding sites of all three target receptors (EGFR, FGFR3, and VEGF) were clearly illustrated using molecular docking.


Subject(s)
Antineoplastic Agents , Chromones , ErbB Receptors , Molecular Docking Simulation , Receptor, Fibroblast Growth Factor, Type 3 , Triple Negative Breast Neoplasms , Vascular Endothelial Growth Factor A , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Animals , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Mice , Chromones/pharmacology , Chromones/chemical synthesis , Chromones/chemistry , Chromones/therapeutic use , Drug Design , Apoptosis/drug effects , Cell Proliferation/drug effects
13.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 487-515, jul. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1538020

ABSTRACT

Myrtus communis L., commonly known as true myrtle, is a medicinal plant native to the Mediterranean area. Since ancient times, the inhabitant s of this area have been using it for its cultural and medicinal properties. Because of the vast diversity of biomolecules in its aerial parts, it exhibits several biological properties, including antioxidant, antimicrobial, and anticancer properties. This review retrospect the research on the source, biological activities with empirical evidence, chemical composition, applications, and cellular targets of extracts and essential oils obtained from M. communis leaves, which provides a perspective for further studies on the applications and formulations of extract and EO of M. communis leaves. The efficacy of constituents' individually, in association with other bioactive constituents, or in combination with available commercial drugs would provide insights in to the development of these bio - actives as future drugs and their evolving future potential applications in the pharmaceutical, food, and aroma industries.


Myrtus communis L., comúnmente conocido como arrayán verdadero, es una planta medicinal originaria de la zona mediterránea. Desde la antigüedad, los habitantes de esta zona lo utilizan por sus propiedades culturales y medicinales. Debido a la gran div ersidad de biomoléculas en sus partes aéreas, exhibe varias propiedades biológicas, incluidas propiedades antioxidantes, antimicrobianas y anticancerígenas. Esta revisión retrospectiva de la investigación sobre la fuente, las actividades biológicas con evi dencia empírica, la composición química, las aplicaciones y los objetivos celulares de los extractos y aceites esenciales obtenidos de las hojas de M. communis , lo que brinda una perspectiva para futuros estudios sobre las aplicaciones y formulaciones de l os extractos y EO de M. communis . La eficacia de los componentes individualmente, en asociación con otros componentes bioactivos o en combinación con medicamentos comerciales disponibles proporcionaría información sobre el desarrollo de estos bioactivos co mo medicamentos futuros y sus futuras aplicaciones potenciales en las industrias farmacéutica, alimentaria y aromática


Subject(s)
Myrtus communis/pharmacology , Plants, Medicinal , Oils, Volatile/metabolism , Oils, Volatile/pharmacology , Plant Leaves/metabolism , Anti-Bacterial Agents , Antifungal Agents , Antioxidants
14.
Carbohydr Polym ; 341: 122298, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876710

ABSTRACT

Cutaneous melanoma is a lethal skin cancer variant with pronounced aggressiveness and metastatic potential. However, few targeted medications inhibit the progression of melanoma. Ganoderma lucidum, which is a type of mushroom, is widely used as a non-toxic alternative adjunct therapy for cancer patients. This study determines the effect of WSG, which is a water-soluble glucan that is derived from G. lucidum, on melanoma cells. The results show that WSG inhibits cell viability and the mobility of melanoma cells. WSG induces changes in the expression of epithelial-to-mesenchymal transition (EMT)-related markers. WSG also downregulates EMT-related transcription factors, Snail and Twist. Signal transduction assays show that WSG reduces the protein levels in transforming growth factor ß receptors (TGFßRs) and consequently inhibits the phosphorylation of intracellular signaling molecules, such as FAK, ERK1/2 and Smad2. An In vivo study shows that WSG suppresses melanoma growth in B16F10-bearing mice. To enhance transdermal drug delivery and prevent oxidation, two highly biocompatible compounds, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), are used to synthesize a dissolvable microneedle patch that is loaded with WSG (MN-WSG). A functional assay shows that MN-WSG has an effect that is comparable to that of WSG alone. These results show that WSG has significant potential as a therapeutic agent for melanoma treatment. MN-WSG may allow groundbreaking therapeutic approaches and offers a novel method for delivering this potent compound effectively.


Subject(s)
Reishi , Snail Family Transcription Factors , Animals , Mice , Reishi/chemistry , Snail Family Transcription Factors/metabolism , Humans , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Cell Line, Tumor , Twist-Related Protein 1/metabolism , Epithelial-Mesenchymal Transition/drug effects , Cell Survival/drug effects , Mice, Inbred C57BL , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Polyvinyl Alcohol/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Signal Transduction/drug effects
15.
ACS Appl Bio Mater ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867473

ABSTRACT

The polymeric nanofiber mats were produced from polylactic acid, methylcellulose, and polyethylene glycol with 5-fluorouracil (5Fu) drug and iron oxide (Fe3O4) nanoparticles. Spectral and crystallographic studies clearly elucidated the ionic interactions, structure and nature of the mats. Fe3O4 nanoparticles <10 nm in size, along with methyl cellulose and polyethylene glycol, have significantly reduced the size of nanofiber mats. The mechanical properties for the mats was found to be challenging; however, surface wettability, swelling capacity, and drug encapsulation efficiency results were promising. A controlled drug release pattern was observed from in vitro drug release study, zero-order kinetics, and a Higuchi model. Nanofiber mats showed higher anticancer activity (78%) against MDA-MB 231 cancer cells, which reveals that a small amount of 5Fu drug (15.86%) with high levels of O2••, H2O2, and OH• radicals generated from Fe3O4 have catalyzed the Fenton's reaction to eradicate the cancer cells, in a shorter span of 24 h, itself. In addition, the apoptosis assay by dual AO/PI staining method clearly exhibited the apoptotic cancer cells by fluorescence microscopy. Incorporation of Fe3O4 nanoparticles enhanced the anticancer activity of the mats, compared to the commercially available standard 5Fu drug. Nanofiber mats significantly controlled the growth of selected pathogenic microbial strains by the action of the 5Fu drug and Fe3+ ions. The degradation of mats was investigated by an in vitro mass loss study for a period of 360 days. In a nutshell, promising nanofiber mats were produced as targeted drug delivery devices for chemotherapy.

16.
Curr Med Chem ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38867528

ABSTRACT

Cancer, a diverse group of diseases characterized by abnormal cell growth and the potential to spread throughout the body, accounts for approximately 10 million deaths globally each year. Current cancer therapies, including chemotherapy, radiation, and various pharmacological treatments, present several challenges and potential side effects. It is important to differentiate these conventional methods, which often involve synthetic drugs, from adjuvant therapies that might be used in conjunction. As a result, there is an increasing interest in alternative therapies, particularly in agents derived from natural sources for cancer treatment. Secondary metabolites have shown promise in promoting the development of new clinical drugs with various anti-cancer mechanisms. This review focuses on the anti-cancer potential of the novel metabolite Andrographolide, extracted mainly from Andrographis paniculata. The chemopreventive properties and the ability to inhibit various signaling pathways across different types of cancers without side effects posit Andrographolide as a promising natural antitumour agent. The review identified that Andrographolide inhibits multiple signaling pathways, contributing to its anti-proliferative, anti-metastatic, and apoptotic effects in various cancers. The compound's natural origin and lack of adverse side effects make it particularly attractive as a therapeutic agent. However, further detailed studies are needed to fully understand its specific mechanisms and potential clinical applications. Andrographolide presents a compelling option as a natural anticancer agent with the potential to overcome some limitations of traditional cancer treatments. Its broad spectrum of anti-cancer activities and absence of side effects highlight its therapeutic potential. The review highlights that continued research and clinical studies are important for confirming the effectiveness and safety of Andrographolide in human use, alongside optimizing dosage and delivery techniques.

17.
Support Care Cancer ; 32(7): 426, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864924

ABSTRACT

PURPOSE: Despite the rapid expansion of mHealth apps, their adoption has not always been based on evidence of effectiveness on patient outcomes. This systematic review aimed to determine the effect of mHealth apps on adherence and symptom to oral anticancer medications (OAMs) and identify the app design that led to such effects. METHODS: Pubmed, Cochrane Central, PsycINFO, EMBASE, and WoS were searched from inception to April 2023. Randomised controlled trials (RCTs) that evaluated effects of mHealth apps on primary outcomes OAM adherence and symptom burden were included. Two reviewers independently assessed risk-of-bias using Cochrane Risk-of-Bias version 2 and extracted the data. Quality of evidence was assessed using GRADE. The protocol was registered in PROSPERO (CRD42023406024). RESULTS: Four RCTs involving 806 patients with cancer met the eligibility criteria. mHealth apps features included a combinations of symptom reporting, medication reminder, automated alert to care team, OAM and side effect information, one study implemented structured follow-up by a nurse. The intervention group showed no significant difference in OAM adherence (relative ratio 1.20; 95% CI 1.00 to 1.43), but significantly improved symptoms to OAMs with a lower standardised mean symptom burden score of 0.49 (SMD - 0.49; 95% CI - 0.93 to - 0.06), and a 25% lower risk of grade 3 or 4 toxicity (risk ratio 0.75; 95% CI 0.58 to 0.95) compared to usual care. CONCLUSION: These findings suggest a potential role for mHealth app in managing OAM side effect. Further research should explore the role of AI-guided algorithmic pathways on the interactive features of mHealth apps.


Subject(s)
Antineoplastic Agents , Medication Adherence , Mobile Applications , Neoplasms , Telemedicine , Humans , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Administration, Oral , Randomized Controlled Trials as Topic
18.
Pathol Res Pract ; 260: 155387, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38870713

ABSTRACT

Lung cancer (LC) is the leading cause of cancer-related mortality, and it is caused by many factors including cigarette smoking. Despite numerous treatment strategies for LC, its five-year survival is still poor (<20 %), attributable to treatment resistance and lack of early diagnosis and intervention. Importantly, LC incidence is higher in patients affected by chronic respiratory diseases (CRDs) such as asthma and chronic obstructive pulmonary disorder (COPD), and LC shares with other CRDs common pathophysiological features including chronic inflammation, oxidative stress, cellular senescence, and airway remodelling. Remodelling is a complex process resulting from the aberrant activation of tissue repair secondary to chronic inflammation, oxidative stress, and tissue damage observed in the airways of CRD patients, and it is characterized by irreversible airway structural and functional alterations, concomitantly with tissue fibrosis, epithelial-to-mesenchymal transition (EMT), excessive collagen deposition, and thickening of the basement membrane. Many processes involved in remodelling, particularly EMT, are also fundamental for LC pathogenesis, highlighting a potential connection between CRDs and LC. This provides rationale for the development of novel treatment strategies aimed at targeting components of the remodelling pathways. In this study, we tested the in vitro therapeutic activity of rat fecal microbiome extract (FME) on A549 human lung adenocarcinoma cells. We show that treatment with FME significantly downregulates the expression of six proteins whose function is at the forefront between airway remodelling and LC development: Snail, SPARC, MUC-1, Osteopontin, MMP-2, and HIF-1α. The results of this study, if confirmed by further investigations, provide proof-of-concept for a novel approach in the treatment of LC, focused on tackling the airway remodelling mechanisms underlying the increased susceptibility to develop LC observed in CRD patients.

19.
Eur J Med Chem ; 275: 116561, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38870832

ABSTRACT

Quinolones, a key class of heterocyclics, are gaining popularity among organic and medicinal chemists due to their promising properties. Quinoline, with its broad spectrum of action, plays a primordial role in chemotherapy for cancer. Drugs include lenvatinib and its structural derivatives carbozantinib and bosutinib, and tipifarnib are the popular anticancer agents. Owing to the importance of quinoline, there are several classical methods for the synthesis such as, such as Gould-Jacobs, Conrad-Limpach, Camps cyclization, Skraup, Doebnervon Miller, Combes, Friedlander, Pfitzinger, and Niementowski synthesis. These methods are well-commended for developing an infinite variety of quinoline analogues. However, these procedures are associated with several drawbacks such as long reaction times, use of hazardous chemicals or stoichiometric proportions, difficulty of working up conditions, high temperatures, organic solvents, and the presence of numerous steps, all of which have an impact on the environment and the economy. As a result, researchers are working hard to develop green quinoline compounds in the hopes of making groundbreaking discoveries in the realm of cancer. In this review, we have highlighted significant research on quinoline-based compounds and their structure-activity relationship (SAR). Furthermore, because of the significant economic and environmental health and safety (EHS) concerns, more research is being dedicated to the green synthesis of quinolone derivatives. The current review offers recent advances in quinoline derivatives as anticancer agents for green synthesis using microwave, ultrasound, and one-pot synthesis. We believe that our findings will provide useful insight and inspire more green research on this framework to produce powerful and selective quinoline derivatives.

20.
Chem Biol Interact ; 398: 111086, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825054

ABSTRACT

Oleic acid (OA) is a monounsaturated compound with many health-benefitting properties such as obesity prevention, increased insulin sensitivity, antihypertensive and immune-boosting properties, etc. The aim of this study was to analyze the effect of oleic acid (OA) and some anticancer drugs against oxidative damage induced by nitropropionic acid (NPA) in rat brain. Six groups of Wistar rats were treated as follows: Group 1, (control); group 2, OA; group 3, NPA + OA; group 4, cyclophosphamide (CPP) + OA; group 5, daunorubicin (DRB) + OA; and group 6, dexrazoxane (DXZ) + OA. All compounds were administered intraperitoneally route, every 24 h for 5 days. Their brains were extracted to measure lipoperoxidation (TBARS), H2O2, Ca+2, Mg+2 ATPase activity, glutathione (GSH) and dopamine. Glucose, hemoglobin and triglycerides were measured in blood. In cortex GSH increased in all groups, except in group 2, the group 4 showed the highest increase of this biomarker. TBARS decrease, and dopamine increase in all regions of groups 4, 5 and 6. H2O2 increased only in cerebellum/medulla oblongata of group 5 and 6. ATPase expression decreased in striatum of group 4. Glucose increased in group 6, and hemoglobin increased in groups 4 and 5. These results suggest that the increase of dopamine and the antioxidant effect of oleic acid administration during treatment with oncologic agents could result in less brain injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...