Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Anal Sci ; 40(10): 1843-1855, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38907795

ABSTRACT

Organotin compounds (OTC), mainly tributyltin (TBT), have been used since the 1970s as biocides in the composition of antifouling paints. Due to its physical-chemical characteristics, TBT has high toxicity to the marine environment affecting non-target organisms. The present study aims to develop a method of direct visual identification of TBT in antifouling paints using the cyclopalladate complex, 4- (2-thiazolylazo) resorcinol (TAR-Pd), synthesized in our laboratory. Tests were performed in blank and in the paint matrix with the following OTC: TBT-O; TBT-Cl; TPT-Cl; DBT-Cl (tributyltin oxide, tributyltin chloride, triphenyltin chloride, dibutyltin chloride), in addition to the SnCl4 and SnCl2 compounds (tin IV chloride and tin II chloride), all at a concentration of approximately 20 g/ kg of dry paint). The test was performed by applying paint samples to test bodies and scraping a few tens of milligrams of the dry paint film. The scraped paint samples were submitted to the test, showing a different staining reaction for the TBT-Cl and SnCl4 samples concerning blank and other samples (TBT-O, TPT, DBT-Cl, and SnCl2). Solution tests were performed to characterize reaction products by spectroscopy in the visible band. The method developed has potential for application in real samples, being selective for TBT-Cl and SnCl4 in an acid medium, obtaining a limit of detection, in the range of 1-10 mg/kg dry paint.

2.
Mar Pollut Bull ; 204: 116534, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850759

ABSTRACT

Marinas are central hubs of global maritime leisure and transport, yet their operations can deteriorate the environmental quality of sediments. In response, this study investigated the metal contamination history associated with antifouling paint uses in a sediment core collected from Bracuhy marina (Southeast Brazil). Analysis target major and trace elements (Cu, Zn, Pb, Cd and Sn), rare earth elements (REEs), and Pb isotopes. The modification in Pb isotopic ratios and REEs pattern unequivocally revealed sediment provenance disruption following the marina construction. Metal distribution in the sediment core demonstrates that concentrations of Cu and Zn increased by up to 15 and 5 times, respectively, compared to the local background. This severe Cu and Zn contamination coincides with the onset of marina operations and can be attributed to the use of antifouling paints.


Subject(s)
Copper , Environmental Monitoring , Geologic Sediments , Paint , Water Pollutants, Chemical , Geologic Sediments/chemistry , Paint/analysis , Water Pollutants, Chemical/analysis , Copper/analysis , Brazil , Ships
3.
Environ Sci Pollut Res Int ; 31(13): 20159-20171, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38372927

ABSTRACT

Marine biofouling is a global issue with economic and ecological implications. Existing solutions, such as biocide-based antifouling paints, are toxic for the environment. The search for better antifouling agents remains crucial. Recent research focuses on eco-friendly antifouling paints containing natural compounds like enzymes. This study evaluates enzymatic extracts from fishery residues for antifouling potential. Extracts from Pleoticus muelleri shrimp, Illex argentinus squid, and Lithodes santolla king crab were analyzed. Proteolytic activity and thermal stability were assessed, followed by bioassays on mussel byssus thread formation and barnacle cypris adhesive footprints. All three extracts demonstrated proteolytic activity and 24-h stability at temperate oceanic temperatures, except I. argentinus. P. muelleri extracts hindered cyprid footprint formation and mussel byssus thread generation. Further purification is required for L. santolla extract to assess its antifouling potential activity. This study introduces the use of fishery waste-derived enzyme extracts as a novel antifouling agent, providing a sustainable tool to fight against biofouling formation.


Subject(s)
Biofouling , Disinfectants , Biofouling/prevention & control , Fisheries , Oceans and Seas
4.
Mar Pollut Bull ; 200: 116087, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38335631

ABSTRACT

Organotin compounds are persistent pollutants and are considered chemicals of high environmental concern. In the present study, the distribution and degradation of tributyltin were evaluated in field sediments and through an ex situ experiment. For this, sediment samples from two locations were analysed: Luis Piedrabuena Harbour, with higher maritime traffic, and Cerro Avanzado, which receives less impact from anthropogenic activities. The results indicated that pollution levels at Luis Piedrabuena Harbour have decreased compared with studies performed 9 years ago for the same area. On the contrary, traces of organotin compounds have been found for the first time at Cerro Avanzado. Moreover, the butyltin degradation index indicated that organotin compounds undergo an advanced degradation process in the collected samples at both sites. Ex situ experiments revealed a limited capacity of sediments to retain tributyltin, and suggested an active role of bioturbation activity in the degradation of these compounds. In addition, visualisation using chemometric techniques (principal components analysis) allowed a simpler analysis of two sediment characteristics: the degree of contamination and the degradation levels of organotin compounds.


Subject(s)
Organotin Compounds , Trialkyltin Compounds , Water Pollutants, Chemical , Organotin Compounds/analysis , Geologic Sediments/chemistry , Argentina , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Trialkyltin Compounds/analysis
5.
Mar Pollut Bull ; 189: 114718, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36807046

ABSTRACT

This review summarized booster biocides studies from Latin America and the Caribbean during the last two decades. Studies were focused on six countries, with most of them in Brazil. In water and sediment, diuron and Irgarol were the most abundant and frequent biocides, probably due to their former intense use. Antifouling paint particles were also reported and had mainly DCOIT, which is currently the most used booster biocide. Toxicity of individual booster biocides was tested in laboratory, and most effects were related to chlorothalonil, DCOIT, dichlofluanid, and Irgarol, including, but not limited to DNA damage, fertility decrease, and mortality at different trophic levels. This review highlighted the need for further studies on environmental occurrence of booster biocides in Latin America and Caribbean associated to ecotoxicological studies. Such information is essential to determine the potential ecological risks and to create directives regarding safe limits of booster biocides in aquatic systems.


Subject(s)
Biofouling , Disinfectants , Water Pollutants, Chemical , Latin America , Disinfectants/toxicity , Disinfectants/analysis , Biofouling/prevention & control , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Caribbean Region , Paint , Diuron/analysis , Triazines/analysis , Environmental Monitoring
6.
Talanta ; 250: 123718, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35797860

ABSTRACT

Antifouling paints containing Cu, Zn, organotins, and many organic booster biocides may be found in ships and watercraft hulls to avoid the fouling of marine organisms. This type of paint can be harmful to the environment, therefore, the monitoring of toxic elements and compounds in antifouling paints are of great importance to access its quality and potential toxicity to the environment. Hence, this work describes the development of microwave-assisted digestion methods for the determination of Cu and Sn in antifouling paints by inductively coupled plasma optical emission spectrometry (ICP OES). The factors: sample mass and solutions of HNO3, HF, and HCl were optimized using the central composite design (CCD). Dry ashing with a muffle furnace and laser ablation-ICP-MS were used for methodological comparison with the microwave digestion-assisted ICP-OES methods. All the mixtures of acids allowed efficient extraction of the analytes; however, the one that stood out was the use of HF, HNO3, and H2O2.


Subject(s)
Biofouling , Disinfectants , Biofouling/prevention & control , Digestion , Hydrogen Peroxide , Microwaves , Paint , Spectrum Analysis
7.
Environ Sci Pollut Res Int ; 29(51): 77007-77025, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35675010

ABSTRACT

Shipyard activities have contributed to the release of anthropogenic metals in sediment in the Amazon delta estuary, but no studies of the issue have been carried out in northern Brazil. This study evaluated the sediment that is under the influence of shipyard activities in the Guajará Bay and in the channel of the Maguari River, in Belém, Pará (PA) state, northern Brazil. Sediment samples were collected in the vicinity of the shipyards, while samples of paint and metal fragments were collected from hulls of abandoned vessels. Metals under analysis were Cu, Zn, Pb, Ni, Cr, Ba, V, Li, Fe and Al. Mean Cu concentrations found in the sediment in two shipyards - 28.3 mg kg-1 and 41.0 mg kg-1 - were above the threshold effect level (TEL) for the amphipod Hyalella azteca. The highest concentrations of metals found in paint fragments from abandoned vessels were 29,588 mg kg-1 Ba, 9,350 mg kg-1 Zn, 1,097 mg kg-1 Pb and 548 mg kg-1 Cr. This fact suggests that vessel abandonment is a major source of contamination in shipyard areas. The principal component analysis (PCA) showed that most metals under study are closely related to sediment contamination in the shipyards. Geoaccumulation index and screening concentrations of inorganic contaminants for metals in freshwater ecosystems confirmed that a shipyard was contaminated by copper. Results may support further studies of contamination and application of waste management to shipyards and vessel graveyards around the world.


Subject(s)
Amphipoda , Metals, Heavy , Water Pollutants, Chemical , Animals , Estuaries , Geologic Sediments/analysis , Metals, Heavy/analysis , Environmental Monitoring/methods , Copper/analysis , Ecosystem , Brazil , Lead/analysis , Water Pollutants, Chemical/analysis , Rivers
8.
Environ Sci Pollut Res Int ; 29(20): 30090-30101, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34997484

ABSTRACT

Antifouling paints incorporate biocides in their composition seeking to avoid or minimize the settlement and growing of undesirable fouling organisms. Therefore, biocides are released into the aquatic environments also affecting several nontarget organisms and, thus, compromising ecosystems. Despite global efforts to investigate the environmental occurrence and toxicity of biocides currently used in antifouling paints, the specific active ingredients that have been used in commercial products are poorly known. Thus, the present study assessed the frequencies of occurrence and relative concentrations of biocides in antifouling paint formulations registered for marketing worldwide. The main data were obtained from databases of governmental agencies, business associations, and safety data sheets from paint manufacturers around the world. The results pointed out for 25 active ingredients currently used as biocides, where up to six biocides have been simultaneously used in the examined formulations. Cuprous oxide, copper pyrithione, zinc pyrithione, zineb, DCOIT, and cuprous thiocyanate were the most frequent ones, with mean relative concentrations of 35.9 ± 12.8%, 2.9 ± 1.6%, 4.0 ± 5.3%, 5.4 ± 2.0%, 1.9 ± 1.9%, and 18.1 ± 8.0% (w/w) of respective biocide present in the antifouling paint formulations. Surprisingly, antifouling paints containing TBT as an active ingredient are still being registered for commercialization nowadays. These results can be applied as a proxy of biocides that are possibly being used by antifouling systems and, consequently, released into the aquatic environment, which can help to prioritize the active ingredients that should be addressed in future studies.


Subject(s)
Disinfectants , Paint , Biofouling/prevention & control , Disinfectants/toxicity , Ecosystem , Paint/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
9.
Sci Total Environ ; 805: 150377, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34818813

ABSTRACT

Despite the efforts of the International Marine Organization (IMO), through the International Convention on the Control of Harmful Antifouling Systems on Ships to ban the use of TBT-based antifouling paints (September 2008), and the Rotterdam Convention (RC) to forbid the trade of tributyltin (TBT), the situation does not seem to have significantly changed since 2014 when TBT-based paints were shown to be still being manufactured in the United States and offered for sale in stores throughout the Caribbean and Central America. In fact, this study shows that seven years later the same situation not only persists, but may have an even more global distribution than previously thought.


Subject(s)
Biofouling , Trialkyltin Compounds , Biofouling/prevention & control , Paint , Ships
10.
Environ Sci Pollut Res Int ; 25(2): 1719-1730, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29101697

ABSTRACT

Metallic elements found in the aquatic environment may originate in areas where petroleum is refined and vessels are maintained and repaired. This study aims to assess contamination caused by nickel (Ni), lead (Pb), and vanadium (V) in sediment of the Lagoa dos Patos estuary (RS, Brazil) and to evaluate them as indicators of areas under the influence of petroleum products and antifouling paints. Surface sediments were collected in summer and in winter in areas of marinas, shipyards, refinery, and a control station. High Pb and V concentrations in shipyards and at the Yacht Club showed that some organisms may be affected by toxicity. High Pb results of the index of geoaccumulation (Igeo) were found at the Yacht Club and shipyards. Al, Ni, and V had similar distribution in the sediment in both seasons. Ni and V had high relation in winter at the Yacht Club and at the Santos Shipyard, thus suggesting that these elements come mainly from petroleum products. The same happened to the relations between Pb and V, as well as Pb and Ni at the Santos Shipyard. These elements are employed as useful tools as indicators to identify places with moderate to high localized anthropogenic inputs of petroleum derivatives and antifouling paints.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Geologic Sediments/analysis , Ships , Aquatic Organisms/drug effects , Brazil , Environmental Pollutants/toxicity , Estuaries , Geologic Sediments/chemistry , Humans , Lead/analysis , Lead/toxicity , Nickel/analysis , Nickel/toxicity , Paint/analysis , Petroleum Pollution/analysis , Seasons , Vanadium/analysis , Vanadium/toxicity
11.
Mar Environ Res ; 109: 177-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26210408

ABSTRACT

Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations.


Subject(s)
Biofouling/prevention & control , Disinfectants/pharmacology , Eugenol/pharmacology , Guaiacol/pharmacology , Thoracica/drug effects , Thymol/pharmacology , Animals , Copper/pharmacology , Larva/drug effects , Paint/analysis , Seawater , Thoracica/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL