Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Article in English | MEDLINE | ID: mdl-39009952

ABSTRACT

Kunzea ericoides (kanuka) products are well-known for their potent medicinal values in antioxidant and anti-inflammatory applications. The present study identified various compounds, such as chlorogenic acid, gallic acid, quercetin, and (E)-ferulic acid in the kanuka leaf extract, showing its potential use in maintaining skin health. The influence of kanuka leaf extract upon epidermal cells concerning cytotoxicity and in vitro activities of moisturisation, antioxidation, UV protection, and anti-melanogenesis effects were explored in the study. Kanuka leaf extract demonstrated significant promotion in the proliferation of HaCaT and B16F10 cells. After incubation with kanuka leaf extract, the content of ROS and DPPH in HaCaT was significantly decreased; at the same time, more SOD was produced. Furthermore, hyaluronidase-1 (HYAL-1) and HYAL-4 expressions were inhibited, while the aquaporin 3 (AQP-3) content was significantly increased in HaCaT. Kanuka leaf extract also inhibited the expressions of matrix metalloproteinases-1 (MMP-1) and MMP-14 in UV-induced HaCaT cells. In the B16F10 cell line, melanin and tyrosinase production were decreased under the presence of kanuka leaf extract, and the expressions of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TYRP-1), and TYRP-2 were also inhibited. The study validated kanuka leaf extract as an effective natural product against photoaging and melanogenesis.

2.
Curr Issues Mol Biol ; 46(6): 6018-6040, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921030

ABSTRACT

Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have not been fully investigated. The aim of this study was to evaluate the anti-melanogenic and anti-inflammatory effects of 2'-hydroxy-3,4'-dimethoxychalcone (3,4'-DMC), 2'-hydroxy-4,4'-dimethoxychalcone (4,4'-DMC), 2'-hydroxy-3',4'-dimethoxychalcone (3',4'-DMC), and 2'-hydroxy-4',6'-dimethoxychalcone (4',6'-DMC). Among the derivatives of 2'-hydroxy-4'-methoxychalcone, 4',6'-DMC demonstrated the most potent melanogenesis-inhibitory and anti-inflammatory effects. As evidenced by various biological assays, 4',6'-DMC showed no cytotoxicity and notably decreased the expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 enzymes. Furthermore, it reduced cellular melanin content and intracellular tyrosinase activity in B16F10 melanoma cells by downregulating microphthalmia-associated transcription factor (MITF), cAMP-dependent protein kinase (PKA), cAMP response element-binding protein (CREB), p38, c-Jun N-terminal kinase (JNK), ß-catenin, glycogen synthase kinase-3ß (GSK3ß), and protein kinase B (AKT) proteins, while upregulating extracellular signal-regulated kinase (ERK) and p-ß-catenin. Additionally, treatment with 4',6'-DMC significantly mitigated the lipopolysaccharide (LPS)-induced expression of NO, PGE2, inflammatory cytokines, COX-2, and iNOS proteins. Overall, 4',6'-DMC treatment notably alleviated LPS-induced damage by reducing nuclear factor kappa B (NF-κB), p38, JNK protein levels, and NF-kB/p65 nuclear translocation. Finally, the topical applicability of 4',6'-DMC was evaluated in a preliminary human skin irritation test and no adverse effects were found. These findings suggest that 4',6'-DMC may offer new possibilities for use as functional ingredients in cosmeceuticals and ointments.

3.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892131

ABSTRACT

Petanin, an acylated anthocyanin from the Solanaceae family, shows potential in tyrosinase inhibitory activity and anti-melanogenic effects; however, its mechanism remains unclear. Therefore, to investigate the underlying mechanism of petanin's anti-melanogenic effects, the enzyme activity, protein expression and mRNA transcription of melanogenic and related signaling pathways in zebrafish using network pharmacology, molecular docking and molecular dynamics simulation were combined for analysis. The results showed that petanin could inhibit tyrosinase activity and melanogenesis, change the distribution and arrangement of melanocytes and the structure of melanosomes, reduce the activities of catalase (CAT) and peroxidase (POD) and enhance the activity of glutathione reductase (GR). It also up-regulated JNK phosphorylation, inhibited ERK/RSK phosphorylation and down-regulated CREB/MITF-related protein expression and mRNA transcription. These results were consistent with the predictions provided through network pharmacology and molecular docking. Thus, petanin could inhibit the activity of tyrosinase and the expression of tyrosinase by inhibiting and negatively regulating the tyrosinase-related signaling pathway ERK/CREB/MITF through p-JNK. In conclusion, petanin is a good tyrosinase inhibitor and anti-melanin natural compound with significant market prospects in melanogenesis-related diseases and skin whitening cosmetics.


Subject(s)
Melanins , Molecular Docking Simulation , Zebrafish , Animals , Zebrafish/metabolism , Melanins/metabolism , Melanins/biosynthesis , Phosphorylation , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/antagonists & inhibitors , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Melanocytes/metabolism , Melanocytes/drug effects
4.
Antioxidants (Basel) ; 13(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38790649

ABSTRACT

Hyperpigmentation occurs due to irregular secretion of melanin pigment in the skin. This can affect quality of life depending on its severity, so prevention and management are essential. Oats (Avena sativa L.), a grain consumed worldwide, are known to offer improved health benefits upon germination and fermentation. This study is aimed to investigate the protective effects of lactobacilli-fermented sprouted oat extracts on oxidative stress and melanin overproduction in vitro. The anti-melanogenic effect was investigated using melanin content and tyrosinase activity assays in B16F10 cells, as well as a mushroom tyrosinase-based enzyme inhibition assay. The results showed that L. casei-fermented oat extracts were the most effective for reducing melanin formation by reducing the mRNA expression of microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 2. Furthermore, L. casei fermentation was effective in improving the total phenolic, flavonoid, and avenanthramide A contents of sprouted oat extracts. The results also demonstrated the antioxidant effects of L. casei-fermented sprouted oat extracts in promoting DPPH radical-scavenging activity, superoxide dismutase-like activity, and reduction in reactive oxygen species levels. Overall, the findings indicate that fermented sprouted oat extracts are promising candidates for antioxidant and anti-hyperpigmentation treatments.

5.
Heliyon ; 10(5): e26715, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38455547

ABSTRACT

Common tyrosinase (TYR) inhibitors used in cosmetics, such as hydroquinone, kojic acid, and arbutin, can cause side effects including erythema, skin peeling, and dryness. Therefore, the development of natural whitening agents that offer excellent permeability, minimal irritation, and high safety has become a primary focus in the field of TYR inhibitors. In this study, we demonstrate that White birch sap (WBS), within a safe concentration range, effectively reduces TYR activity and melanin content in both B16F10 mouse melanoma cells and zebrafish larvae. Importantly, WBS exhibits minimal irritation to neutrophils in fluorescent zebrafish and does not affect the behavior of adult zebrafish. Furthermore, WBS downregulates the gene expression levels of microphthalmia-associated transcription factor, TYR, tyrosinase-related protein-1, and tyrosinase-related protein-2 in B16F10 cells. In conclusion, our research confirms that WBS, a naturally derived substance, offers high safety and mild effects, making it a promising candidate for a skin-whitening agent.

6.
Int J Biol Macromol ; 262(Pt 2): 130016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365139

ABSTRACT

In this study, we investigated the structural characterization and biological activities of Bletilla striata polysaccharides (BSPs) for their role as antioxidants and anti-melanogenesis agents in skin healthcare protection. Three neutral polysaccharides (BSP-1, BSP-2, and BSP-3) with molecular weights of 269.121 kDa, 57.389 kDa, and 28.153 kDa were extracted and purified. Their structural characteristics were analyzed by ion chromatography, GC-MS, and 1D/2D NMR. The results showed that BSP-1, which constitutes the major part of BSPs, was composed of α-D-Glcp, ß-D-Glcp, ß-D-Manp, and 2-O-acetyl-ß-D-Manp, with the branched-chain accompanied by ß-D-Galp and α-D-Glcp. BSP-1, BSP-2, and BSP-3 can enhance the total antioxidant capacity of skin fibroblasts with non-toxicity. Meanwhile, BSP-1, BSP-2, and BSP-3 could significantly inhibit the proliferative activity of melanoma cells. Among them, BSP-1 and BSP-2 showed more significance in anti-melanogenesis, tyrosinase inhibition activity, and cell migration inhibition. BSPs have effective antioxidant capacity and anti-melanogenesis effects, which should be further emphasized and developed as skin protection components.


Subject(s)
Antioxidants , Orchidaceae , Antioxidants/pharmacology , Antioxidants/chemistry , Orchidaceae/chemistry , Magnetic Resonance Spectroscopy , Molecular Weight , Polysaccharides/chemistry
7.
J Ethnopharmacol ; 326: 117933, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38382653

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The roots and rhizomes of Bergenia purpurascens (Hook. f. et Thomson) Engl., was used as a sunscreen to protect against ultraviolet rays in Tibet of China historically, but its skin whitening constituents and pharmacological effects of this plant remained unknown. AIM OF THE STUDY: To investigate the anti-melanogenesis effect of B. purpurascens in vitro and in vivo, and then explore the preliminary mechanism. MATERIALS AND METHODS: An ultraviolet B (UVB)-induced skin injury model of mice was used to verify the ameliorative effect of B. purpurascens extract (BPE) on ultraviolet damage. Then, alpha-melanocyte stimulating hormone (α-MSH)-induced murine melanoma cell line (B16F10) melanin generation model was further adopted to approval the effects of BPE and its bioactive compound, cuscutin, in vitro. Moreover, α-MSH stimulated melanogenesis model in zebrafish was employed to confirm the anti-pigmentation effect of cuscutin. Then, proteins expressions associated with melanin production were observed using western blotting assay to explore preliminary mechanism. RESULTS: BPE inhibited UVB-induced mice injury and restored skin barrier function observably in vivo. BPE and cuscutin suppressed the overproduction of melanin in α-MSH induced B16F10 significantly, in which cuscutin exhibited better effect than well-known whitening agent α-arbutin at same 10 µg/mL concentration. Moreover, the pigmentation of zebrafish embryo was decreased by cuscutin. Finally, cuscutin showed significant downregulation of expressions of tyrosinase (TYR) and tyrosinase related protein-1 (TRP-1), TRP-2 and microphthalmia-associated transcription factor (MITF) in the melanogenic signaling pathway. CONCLUSION: B. purpurascens extract and its major bioactive constituent, cuscutin, showed potent anti-melanogenesis and skin-whitening effect by targeting TYR and TRP-2 proteins for the first time, which supported its traditional use.


Subject(s)
Melanoma, Experimental , Monophenol Monooxygenase , Animals , Mice , Melanins/metabolism , Zebrafish , alpha-MSH/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Microphthalmia-Associated Transcription Factor/metabolism , Cell Line, Tumor , Melanoma, Experimental/drug therapy
8.
Chem Biodivers ; 21(1): e202300876, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38037520

ABSTRACT

The purpose of the present work was to develop a phytocosmetic sunscreen emulsion with antioxidant activity and an anti-melanogenic effect, containing an anthraquinone-enriched extract of Rhamnus alaternus (A.E.). Our findings demonstrated that A.E. decreased the levels of reactive oxygen species, DNA damage, and malondialdehyde induced by UVA in human keratinocytes and melanocytes. Furthermore, the calculated SPF value in vitro of the cream containing A.E. was 14.26±0.152. Later, it was shown that A.E. extract had an inhibitory effect on the amount of melanin. This extract could also reduce B16F10 intracellular tyrosinase activity. Besides, docking studies were carried out to provide a logical justification for the anti-tyrosinase potential. The findings showed that, A.E. may provide protection against UVA-induced oxidative stress and could be thought of as a viable treatment for hyperpigmentation disorders.


Subject(s)
Rhamnus , Humans , Antioxidants/pharmacology , Oxidative Stress , Reactive Oxygen Species , Melanins , Anthraquinones/pharmacology
9.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895053

ABSTRACT

Our skin is constantly exposed to blue light (BL), which is abundant in sunlight and emitted by digital devices. Prolonged exposure to BL can lead to oxidative stress-induced damages and skin hyperpigmentation. For this study, we used a cell line-based model to examine the protective effects of tocotrienol-rich fraction (TRF) on BL-induced oxidative stress and hyperpigmentation in B16-F1 melanocytes. Alpha-tocopherol (αTP) was used as a comparator. Molecular assays such as cell viability assay, flow cytometry, western blotting, fluorescence imaging, melanin and tyrosinase analysis were performed. Our results showed that TRF effectively suppressed the formation of reactive oxygen species and preserved the mitochondrial membrane potential. Additionally, TRF exhibited anti-apoptotic properties by reducing the activation of the p38 mitogen-activated protein kinase molecule and downregulating the expression of cleaved caspase-3. Moreover, TRF modulated tyrosinase activity, resulting in a lowered rate of melanogenesis and reduced melanin production. In contrast, αTP did not exhibit significant protective effects against skin damages and pigmentation in BL-induced B16-F1 cells. Therefore, this study indicates that TRF may offer superior protective effects over αTP against the effects of BL on melanocytes. These findings demonstrate the potential of TRF as a protective natural ingredient that acts against BL-induced skin damages and hyperpigmentation via its anti-oxidative and anti-melanogenic properties.


Subject(s)
Hyperpigmentation , Tocotrienols , Hyperpigmentation/metabolism , Melanins/metabolism , Melanocytes/metabolism , Monophenol Monooxygenase/metabolism , Oxidative Stress , Tocotrienols/pharmacology , Tocotrienols/metabolism , Animals , Mice
10.
Nat Prod Res ; : 1-6, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37740591

ABSTRACT

Thirty-four phytochemicals were isolated from dry tubers of Bletilla striata Rchb.f. The compounds were classified as bibenzyls 1-14, dihydrophenanthrenes 15, 17, 20, 21, phenanthrenes 16, 18, 19, simple benzoids 22-24, a fatty acid 25, glucosyloxybenzyl 2-isobutylmalates 26-32, and glucosyloxybenzyl cinnamates 33, 34. Compounds 1-4, 7, 8, 11, 12, and 16 inhibited melanogenesis (17.96-55.27%) induced by α-MSH in B16F10 cells at 10-40 µM. However, compounds 9, 10, 17, 18, and 21 exhibited significant cytotoxicity against melanomas, with IC50 values of 12-34 µM. Additionally, compounds 15, 17, 19, 20, 23, 31, and 33 reduced the ROS generation induced by H2O2 in HaCaT cells at 6.25-100 µM. In particular, compounds 15, 19, and 20 strongly inhibited ROS generation, with IC50 values of 2.15-9.48 µM. Consequently, compounds 1-4, 7-12, and 15-21 may be the strongest leads to follow in B. striata extract for further research on the skin disorders, hyperpigmentation, melanoma, and ageing.

11.
Pharmaceutics ; 15(9)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37765238

ABSTRACT

Agathis species are widely distributed around Southeast Asia, Australasia, South Pacific islands, and etc. Traditionally, Agathis species have been used as the folk medicines, the common ethnopharmacological uses of Agathis genus are the treatments of headache and myalgia. This study aims to investigate the chemical composition of Agathis dammara (Lamb.) Rich. leaf essential oil and to explore its antimelanogenesis effect. The chemical constituents of leaf essential oil are analyzed using gas chromatography-mass spectrometry (GC-MS), the major constituents of leaf essential oil are sesquiterpenoids. The major constituents are δ-cadinene (16.12%), followed by γ-gurjunene (15.57%), 16-kaurene (12.43%), ß-caryophyllene (8.58%), germacrene D (8.53%), and γ-cadinene (5.33%). As for the in vitro antityrosinase activity, leaf essential oil inhibit the tyrosinase activity of mushroom when the substrate is 3,4-dihydroxyphenylalanine (L-DOPA). Leaf essential oil prevents tyrosinase from acting as diphenolase and catalyzing L-DOPA to dopaquinone, and converting into dark melanin pigments. A. dammara leaf essential oil also exhibits the in vivo antimelanogenesis effect, leaf essential oil reduces 43.48% of melanin formation in zebrafish embryos at the concentration of 50 µg/mL. Results reveal A. dammara leaf essential oil has the potential for developing the skin whitening drug and depigmentation ingredient for hyperpigmentary disorders.

12.
Phytomedicine ; 116: 154879, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37229889

ABSTRACT

BACKGROUND: The flavonoids and polysaccharides in Portulaca oleracea L. (PO) have significant antibacterial and antioxidant effects, which can inhibit common bacteria and remove free radicals in the body. However, there was little research on the use of PO to alleviate hyperpigmentation and photoaging damage. PURPOSE: This study was to investigate the anti-photoaging and whitening activity mechanism of polysaccharide of PO (POP) in vitro and in vivo. METHOD: In this study, 16 fractions obtained by four enzyme-assisted extraction from PO and their scavenging capabilities against 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals were evaluated. Among these fractions, a polysaccharide fraction (VPOP3) showed the strongest biological activity. VPOP3 was characterized by Fourier-transform infrared spectroscopy, molecular weight (MW), and monosaccharide composition analysis, and the protective effect of VPOP3 on photoaging and hyperpigmentation was researched. RESULTS: VPOP3 is a low-MW acidic heteropolysaccharide with MW mainly distributed around 0.71KDa, arabinose as its main monosaccharide component. VPOP3 reliably reduced the reactive oxygen species levels in cells and zebrafish and the level of lipid peroxidation in zebrafish. In addition, VPOP3 inhibited UVB-induced apoptotic body formation and apoptosis by downregulating caspase-3 and Bax and upregulating Bcl-2 in mitochondrion-mediated signaling pathways. On the other hand, VPOP3 at high concentrations significantly downregulated the expression of microphthalmia-associated transcription factor, tyrosinase (TYR), and TYR-related protein-1 and TYR-related protein-2 in the melanogenic signaling pathway to achieve a whitening effect. CONCLUSION: The above results showed that VPOP3 has superior activities of anti-photoaging and anti-melanogenesis and can be utilized as a safe resource in the manufacture of cosmetics.


Subject(s)
Hyperpigmentation , Portulaca , Animals , Portulaca/chemistry , Zebrafish , Polysaccharides/pharmacology , Polysaccharides/chemistry , Signal Transduction
13.
Biotechnol Genet Eng Rev ; : 1-22, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37066895

ABSTRACT

Leonurus japonicus Houtt is an important anti-skin pigmentation herb used in traditional Chinese medicine. However, the molecular basis for this activity is complex and not fully understood. In this study, water and ethanol extracts and polysaccharide extract from L. japonicus (LJPs) were analyzed by LC-MS/MS and HPLC-DAD separately. Cytotoxicity was analyzed by using CCK-8, antioxidant activity using flow cytometer, anti-MMPs, anti-tyrosinase and signalling pathway analysis using Western blotting to investigate their anti-melanogenesis function. The results showed that the water and ethanol extracts contained alkaloids, flavonoids, and phenolic acids. The LJPs mainly contain glucose, fucose, glucuronic acid, mannose, threonine and arginine, and structure characterization by FITR analyses indicated that LJPs have ß- or α-D-glycosidic bonds and contain pyranose rings. The L. japonicus extracts displayed high cell viability at their maximum concentration. The water extract and polysaccharides significantly reduced lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) content and exhibited a cytoprotective role. Also, these extracts displayed higher matrix metalloproteinase-2 (anti-MMP-2), anti-MMP-9 and anti-tyrosinase activities. Furthermore, the polysaccharides displayed significantly greater inhibitory effect on intracellular ROS and tyrosinase protein expression than α-arbutin and ursolic acid used for the clinical treatment of skin pigmentation. This study also investigated the polysaccharide inhibition of melanin synthesis by repressing the expression of melanocytic lineage-specific transcription factor (MITF) and melanogenic enzymes via modulation of the phosphoinositide 3-kinase (PI3K-Akt-mTOR) and ß-catenin pathways. The overall results indicate that L. japonicus is a promising candidate for anti-pigmentation treatment.

14.
J Biomater Sci Polym Ed ; 34(14): 1952-1980, 2023 10.
Article in English | MEDLINE | ID: mdl-37036014

ABSTRACT

In the current study, an ultrasonic approach (as green method) was utilized to prepared kojic acid niosome (kojisome) which aimed to increase the dermal delivery and improving anti-melanogenesis properties. The study's findings demonstrated that increasing cholesterol enhanced the mean particle size from 68.333 ± 5.686 nm to 325.000 ± 15.099 nm and entrapment efficiency 0% to 39.341 ± 4.126% of the kojisome. Cholesterol may enhance the number and rigidity of bilayers that induced a size enhancement and entrapment efficiency. The skin permeability test revealed that kojisome gel had more kojic acid in dermal layers (437.563 ± 29.857 µg/cm2 or 16.624 ± 1.379%) than kojic acid plain gel (161.290 ± 14.812 µg/cm2 or 6.128 ± 0.672%). The niosome's lipophilicity allowed for gradual penetration, possibly due to better contact with the skin layers. Also, the extended-release behavior of improved kojisome exhibited high safety profile and low side effect in In vitro cytotoxicity assay, dermal irritation test, and Histo-pathological evaluation. Furthermore, optimum kojisome inhibited melanin formation (53.093 ± 2.985% at 1000 µM) higher than free kojic acid (62.383 ± 1.958%) significantly (p < 0.05). In addition, Kojisome 6 inhibited L-dopa auto-oxidation greater extent (94.806 ± 2.411%) than pure kojic acid solution (72.953 ± 2.728%). Kojisome by delivering and targeting large amount of kojic acid on specific site causes high efficacy in inhibition of melanin synthesis. The observations of this study revealed that the produced kojisome might be used as a potential nano-vehicle for kojic acid dermal administration, thereby opening up innovative options for the treatment of hyperpigmentation problems.


Subject(s)
Antioxidants , Liposomes , Antioxidants/pharmacology , Melanins , Cholesterol
15.
Antioxidants (Basel) ; 12(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37107174

ABSTRACT

Maca is a well-known biennial herb with various physiological properties, such as antioxidant activity and immune response regulation. In this study, the antioxidant, anti-inflammatory, and anti-melanogenic effects of fermented maca root extracts were investigated. The fermentation was carried out using Lactobacillus strains, such as Lactiplantibacillus plantarum subsp. plantarum, Lacticaseibacillus rhamnosus, Lacticaseibacillus casei, and Lactobacillus gasseri. In RAW 264.7 cells, the non-fermented maca root extracts increased the secretion of nitric oxide (NO), an inflammatory mediator, in a dose-dependent manner. In contrast, the fermented extracts showed considerably lower NO secretion than the non-fermented extracts at concentrations of 5% and 10%. This indicates the effective anti-inflammatory effects of fermented maca. The fermented maca root extracts also inhibited tyrosinase activity, melanin synthesis, and melanogenesis by suppressing MITF-related mechanisms. These results show that fermented maca root extracts exhibit higher anti-inflammatory and anti-melanogenesis effects than non-fermented maca root extracts. Thus, maca root extracts fermented using Lactobacillus strains have the potential to be used as an effective cosmeceutical raw material.

16.
Eur J Pharmacol ; 952: 175734, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37080332

ABSTRACT

Exposure to Ultraviolet radiation or α-melanocyte-stimulating hormone (α-MSH) stimulates the Cyclic Adenosine Monophosphate/Protein Kinase A signalling pathway, which leads to the synthesis and deposition of melanin granules in the epidermis. Skin pigmentation is the major physiological defence against inimical effects of sunlight. However, excessive melanin production and accumulation can cause various skin hyperpigmentation disorders. The present study involved the identification of 3-(1'-methyltetrahydropyridinyl)-2,4-6-trihydroxy acetophenone (IIIM-8) as an inhibitor of melanogenesis, IIIM-8 significantly inhibited pigment production both in vitro and in vivo without incurring any cytotoxicity in Human Adult Epidermal Melanocytes (HAEM). IIIM-8 repressed melanin synthesis and secretion both at basal levels and in α-MSH stimulated cultured HAEM cells by decreasing the levels of Cyclic Adenosine Monophosphate (cAMP) and inhibiting the phosphorylation of cAMP response element-binding (CREB) protein, coupled with restoring the phosphorylation of CREB-regulated transcription coactivator 1 (CRTC1) and its nuclear exclusion in HAEM cells. This impeding effect correlates with diminished expression of master melanogenic proteins including microphthalmia-associated transcription factor (MITF), Tyrosinase (TYR), Tyrosinase related protein 1 (TRP1), and Tyrosinase related protein 2 (TRP2). Additionally, topical application of IIIM-8 induced tail depigmentation in C57BL/6J mice. Furthermore, IIIM-8 efficiently mitigated the effect of ultraviolet-B radiation on melanin synthesis in the auricles of C57BL/6J mice. This study demonstrates that IIIM-8 is an active anti-melanogenic agent against ultraviolet radiation-induced melanogenesis and other hyperpigmentation disorders.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Hyperpigmentation , Adult , Animals , Mice , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Melanins , Monophenol Monooxygenase/metabolism , alpha-MSH/pharmacology , Ultraviolet Rays/adverse effects , Mice, Inbred C57BL , Melanocytes , Acetophenones/pharmacology , Acetophenones/metabolism , Adenosine Monophosphate/pharmacology , Heme/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Cell Line, Tumor , Transcription Factors/metabolism
17.
Molecules ; 28(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37049743

ABSTRACT

UV light causes excessive oxidative stress and abnormal melanin synthesis, which results in skin hyperpigmentation disorders such as freckles, sunspots, and age spots. Much research has been carried out to discover natural plants for ameliorating these disorders. Aronia melanocarpa contains various polyphenolic compounds with antioxidative activities, but its effects on melanogenesis have not been fully elucidated. In this study, we investigated the inhibitory effect of fermented Aronia melanocarpa (FA) fermented with Monascus purpureus on melanogenesis and its underlying mechanism in the B16F10 melanoma cell line. Our results indicate that FA inhibited tyrosinase activity and melanogenesis in alpha-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. FA significantly downregulated the PKA/CREB pathway, resulting in decreased protein levels of tyrosinase, TRP-1, and MITF. FA also inhibited the transcription of MITF by increasing the phosphorylation levels of both GSK3ß and AKT. Interestingly, we demonstrated that these results were owing to the significant increase in gallic acid, a phenolic compound of Aronia melanocarpa produced after the fermentation of Monascus purpureus. Taken together, our research suggests that Aronia melanocarpa fermented with Monascus purpureus acts as a melanin inhibitor and can be used as a potential cosmetic or therapeutic for improving hyperpigmentation disorders.


Subject(s)
Hyperpigmentation , Melanoma, Experimental , Photinia , Animals , Monophenol Monooxygenase , Proto-Oncogene Proteins c-akt/metabolism , Glycogen Synthase Kinase 3 beta , Phosphatidylinositol 3-Kinases/metabolism , Photinia/metabolism , Melanins/metabolism , Cell Line, Tumor , alpha-MSH/pharmacology , Melanoma, Experimental/metabolism
18.
Plants (Basel) ; 12(5)2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36904043

ABSTRACT

Kaempferia parviflora Wall. ex Baker (Zingiberaceae), commonly known as Thai ginseng or black ginger, is a tropical medicinal plant in many regions. It has been traditionally used to treat various ailments, including ulcers, dysentery, gout, allergies, abscesses, and osteoarthritis. As part of our ongoing phytochemical study aimed at discovering bioactive natural products, we investigated potential bioactive methoxyflavones from K. parviflora rhizomes. Phytochemical analysis aided by liquid chromatography-mass spectrometry (LC-MS) led to the isolation of six methoxyflavones (1-6) from the n-hexane fraction of the methanolic extract of K. parviflora rhizomes. The isolated compounds were structurally determined to be 3,7-dimethoxy-5-hydroxyflavone (1), 5-hydroxy-7-methoxyflavone (2), 7,4'-dimethylapigenin (3), 3,5,7-trimethoxyflavone (4), 3,7,4'-trimethylkaempferol (5), and 5-hydroxy-3,7,3',4'-tetramethoxyflavone (6), based on NMR data and LC-MS analysis. All of the isolated compounds were evaluated for their anti-melanogenic activities. In the activity assay, 7,4'-dimethylapigenin (3) and 3,5,7-trimethoxyflavone (4) significantly inhibited tyrosinase activity and melanin content in IBMX-stimulated B16F10 cells. In addition, structure-activity relationship analysis revealed that the methoxy group at C-5 in methoxyflavones is key to their anti-melanogenic activity. This study experimentally demonstrated that K. parviflora rhizomes are rich in methoxyflavones and can be a valuable natural resource for anti-melanogenic compounds.

19.
Antioxidants (Basel) ; 12(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36829827

ABSTRACT

The Castanopsis cuspidata var. sieboldii (CCS) plant grows predominantly in temperate regions of Asian countries, such as South Korea. Research on CCS has so far concentrated on the nutritional analysis, antioxidant activity, and anti-inflammation properties of its branches. However, the isolation of compounds and structural elucidation of effective single molecules remain unexplored, necessitating further exploration of CCS branches. Therefore, this study demonstrates the antioxidant and antimelanogenic activity of a single substance of ethyl gallate (EG) isolated from CCS branch extracts. Notably, the antimelanogenic (whitening) activity of EG extracted from CCS branches remains unexplored. Tyrosinase inhibition, kinetic enzyme assays, and molecular docking studies were conducted using mushroom tyrosinase in order to examine the antioxidant mechanism and antimelanin activity of EG in B16F10 melanoma cells. Nontoxic EG concentrations were found to be below 5 µg/mL. While EG significantly reduced the levels of whitening-associated proteins, p-CREB, and p-PKA, it dose-dependently inhibited the expression of TYR, TRP-1, TRP-2, and transcription factor (MITF). In addition, EG downregulated melanogenetic gene expression and activated autophagy signals. Therefore, EG extracted from CCS branches could serve as a novel functional cosmetic material with antimelanogenic and autophagy-enhancing activity.

20.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835634

ABSTRACT

Citrus is one of the most popular and widely grown fruit crops in the world. However, the bioactivity of only certain species of citrus cultivars is studied. In this study, the effects of essential oils from 21 citrus cultivars on melanogenesis were investigated in an effort to identify active anti-melanogenesis constituents. The essential oils from the peels of 21 citrus cultivars obtained by hydro-distillation were analyzed using gas chromatography-mass spectrometry. Mouse melanoma B16BL6 cells were used in all assays conducted in this study. The tyrosinase activity and melanin content were determined using the lysate of α-Melanocyte-stimulated B16BL6 cells. In addition, the melanogenic gene expression was determined by quantitative reverse transcription-polymerase chain reaction. Overall, the essential oils of (Citrus unshiu X Citrus sinensis) X Citrus reticulata, Citrus reticulata, and ((Citrus unshiu X Citrus sinensis) X Citrus reticulata) X Citrus reticulata provided the best bioactivity and comprised five distinct constituents compared to other essential oils such as limonene, farnesene, ß-elemene, terpinen-4-ol, and sabinene. The anti-melanogenesis activities of the five individual compounds were evaluated. Among the five essential oils, ß-elemene, farnesene, and limonene showed dominating properties. The experimental results indicated that (Citrus unshiu X Citrus sinensis) X Citrus reticulata, Citrus reticulata, and ((Citrus unshiu X Citrus sinensis) X Citrus reticulata) X Citrus reticulara are potential candidates with anti-melanogenesis activity for use as cosmetics and pharmaceutical agents against skin hyperpigmentation.


Subject(s)
Citrus , Oils, Volatile , Animals , Mice , Oils, Volatile/pharmacology , Limonene , Citrus/chemistry , Gas Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...