Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Adv Res ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969095

ABSTRACT

INTRODUCTION: The human gut microbiome plays a pivotal role in health and disease, notably through its interaction with bile acids (BAs). BAs, synthesized in the liver, undergo transformation by the gut microbiota upon excretion into the intestine, thus influencing host metabolism. However, the potential mechanisms of dicaffeoylquinic acids (DiCQAs) from Ilex kudingcha how to modulate lipid metabolism and inflammation via gut microbiota remain unclear. OBJECTIVES AND METHODS: The objectives of the present study were to investigate the regulating effects of DiCQAs on diabetes and the potential mechanisms of action. Two mice models were utilized to investigate the anti-diabetic effects of DiCQAs. Additionally, analysis of gut microbiota structure and functions was conducted concurrently with the examination of DiCQAs' impact on gut microbiota carrying the bile salt hydrolase (BSH) gene, as well as on the enterohepatic circulation of BAs and related signaling pathways. RESULTS: Our findings demonstrated that DiCQAs alleviated diabetic symptoms by modulating gut microbiota carrying the BSH gene. This modulation enhanced intestinal barrier integrity, increased enterohepatic circulation of conjugated BAs, and inhibited the farnesoid X receptor-fibroblast growth factor 15 (FGF15) signaling axis in the ileum. Consequently, the protein expression of hepatic FGFR4 fibroblast growth factor receptor 4 (FGFR4) decreased, accompanied by heightened BA synthesis, reduced hepatic BA stasis, and lowered levels of hepatic and plasma cholesterol. Furthermore, DiCQAs upregulated glucolipid metabolism-related proteins in the liver and muscle, including v-akt murine thymoma viral oncogene homolog (AKT)/glycogen synthase kinase 3-beta (GSK3ß) and AMP-activated protein kinase (AMPK), thereby ameliorating hyperglycemia and mitigating inflammation through the down-regulation of the MAPK signaling pathway in the diabetic group. CONCLUSION: Our study elucidated the anti-diabetic effects and mechanism of DiCQAs from I. kudingcha, highlighting the potential of targeting gut microbiota, particularly Acetatifactor sp011959105 and Acetatifactor muris carrying the BSH gene, as a therapeutic strategy to attenuate FXR-FGF15 signaling and ameliorate diabetes.

2.
J Pharm Bioallied Sci ; 16(Suppl 2): S1340-S1344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882787

ABSTRACT

Nanotechnology is emerging as a promising approach in the development of novel therapeutic strategies. Nanoparticles, due to their unique physicochemical properties and small size, have the potential to improve the delivery of therapeutic agents, enhance their bioavailability, and increase their efficacy. Among various types of nanoparticles, strontium nanoparticles have gained attention due to their potential antidiabetic activity and cytotoxic effects against cancer cells. Mimosa pudica, also known as "Sensitive Plant" or "Touch-Me-Not," is a medicinal plant known for its diverse pharmacological activities, including antidiabetic and anticancer properties. Recent research has focused on the synthesis of strontium nanoparticles by using Mimosa pudica as a green and sustainable approach. These nanoparticles have shown promising results in terms of their antidiabetic activity and cytotoxic effects against cancer cells. Thus, in this study, the antidiabetic effect was studied using the alpha-amylase inhibitor assay, and the cytotoxic effect was studied using the brine shrimp lethality assay. In these assays, increasing concentration of Mimosa pudica-mediated strontium nanoparticles exhibited increasing antidiabetic and cytotoxic effects, which was similar to the standard used, which is acarbose. Hence, this can be used as a novel antidiabetic and cytotoxic agent in the future.

3.
BMC Complement Med Ther ; 24(1): 69, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302935

ABSTRACT

BACKGROUND: Litsea glutinosa (Lour.) C. B. Rob. belongs to the Litsea genus and is categorized under the family of Lauraceae. The study aimed to investigate the phytoconstituents and pharmacological properties of methanol extract of leaves of Litsea glutinosa, focusing on antidiabetic activity via in vivo and in silico techniques. METHODS: Extensive chromatographic and spectroscopic techniques were applied to isolate and characterize the constituents from the L. glutinosa plant species. The antidiabetic activity was studied in streptozotocin-induced diabetes mice, and the computational study of the isolated compounds was carried out by utilizing AutoDock Vina programs. In addition, the pharmacokinetic properties in terms of absorption, distribution, metabolism and excretion (ADME) and toxicological profiles of the isolated compounds were examined via in silico techniques. RESULTS: In the present study, two flavonoid glycosides 4΄-O-methyl (2 ̋,4 ̋-di-E-p-coumaroyl) afzelin (1) and quercetin 3-O-(2 ̋,4 ̋-di-E-p-coumaroyl)-α-L-rhamnopyranoside (2) were isolated from the leaves of L. glutinosa and characterized by 1H and 13C NMR, COSY, HSQC, HMBC, and mass spectral data. Although compounds 1 and 2 have been reported twice from Machilis litseifolia and Lindera akoensis, and Machilis litseifolia and Mammea longifolia, respectively, this is the first report of this isolation from a Litsea species. Administering the methanolic extract of L. glutinosa at doses of 300 and 500 mg/kg/day to mice with diabetes induced by streptozotocin led to a significant decrease in fasting blood glucose levels (p < 0.05) starting from the 7th day of treatment. Besides, the computational study and PASS analysis endorsed the current in vivo findings that the both isolated compounds exerted higher binding affinities to human pancreatic α-amylase and aldose reductase than the conventional drugs. The in silico ADMET analysis revealed that the both isolated compounds have a favorable pharmacokinetic and safety profile suitable for human consumption. CONCLUSION: According to the current outcomes obtained from in vivo and in silico techniques, the leaf extract of L. glutinosa could be a natural remedy for treating diabetes, and the isolated phytoconstituents could be applied against various illnesses, mainly hyperglycemia. However, more investigations are required for extensive phytochemical isolation and pharmacological activities of these phytoconstituents against broader targets with exact mechanisms of action.


Subject(s)
Diabetes Mellitus , Litsea , Humans , Animals , Mice , Flavonoids/chemistry , Glycosides/pharmacology , Litsea/chemistry , Hypoglycemic Agents/pharmacology , Streptozocin
4.
Molecules ; 28(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687049

ABSTRACT

Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) is widely distributed in the desert areas of the world. The fruit bodies of C. colocynthis are recognized for their wide range of nutraceutical potential, as well as medicinal and pharmaceutical uses. The plant has been reported for various uses, such as asthma, bronchitis, cancer, colic, common cold, cough, diabetes, dysentery, and jaundice. The fruit has been extensively studied for its biological activities, which include insecticide, antitumor, and antidiabetic effects. Numerous bioactive compounds have been reported in its fruit bodies, such as essential oils, fatty acids, glycosides, alkaloids, and flavonoids. Of these, flavonoids or caffeic acid derivatives are the constituents associated with the inhibition of fungal or bacterial growth, whereas eudesmane sesquiterpenes or sesquiterpene lactones are most active against insects, mites, and nematodes. In this review, the scientific evidence for the biological activity of C. colocynthis against insecticide, cytotoxic, and antidiabetic effects is summarized.


Subject(s)
Citrullus colocynthis , Insecticides , Flavonoids , Hypoglycemic Agents/pharmacology , Pharmaceutical Preparations
5.
Drug Deliv ; 30(1): 2251720, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649375

ABSTRACT

Herein we designed, optimized, and characterized the Metformin Hydrochloride Transethosomes (MTF-TES) and incorporate them into Chitosan gel to develop Metformin Hydrochloride loaded Transethosomal gel (MTF-TES gel) that provides a sustained release, improved transdermal flux and improved antidiabetic response of MTF. Design Expert® software (Ver. 12, Stat-Ease, USA) was applied for the statistical optimization of MTF-TES. The formulation with Mean Particle Size Distribution (MPSD) of 165.4 ± 2.3 nm, Zeta Potential (ZP) of -21.2 ± 1.9 mV, Polydispersity Index (PDI) of 0.169 ± 0.033, and MTF percent Entrapment Efficiency (%EE) of 89.76 ± 4.12 was considered to be optimized. To check the chemical incompatibility among the MTF and other formulation components, Fourier Transform Infrared (FTIR) spectroscopy was performed and demonstrated with no chemical interaction. Surface morphology, uniformity, and segregation were evaluated through Transmission Electron Microscopy (TEM). It was revealed that the nanoparticles were spherical and round in form with intact borders. The fabricated MTF-TES has shown sustained release followed by a more pronounced effect in MTF-TES gel as compared to the plain MTF solution (MTFS) at a pH of 7.4. The MTF-TES has shown enhanced permeation followed by MTF-TES gel as compared to the MTFS at a pH of 7.4. In vivo antidiabetic assay was performed and results have shown improved antidiabetic potential of the MTF-TES gel, in contrast to MTF-gel. Conclusively, MTF-TES is a promising anti-diabetic candidate for transdermal drug delivery that can provide sustained MTF release and enhanced antidiabetic effect.


Subject(s)
Diabetes Mellitus , Animals , Mice , Rats , Metformin/chemistry , Metformin/pharmacology , Metformin/therapeutic use , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Gels , Spectroscopy, Fourier Transform Infrared , Software , Diabetes Mellitus/drug therapy , Delayed-Action Preparations
6.
Article in English | MEDLINE | ID: mdl-37534785

ABSTRACT

AIMS: The study aimed to assess the antihyperglycemic and antidyslipidemic activities of Artemisia mesatlantica. BACKGROUND: Artemisia mesatlantica is an endemic plant of Morocco used in traditional medicine as an alternative treatment for diabetes. OBJECTIVE: The study was designed to examine the antihyperglycemic and antidyslipidemicability of aqueous extract of Artemisia mesatlantica (AMAE) in experimental animal models. METHODS: The effect of the single and repeated oral administration (7 days of treatment) of AMAE (60 mg/kg) on blood glucose and lipid profile were assessed in normal and streptozotocin-induced diabetic rats. Furthermore, to confirm the antidyslipidemic effect of Artemisia mesatlantica, a model of hyperlipidemia induced by tyloxapol (Triton WR-1339) in rats was used. RESULTS: The AMAE (60 mg/kg) was able to significantly reduce glycaemia, improve lipid profile and increase hepatic glycogen content in STZ-induced diabetic rats. In addition, pretreatment of rats for 7 consecutive days with an aqueous extract of Artemisia mesatlantica (600 mg/kg) prior to tyloxapol injection prevented increases in plasma levels of total cholesterol, triglycerides and LDL-c. CONCLUSION: From these observed results, it can be deduced that Artemisia mesatlantica possesses remarkable antidiabetic and antihyperlipidemic properties.


Subject(s)
Artemisia , Diabetes Mellitus, Experimental , Rats , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Morocco , Blood Glucose , Triglycerides
7.
Metabolites ; 13(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37110171

ABSTRACT

The prevalence of diabetes mellitus is one of the major medical problems that the modern world is currently facing. Type 1 and Type 2 diabetes mellitus both result in early disability and death, as well as serious social and financial problems. In some cases, synthetic drugs can be quite effective in the treatment of diabetes, though they have side effects. Plant-derived pharmacological substances are of particular interest. This review aims to study the antidiabetic properties of secondary plant metabolites. Existing review and research articles on the investigation of the antidiabetic properties of secondary plant metabolites, the methods of their isolation, and their use in diabetes mellitus, as well as separate articles that confirm the relevance of the topic and expand the understanding of the properties and mechanisms of action of plant metabolites, were analyzed for this review. The structure and properties of plants used for the treatment of diabetes mellitus, including plant antioxidants, polysaccharides, alkaloids, and insulin-like plant substances, as well as their antidiabetic properties and mechanisms for lowering blood sugar, are presented. The main advantages and disadvantages of using phytocomponents to treat diabetes are outlined. The types of complications of diabetes mellitus and the effects of medicinal plants and their phytocomponents on them are described. The effects of phytopreparations used to treat diabetes mellitus on the human gut microbiota are discussed. Plants with a general tonic effect, plants containing insulin-like substances, plants-purifiers, and plants rich in vitamins, organic acids, etc. have been shown to play an important role in the treatment of type 2 diabetes mellitus and the prevention of its complications.

8.
Foods ; 12(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36832834

ABSTRACT

The current work was designed to evaluate the antioxidant activity and antidiabetic effect of Ficus carica L. extracts. For that, the leaves and buds of Ficus carica L. were analyzed to determine their polyphenolic and flavonoid contents and antioxidant activity. Diabetes was induced by a single dose of alloxan monohydrate (65 mg/kg body weight), then diabetic rats were treated with a dose of 200 mg/kg body weight of the methanolic extracts of Ficus carica leaves or buds or their combination for 30 days. Throughout the experiment, blood sugar and body weight were measured every 5 and 7 days respectively. At the end of the experiment, serum and urine were collected for analysis of alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, creatinine, uric acid, urea, proteins, sodium, potassium, and chloride. Pancreas, liver, and kidney were removed to estimate catalase, glutathione peroxidase, and glutathione activities; lipid peroxidation products were also determined. The results obtained revealed that alloxan has induced hyperglycemia, increased liver and renal biomarkers levels, reduced antioxidative enzymes, and induced lipid peroxidation. However, the treatment with Ficus carica leaf and bud extracts, especially their combination, has attenuated all pharmacological perturbations induced by alloxan.

9.
Biometals ; 35(5): 903-919, 2022 10.
Article in English | MEDLINE | ID: mdl-35778658

ABSTRACT

Diabetes mellitus, a complex and heterogeneous disease associated with hyperglycemia, is a leading cause of mortality and reduces life expectancy. Vanadium complexes have been studied for the treatment of diabetes. The effect of complex [VO(bpy)(mal)]·H2O (complex A) was evaluated in a human hepatocarcinoma (HepG2) cell line and in streptozotocin (STZ)-induced diabetic male Wistar rats conditioned in seven groups with different treatments (n = 10 animals per group). Electron paramagnetic resonance and 51V NMR analyses of complex A in high-glucose Dulbecco's Modified Eagle Medium (DMEM) revealed the oxidation and hydrolysis of the oxidovanadium(IV) complex over a period of 24 h at 37 °C to give low-nuclearity vanadates "V1" (H2VO4-), "V2" (H2V2O72-), and "V4" (V4O124-). In HepG2 cells, complex A exhibited low cytotoxic effects at concentrations 2.5 to 7.5 µmol L-1 (IC50 10.53 µmol L-1) and increased glucose uptake (2-NBDG) up to 93%, an effect similar to insulin. In STZ-induced diabetic rats, complex A at 10 and 30 mg kg-1 administered by oral gavage for 12 days did not affect the animals, suggesting low toxicity or metabolic impairment during the experimental period. Compared to insulin treatment alone, complex A (30 mg kg-1) in association with insulin was found to improve glycemia (30.6 ± 6.3 mmol L-1 vs. 21.1 ± 8.6 mmol L-1, respectively; p = 0.002), resulting in approximately 30% additional reduction in glycemia. The insulin-enhancing effect of complex A was associated with low toxicity and was achieved via oral administration, suggesting the potential of complex A as a promising candidate for the adjuvant treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Humans , Hypoglycemic Agents/adverse effects , Insulin/metabolism , Insulin/pharmacology , Malates , Male , Rats , Rats, Wistar , Streptozocin , Vanadates/chemistry , Vanadium/chemistry , Vanadium/pharmacology
10.
Can J Physiol Pharmacol ; 100(4): 295-305, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34757855

ABSTRACT

The current study aimed to determine the antidiabetic and antidyslipidemic activities of moronic acid methyl ester (1) (compound 1) by in vivo, in vitro, in silico, and molecular biology studies. Compound 1 was evaluated to establish its dose-dependent antidiabetic and antihyperglycemic (50 mg/kg) activities, in diabetic and normoglycemic male CD1 mice, respectively. Also, compound 1 was subjected to a subacute study (50 mg/kg per day for 8 days) to determine blood biochemical profiles and the expression of protein tyrosine phosphatase 1B (PTP-1B), glucose transporter type 4 (GLUT4), peroxisome proliferator-activated receptor α (PPAR-α), PPAR-γ, adiponectin, interleukin-1ß (IL-1ß), and monocyte chemoattractant protein 1 (MCP-1) in adipose tissue of animals after treatment. Different doses in acute administration of compound 1 decreased glycemia (p < 0.05) compared with vehicle, showing greater effectiveness in the range 50-160 mg/kg. Also, the oral glucose tolerance test showed that compound 1 induced a significant antihyperglycemic action by opposing the hyperglycemic peak (p < 0.05). Moreover, compound 1 subacute administration decreased glucose and triglyceride levels after treatment (p < 0.05); while the expression of PPAR-α and PPAR-γ, adiponectin, and GLUT4 displayed an increase (p < 0.05) compared with the diabetic control group. In conclusion, compound 1 showed antihyperglycemic, antidiabetic, and antidyslipidemic effects in normal and diabetic mice, probably due to insulin sensitization through increased mRNA expression of GLUT4, PPAR-α, PPAR-γ, and adiponectin genes.


Subject(s)
Diabetes Mellitus, Experimental , PPAR alpha , Adiponectin/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Esters/therapeutic use , Glucose , Glucose Transporter Type 4/genetics , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Mice , Oleanolic Acid/analogs & derivatives , PPAR alpha/metabolism , PPAR gamma/metabolism , Triglycerides
11.
Metabolites ; 11(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34436461

ABSTRACT

The aim of the current study was to examine the antidiabetic effect of noodle containing fermented lettuce extract (FLE) on diabetic mice as a pre-clinical study. The γ-aminobutyric acid (GABA) content, antioxidant capacity, and total polyphenol content of the FLE noodles were analyzed and compared with those of standard noodles. In addition, oral glucose and sucrose tolerance, and fasting blood glucose tests were performed using a high-fat diet/streptozotocin-mediated diabetic mouse model. Serum metabolite profiling of mice feed standard or FLE noodles was performed using gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) to understand the mechanism changes induced by the FLE noodles. The GABA content, total polyphenols, and antioxidant activity were high in FLE noodles compared with those in the standard noodles. In vivo experiments also showed that mice fed FLE noodles had lower blood glucose levels and insulin resistance than those fed standard noodles. Moreover, glycolysis, purine metabolism, and amino acid metabolism were altered by FLE as determined by GC-TOF-MS-based metabolomics. These results demonstrate that FLE noodles possess significant antidiabetic activity, suggesting the applicability of fermented lettuce extract as a potential food additive for diabetic food products.

12.
Biomedicines ; 9(7)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203399

ABSTRACT

An enzyme mixture (EM) of glucose oxidase, glucosyl transferase, and fructosyl transferase can regulate glucose absorption into the body by converting carbohydrates in food to indigestible oligosaccharides. We evaluated the antidiabetic effects of repeated oral administration of EM in db/db mice. Seven-week-old db/db mice were divided into control, voglibose, and EM groups. Drugs were administered orally mixed with limited feed for one month. Glucose levels were measured every week. A meal tolerance test was conducted after overnight fasting, before the mice were sacrificed. There were no differences in body weight or food intake between the groups. EM treatment reduced blood glucose levels compared with those in the control group. Blood glucose levels during the meal tolerance test were significantly lower in the EM group than those in the control group. A significant decrease in triglyceride level and a tendency for decreased low-density lipoprotein were observed in the EM group compared with in the control group. The Bacteroidetes-to-Firmicutes ratio was higher in the EM group than that in the control group. EM may be useful for people at risk of hyperglycemia or diabetes who need to safely regulate their blood glucose levels. EM may also improve lipid and gut microbiota profiles.

13.
J Pharm Biomed Anal ; 201: 114139, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34000580

ABSTRACT

Baobab fruit pulp Adansonia digitata (AD) has received attention due to its numerous nutritional and medicinal values. In the current study, tentative identification was performed due to limited information available on its phytochemical composition. Phytochemicals from AD fruit pulp were obtained using successive organic solvent fractionation. The LC-MSMS analysis led to identification of 91 metabolites from methanol, butanol and ethyl acetate extracts. Moreover, 20 compounds were identified in the petroleum ether extract based on high resolution ion masses. In vitro antidiabetic and antioxidant properties of selected extracts were investigated using enzyme activity and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, respectively. Biological screening of the antidiabetic effects of target extracts was performed against streptozotocin-induced diabetes in experimental animals, following daily oral treatment for 3 successive weeks. Serum glucose, insulin, adiponectin, superoxide dismutase (SOD), lipid peroxide, cholesterol and HDL levels were measured. Finally, histopathological and immunohistochemical examinations of pancreas were carried out. Results revealed that animal groups treated daily with butanol (BuOH) and petroleum ether extracts of AD (oil) exhibited a significant improvement in carbohydrate and lipid metabolism as well as antioxidant effect. Both extracts revealed superior effects with respect to the total (TT) and ethyl acetate (EtOAc) extracts. Histopathological and immunohistochemical findings supported these results, showing marked protection of the pancreas. Thus, baobab oil and butanolic extract of the fruit pulp protected animals against STZ-induced diabetic changes, in addition to attenuation of lipid peroxidation, hypercholesterolemia and oxidation.


Subject(s)
Adansonia , Diabetes Mellitus, Experimental , Animals , Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Fruit , Lipidomics , Plant Extracts/pharmacology , Rats
14.
Molecules ; 26(7)2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33800673

ABSTRACT

Coffea arabica pulp (CP) is a by-product of coffee processing. CP contains polyphenols that have exhibited beneficial effects, including antioxidant and lipid-lowering effects, as well as enhanced insulin sensitivity, in in vitro and in vivo models. How polyphenols, as found in CP aqueous extract (CPE), affect type 2 diabetes (T2D) has not been investigated. Thus, the present study examined the potential antidiabetic, antioxidant, and renoprotective effects of CPE-rich polyphenols, using an experimental model of T2D in rats induced by a high-fat diet and a single low dose of streptozotocin. The T2D rats received either 1000 mg/kg body weight (BW) of CPE, 30 mg/kg BW of metformin (Met), or a combination treatment (CPE + Met) for 3 months. Plasma parameters, kidney morphology and function, and renal organic transport were determined. Significant hyperglycemia, hypertriglyceridemia, insulin resistance, increased renal lipid content and lipid peroxidation, and morphological kidney changes related to T2D were restored by both CPE and CPE + Met treatments. Additionally, the renal uptake of organic cation, 3H-1-methyl-4-phenylpyridinium (MPP+), was reduced in T2D, while transport was restored by CPE and CPE + Met, through an up-regulation of antioxidant genes and protein kinase Cα deactivation. Thus, CPE has antidiabetic and antioxidant effects that potentially ameliorate kidney function in T2D by preserving renal organic cation transport through an oxidative stress pathway.


Subject(s)
Antioxidants/pharmacology , Coffea/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hyperglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Polyphenols/pharmacology , Animals , Antioxidants/isolation & purification , Carrier Proteins/agonists , Carrier Proteins/metabolism , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diet, High-Fat/adverse effects , Drug Combinations , Drug Synergism , Hyperglycemia/etiology , Hyperglycemia/metabolism , Hyperglycemia/pathology , Hypoglycemic Agents/isolation & purification , Insulin Resistance , Ion Transport/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Plant Extracts/chemistry , Polyphenols/isolation & purification , Rats , Rats, Wistar , Streptozocin/administration & dosage
15.
J Ethnopharmacol ; 274: 114033, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33741440

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Siraitia grosvenorii fruits extract (SG, in which mogrosides are the main components), considered as a non-nutritional sweetener, has an antidiabetic effect. Our previous studies have confirmed that an extract of mogrosides being rich in triterpene glycosides with 1-3 glucosyl residues, designated as low-polar S. grosvenorii glycosides (L-SGgly), had a significant antidiabetic effect. However, whether the mechanism through impacting on gut microbiota to exert the antidiabetic effect of mogrosides remains unclear. AIMS OF THE STUDY: To explore the potential mechanism of mogrosides (SG and L-SGgly) on gut microbiota and faecal metabolites in the treatment of diabetes. STUDY DESIGN AND METHODS: In this study, the effects of SG and L-SGgly on gut microbiota and faecal endogenous metabolites were explored by sequencing the 16S rRNA V3-V4 region of gut microbiota, and detecting with gas chromatography-mass spectrometry (GC-MS) and liquid chromatography quadrupole time-of-flight MS (LC-Q-TOF/MS), respectively. In particular, correlation analyses revealed how these influences affect the anti-hyperglycaemic effect, to give the underlying antidiabetic mechanisms of the mogrosides in S. grosvenorii fruits. RESULTS: After a 14-day treatment with SG and L-SGgly for type 2 diabetes mellitus (T2DM) rats induced by a high-fat diet (HFD) and streptozotocin (STZ), the disordered gut microbiota in the faeces of T2DM rats were recovered. At the same time, the short-chain fatty acids (SCFAs) concentration significantly increased and the deoxycholic acid and 1ß-hydroxycholic acid content decreased in the faeces of T2DM rats. Moreover, correlation analyses provided the evidences that gut microbiota and its metabolites could be the target for exerting the anti-hyperglycaemic effects of SG and L-SGgly. Especially, Elusimicrobium, Lachnospiraceae_UCG-004, acetate, butyrate, and 1ß-hydroxycholic acid would be the potential dominant bacteria and biomarkers for SG and L-SGgly in reducing the blood glucose and insulin resistance of T2DM rats. CONCLUSION: It is the first time that a mechanism of targeting on gut microbiota for the antidiabetic effect of mogrosides in S. grosvenorii fruits has been proposed.


Subject(s)
Cucurbitaceae , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Dysbiosis , Glycosides/pharmacology , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Dysbiosis/drug therapy , Dysbiosis/metabolism , Dysbiosis/microbiology , Fatty Acids, Volatile , Feces/chemistry , Feces/microbiology , Fruit , Gastrointestinal Microbiome/drug effects , Glycosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Male , Plant Extracts/therapeutic use , Rats, Sprague-Dawley , Triterpenes/therapeutic use
16.
Article in English | MEDLINE | ID: mdl-33030136

ABSTRACT

AIMS: The study aimed to assess the antihyperglycemic effect of Cleome arabica. BACKGROUND: Cleome arabica L. or spider flower belongs to the Capparidaceae family and it is used for treating inflammation and diabetes mellitus in traditional medicine. OBJECTIVE: This study aimed to evaluate the antihyperglycemic activity and acute toxicity of the aqueous extract of Cleome arabica L (CAAE). METHODS: The acute toxicity of CAAE was evaluated at doses of 500, 1000, or 2000 mg/kg. Parallelly, body weight, signs of toxicity, and/or mortality were observed for 14 days. The effect of oral administration of Cleome arabica aqueous extract (CAAE) at a dose of 100 mg/kg on glycemia was performed in normal and diabetic rats. Additionally, histopathological structure of the liver, phytochemical screening and in vitro antioxidant activity were studied. RESULTS: The acute toxicity test revealed that all treated rats survived, and no change in body weight was observed. The results demonstrated that CAAE exhibited a significant antihyperglycemic effect in diabetic rats. Furthermore, the plant extract ameliorated the liver histology in diabetic rats with a concomitant antioxidant activity. CONCLUSION: This study shows that Cleome arabica is partly safe, and its LD50 seems to be greater than 5000 mg/kg. Cleome Arabica has a favorable effect against diabetes, which could be due to the presence of numerous secondary metabolites and by the protection of hepatocytes.


Subject(s)
Cleome/chemistry , Diabetes Mellitus, Experimental/pathology , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Female , Flowers/chemistry , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Morocco , Phytotherapy/adverse effects , Phytotherapy/methods , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Streptozocin , Toxicity Tests, Acute
17.
Biotech Histochem ; 96(1): 28-40, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32396744

ABSTRACT

The therapeutic potential and antioxidant capacity of Ferula elaeochytris extract (FE) in the liver, kidney and pancreas of rats with diabetes induced by streptozotocin (STZ) was assessed using biochemistry, histopathology and immunohistochemistry. Forty adult Wistar albino male rats were divided randomly into five groups of eight rats each. The normal control (NC) group was untreated. The diabetes control (DC) group was treated with STZ to induce diabetes. The diabetes + acarbose group (DAC) was treated with STZ, then with acarbose daily for 28 days. The diabetes + FE (DFE) group was treated with STZ, then FE daily for 28 days. DC rats had inflammatory cell infiltration, hydropic degeneration and necrosis, whereas the DFE rats exhibited nearly normal histology. Insulin immunostaining in the pancreatic beta cells was decreased in the DC group compared to the NC group, whereas the DFE group was similar to the NC group. Many serum biomarkers of damage to liver, kidneys or pancreas were elevated in the DC group compared to the NC group; these biomarkers were decreased in the DFE group. The DC group exhibited increased malondialdehyde levels and decreased levels of the antioxidant defense system constituents compared to the NC group. The level of biomarkers the DFE group was close to the NC group. FE exhibited a protective effect against tissue damage owing to its antioxidant activities and to its ability to effect regeneration of ß-cells in STZ induced diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Ferula , Animals , Blood Glucose , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Liver , Pancreas , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Streptozocin/toxicity
18.
Diabetes Ther ; 11(4): 951-964, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32166619

ABSTRACT

INTRODUCTION: Sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors inhibit the reabsorption of glucose from the kidneys and increase urinary glucose excretion (UGE), thereby lowering the blood glucose concentration in people suffering from type 1 and type 2 diabetes mellitus (T2DM). In a previous study, we reported a pharmacokinetics/pharmacodynamics model to estimate individual change in UGE (ΔUGE), which is a direct pharmacological effect of SGLT2 inhibitors. In this study, we report our enhancement of the previous model to predict the long-term effects of ipragliflozin on clinical outcomes in patients with T2DM. METHODS: The time course of fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) in patients with T2DM following ipragliflozin treatment that had been observed in earlier clinical trials was modeled using empirical models combined with the maximum drug effect (Emax) model and disease progression model. As a predictive factor of drug effect, estimated ΔUGE was introduced into the Emax model, instead of ipragliflozin exposure. The developed models were used to simulate the time course of FPG and HbA1c following once-daily treatment with placebo or ipragliflozin at doses of 12.5, 25, 50 and 100 mg, and the changes at 52 weeks at the approved dose of 50 mg were summarized by renal function category. RESULTS: The developed models that included UGE as a dependent variable of response were found to well describe observed time courses in FPG and HbA1c. Baseline blood glucose level and renal function had significant effects on the glucose-lowering effect of ipragliflozin, and these models enabled quantification of these impacts on clinical outcomes. Simulated median changes in HbA1c in T2DM patients with mild and moderate renal impairment were 25 and 63% lower, respectively, than those in T2DM patients with normal renal function. These results are consistent with the observed clinical data from a previous renal impairment study. CONCLUSIONS: Empirical models established based on the effect of UGE well predicted the renal function-dependent long-term glucose-lowering effects of ipragliflozin in patients with T2DM.

19.
Biotech Histochem ; 95(2): 92-104, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32013588

ABSTRACT

We investigated the antidiabetic activity of Pistacia terebinthus (PT) extracts in streptozotocin (STZ) induced diabetic rats. We used 40 Wistar albino male rats divided into five groups: control (C), diabetes (DM), diabetes + acarbose (DM + AC), diabetes + PT (DM + PT) and PT. DM was established by intraperitoneal injection of STZ. Immunohistochemistry revealed that STZ reduced insulin immunoreactivity in the pancreas of the diabetic rats. To the contrary, insulin immunoreactivity in the pancreatic ß cells of PT treated diabetic rats was increased significantly. Decreased levels of blood glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), glucose, total triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL) and low density lipoprotein (LDL) were found in the PT supplemented diabetic group. Also, malondialdehyde (MDA) and antioxidant defense system enzyme levels were normalized in the DM + PT group. PT exhibited a protective effect on liver, kidney and pancreas that had been damaged by STZ induced DM.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/pharmacology , Liver/drug effects , Pistacia/metabolism , Animals , Antioxidants/pharmacology , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/chemically induced , Immunohistochemistry/methods , Liver/metabolism , Male , Rats, Wistar
20.
Article in English | MEDLINE | ID: mdl-31223096

ABSTRACT

BACKGROUND: Among the various phenolics metabolites, ferulic acid is considered as the promising mitigating, restorative and antioxidant agent. Ferulic acid is one of the most commonly found natural products in vegetables, for example, tomatoes, sweet corn, and in rice grain. Phytochemicals are utilized in the treatment of human ailments and these are derived from the dietary compounds. OBJECTIVE: The present review widely argued the calming restorative capability of ferulic acid alongside the scientific evidences and its proposed mechanism for activity. Furthermore, we provided the main practical points for the use of ferulic acid in oxidative damages during various diseases. Additionally, the relevant patents on ferulic acid with various therapeutic potential has been discussed. METHODS: The approach consisted of searching several resources, including theses, technical reports, web-based scientific databases such as publications on PubMed, ScienceDirect, Springer, PROTA, Google Scholar, and other allied databases. Thus, recent patent regarding the role of ferulic acid therapeutic potenitial has been discussed. RESULTS: One hundred and twenty references have been cited in the present review article. The cited references were found to be suitable and described the therapeutic application of ferulic acid thoroughly. CONCLUSION: Ferulic acids are known to contrarily down-manage an assortment of extracellular and intrcelullular molecular targets related to infection movement. Various patents on ferulic acid based moieties have been accounted for from 2018. The ferulic acids have a wide scope of impacts against different infections like malignant growth, diabetes, cardiovascular and neurodegenerative diseases. The current review deals with the antioxidant property of ferulic acid and the recent patent describes the role of ferulic acid against human diseases.


Subject(s)
Antioxidants/therapeutic use , Cardiovascular Diseases/drug therapy , Coumaric Acids/therapeutic use , Diabetes Mellitus/drug therapy , Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , Phytochemicals/therapeutic use , Animals , Humans , Lipid Peroxidation , Oxidation-Reduction , Patents as Topic , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...