Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.103
Filter
1.
mSystems ; : e0017124, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230264

ABSTRACT

Infections caused by multidrug resistant (MDR) pathogenic bacteria are a global health threat. Bacteriophages ("phage") are increasingly used as alternative or last-resort therapeutics to treat patients infected by MDR bacteria. However, the therapeutic outcomes of phage therapy may be limited by the emergence of phage resistance during treatment and/or by physical constraints that impede phage-bacteria interactions in vivo. In this work, we evaluate the role of lung spatial structure on the efficacy of phage therapy for Pseudomonas aeruginosa infections. To do so, we developed a spatially structured metapopulation network model based on the geometry of the bronchial tree, including host innate immune responses and the emergence of phage-resistant bacterial mutants. We model the ecological interactions between bacteria, phage, and the host innate immune system at the airway (node) level. The model predicts the synergistic elimination of a P. aeruginosa infection due to the combined effects of phage and neutrophils, given the sufficient innate immune activity and efficient phage-induced lysis. The metapopulation model simulations also predict that MDR bacteria are cleared faster at distal nodes of the bronchial tree. Notably, image analysis of lung tissue time series from wild-type and lymphocyte-depleted mice revealed a concordant, statistically significant pattern: infection intensity cleared in the bottom before the top of the lungs. Overall, the combined use of simulations and image analysis of in vivo experiments further supports the use of phage therapy for treating acute lung infections caused by P. aeruginosa, while highlighting potential limits to therapy in a spatially structured environment given impaired innate immune responses and/or inefficient phage-induced lysis. IMPORTANCE: Phage therapy is increasingly employed as a compassionate treatment for severe infections caused by multidrug-resistant (MDR) bacteria. However, the mixed outcomes observed in larger clinical studies highlight a gap in understanding when phage therapy succeeds or fails. Previous research from our team, using in vivo experiments and single-compartment mathematical models, demonstrated the synergistic clearance of acute P. aeruginosa pneumonia by phage and neutrophils despite the emergence of phage-resistant bacteria. In fact, the lung environment is highly structured, prompting the question of whether immunophage synergy explains the curative treatment of P. aeruginosa when incorporating realistic physical connectivity. To address this, we developed a metapopulation network model mimicking the lung branching structure to assess phage therapy efficacy for MDR P. aeruginosa pneumonia. The model predicts the synergistic elimination of P. aeruginosa by phage and neutrophils but emphasizes potential challenges in spatially structured environments, suggesting that higher innate immune levels may be required for successful bacterial clearance. Model simulations reveal a spatial pattern in pathogen clearance where P. aeruginosa are cleared faster at distal nodes of the bronchial tree than in primary nodes. Interestingly, image analysis of infected mice reveals a concordant and statistically significant pattern: infection intensity clears in the bottom before the top of the lungs. The combined use of modeling and image analysis supports the application of phage therapy for acute P. aeruginosa pneumonia while emphasizing potential challenges to curative success in spatially structured in vivo environments, including impaired innate immune responses and reduced phage efficacy.

2.
Curr Drug Targets ; 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39225221

ABSTRACT

Acinetobacter baumannii is a globally disseminated Gram-negative bacterium that causes several types of serious nosocomial infections, the most worrisome being ventilator-associated pneumonia and bacteremia related to using venous catheters. Due to its great ability to form biofilms, combined with its survival for prolonged periods on abiotic surfaces and its potential to acquire and control the genes that determine antibiotic resistance, A. baumannii is at the top of the World Health Organization's priority list of pathogens in urgent need of new therapies. In this sense, this review aimed to present and discuss new molecular targets present in A. baumannii with potential for promising treatment approaches. This review highlights crucial molecular targets, including cell division proteins, membrane synthesis enzymes, and biofilm-associated components, offering promising targets for novel antimicrobial drug development against A. baumannii infections.

3.
Med Pharm Rep ; 97(3): 347-356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39234452

ABSTRACT

Background and aims: The individualization of cosmetic products or personalized dermatology preparations are in great demand at the present time. Methods: 24 emulsifying cream bases were proposed which were prepared by the classical, automatic and semi-automatic methods, respectively, and the physical stability resulted from the three types of homogenization was taken into account. Texture parameters were also studied for the most stable cream bases in the preformulation stage and the t - statistical test was applied. In order to choose the most optimal preservative, the effectiveness of the NipaEster solution 0.1%, Cosgard and Euxyl® PE 9010 was tested on the strains of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Results: 9 cream bases were stable through all the preparation methods used, and preservation was achieved with Euxyl® PE 9010. Following the texture parameters, significant differences were observed for the same formula in the case of choosing a different preparation method. Conclusions: Formulas F1, with methyl glucose sesquistearate as emulsifier, F8, with cetearyl glucosite as emulsifier, and F14, with Ceteareth-20 can be used as cream bases for customized products.

4.
Front Pharmacol ; 15: 1428409, 2024.
Article in English | MEDLINE | ID: mdl-39156106

ABSTRACT

Cationic ultrashort lipopeptides (USLPs) are promising antimicrobial candidates to combat multidrug-resistant bacteria. Using DICAMs, a newly synthesized family of tripeptides with net charges from -2 to +1 and a fatty amine conjugated to the C-terminus, we demonstrate that anionic and neutral zwitterionic USLPs can possess potent antimicrobial and membrane-disrupting activities against prevalent human pathogens such as Streptococcus pneumoniae and Streptococcus pyogenes. The strongest antimicrobials completely halt bacterial growth at low micromolar concentrations, reduce bacterial survival by several orders of magnitude, and may kill planktonic cells and biofilms. All of them comprise either an anionic or neutral zwitterionic peptide attached to a long fatty amine (16-18 carbon atoms) and show a preference for anionic lipid membranes enriched in phosphatidylglycerol (PG), which excludes electrostatic interactions as the main driving force for DICAM action. Hence, the hydrophobic contacts provided by the long aliphatic chains of their fatty amines are needed for DICAM's membrane insertion, while negative-charge shielding by salt counterions would reduce electrostatic repulsions. Additionally, we show that other components of the bacterial envelope, including the capsular polysaccharide, can influence the microbicidal activity of DICAMs. Several promising candidates with good-to-tolerable therapeutic ratios are identified as potential agents against S. pneumoniae and S. pyogenes. Structural characteristics that determine the preference for a specific pathogen or decrease DICAM toxicity have also been investigated.

5.
Microbiol Resour Announc ; : e0066824, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162466

ABSTRACT

Pseudomonas aeruginosa Y010, isolated from the taro rhizosphere, exhibits great antagonistic abilities against Dickeya strains that cause soft-rot and blackleg diseases of plants by producing potent antimicrobial agents. The complete genome of Y010 was sequenced and annotated, which is 6,415,628 bp in length with 66.39% GC content.

6.
ACS Appl Bio Mater ; 7(8): 5530-5540, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39093994

ABSTRACT

This study reports on the modification of bacterial cellulose (BC) membranes produced by static fermentation of Komagataeibacter xylinus bacterial strains with graphene oxide-silver nanoparticles (GO-Ag) to yield skin wound dressings with improved antibacterial properties. The GO-Ag sheets were synthesized through chemical reduction with sodium citrate and were utilized to functionalize the BC membranes (BC/GO-Ag). The BC/GO-Ag composites were characterized to determine their surface charge, morphology, exudate absorption, antimicrobial activity, and cytotoxicity by using fibroblast cells. The antimicrobial activity of the wound dressings was assessed against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results indicate that the BC/GO-Ag dressings can inhibit ∼70% of E. coli cells. Our findings also revealed that the porous BC/GO-Ag antimicrobial dressings can efficiently retain 94% of exudate absorption after exposure to simulated body fluid (SBF) for 24 h. These results suggest that the dressings could absorb excess exudate from the wound during clinical application, maintaining adequate moisture, and promoting the proliferation of epithelial cells. The BC/GO-Ag hybrid materials exhibited excellent mechanical flexibility and low cytotoxicity to fibroblast cells, making excellent wound dressings able to control bacterial infectious processes and promote the fast healing of dermal lesions.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Cellulose , Escherichia coli , Graphite , Materials Testing , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Staphylococcus aureus , Wound Healing , Graphite/chemistry , Graphite/pharmacology , Silver/chemistry , Silver/pharmacology , Wound Healing/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Particle Size , Pseudomonas aeruginosa/drug effects , Gluconacetobacter xylinus/chemistry , Humans , Mice , Bandages , Animals
7.
Environ Res ; 261: 119759, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39122163

ABSTRACT

Fabrication of ternary composited photocatalytic nanomaterials with strong interaction is vital to deriving the fast charge separation for efficient photodegradation of organic contaminants in wastewater under visible light. In this work, novel ternary 2D/3D/2D MoS2-In2O3-WS2 multi-nanostructures were synthesized using facile hydrothermal processes. XRD, FTIR, and XPS results confirmed the phase, functional groups, and element composition of pure MoS2, MoS2-In2O3, and MoS2-In2O3-WS2 hybrids. UV-DRS spectra of the MoS2-In2O3-WS2 ternary hybrid indicate maximum absorption in the visible light range with a band-gap energy value of 2.4 eV. The surface of the 2D WS2 nanosheet structure tightly blends and densely disperses 2D MoS2 nanosheets and 3D In2O3 nanocubes. This confirmed the formation of the MoS2-In2O3-WS2 ternary hybrid in the form of 2D/3D/2D multi-nanostructures, which is also indicated from SEM and HR-TEM images. The synthesized MoS2-In2O3-WS2 ternary hybrid showed maximum photocatalytic activity under visible-light for antimicrobial agents such as triclosan (TCS) and trichlorocarban (TCC). The photocatalytic activity of TCS was revealed to be 95% at 90 min, while that of TCC was 93% at 100 min. The reusability and stability tests of the prepared MoS2-In2O3-WS2 ternary hybrid after four consecutive photocatalytic cycles were analyzed by FTIR and SEM, which indicated that the prepared ternary hybrid was very stable. Overall results suggested that the developed MoS2-In2O3-WS2 (2D/3D/2D) multi-nanostructures are environmentally friendly and low-cost nanocomposites as a potential photocatalyst for the removal of antimicrobial agents from wastewater.

8.
Int J Biol Macromol ; 278(Pt 2): 134645, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128764

ABSTRACT

The emergence of antimicrobial resistance within bacterial communities poses formidable challenges to existing therapeutic strategies aimed at mitigating biofilm-mediated infections. Recent advancements in this domain have spurred the development of targeted antimicrobial agents, designed to selectively eradicate the primary etiological agents while preserving the beneficial microbial diversity of the oral cavity. Targeting glucosyltransferases (GTFs), which play crucial roles in dental biofilm formation, offers a precise strategy to inhibit extracellular polysaccharide synthesis without compromising oral microbiota. This review article delves into the intricate mechanisms underlying dental caries, with a specific focus on the role of GTFs, enzymes produced by S. mutans. It further provides an overview of current research on GTF inhibitors, exploring their mechanisms of action, efficacy, and potential applications in clinical practice. Furthermore, it discusses the challenges and opportunities in the development of novel GTF inhibitors, emphasizing the need for innovative approaches to combat biofilm-mediated oral diseases effectively.

9.
Cureus ; 16(7): e64538, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39144902

ABSTRACT

Background and objective Infectious diseases pose a substantial global health challenge, especially in developing countries where healthcare accessibility is limited. Pharmaceutical expenses constitute a significant share of out-of-pocket expenditure (60-90%). Hence, the affordability of medications becomes a critical determinant for patient compliance. This study focuses on the economic dynamics of antimicrobial agents. Methodology After collecting data from the Current Index of Medical Specialties (CIMS), different antimicrobial agents (AMAs) were assessed based on their cost per 10 tablets/10 capsules/one vial of injection. A comprehensive analysis was performed to assess the minimum and maximum costs for each medication across diverse pharmaceutical companies. Cost variation was assessed through both the cost ratio and percentage cost variation. The data were analyzed and represented using descriptive statistics Results Our findings indicate significant cost variations, with nitrofurantoin 100 mg tablet showcasing a staggering 1498.5% variation, followed by meropenem 500 mg vial at 473.91%. Conversely, the cotrimoxazole (sulfamethoxazole 800 mg + trimethoprim 160 mg) tablet exhibits a minimal 6.05% variation, underscoring the diversity in pricing strategies. The number of brands ranged from two to 62. Conclusions This study underscores the importance of considering cost variations in antimicrobial agents while prescribing the same. Doing so will not only address the economic challenges faced by patients but also help in improving compliance and reducing the risk of antimicrobial drug resistance. This approach advocates for a more economically sustainable and patient-centric healthcare ecosystem in India.

10.
Article in English | MEDLINE | ID: mdl-39216005

ABSTRACT

The development of new microbicidal compounds has become a top priority due to the emergence and spread of drug-resistant pathogenic microbes. In this study, blue-emitting and positively charged carbon dots (CDs), called Du-CDs, were fabricated for the first time utilizing the natural product extract of endophyte Diaporthe unshiuensis YSP3 as raw material through a one-step solvothermal method, which possessed varied functional groups including amino, carboxyl, hydroxyl, and sulfite groups. Interestingly, Du-CDs exhibited notably enhanced antimicrobial activities toward both bacteria and fungi as compared to the natural product extract of YSP3, with low minimum inhibitory concentrations. Moreover, Du-CDs significantly inhibited the formation of biofilms. Du-CDs bound with the microbial cell surface via electronic interaction or hydrophobic interaction entered the microbial cells and were distributed fully inside the cells. Du-CDs caused cell membrane damage and/or cell division cycle interruption, resulting in microbial cell death. Moreover, Du-CDs exhibited an improved antimicrobial effect and accelerated wound healing ability with good biocompatibility in the mouse model. Overall, we demonstrate that the formation of CDs from fungal natural products presents a promising and potential means to develop novel antimicrobial agents with great fluorescence, improved microbiocidal effect and wound healing capacity, and good biosafety for combating microbial infections.

11.
Biomolecules ; 14(8)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39199405

ABSTRACT

Microbial infections pose a significant global health threat, affecting millions of individuals and leading to substantial mortality rates. The increasing resistance of microorganisms to conventional treatments requires the development of novel antimicrobial agents. Pyrroloquinoline quinone (PQQ), a natural medicinal drug involved in various cellular processes, holds promise as a potential antimicrobial agent. In the present study, our aim was, for the first time, to explore the antimicrobial activity of PQQ against 29 pathogenic microbes, including 13 fungal strains, 8 Gram-positive bacteria, and 8 Gram-negative bacteria. Our findings revealed potent antifungal properties of PQQ, particularly against Syncephalastrum racemosum, Talaromyces marneffei, Candida lipolytica, and Trichophyton rubrum. The MIC values varied between fungal strains, and T. marneffei exhibited a lower MIC, indicating a greater susceptibility to PQQ. In addition, PQQ exhibited notable antibacterial activity against Gram-positive and -negative bacteria, with a prominent inhibition observed against Staphylococcus epidermidis, Proteus vulgaris, and MRSA strains. Remarkably, PQQ demonstrated considerable biofilm inhibition against the MRSA, S. epidermidis, and P. vulgaris strains. Transmission electron microscopy (TEM) studies revealed that PQQ caused structural damage and disrupted cell metabolism in bacterial cells, leading to aberrant morphology, compromised cell membrane integrity, and leakage of cytoplasmic contents. These findings were further affirmed by shotgun proteomic analysis, which revealed that PQQ targets several important cellular processes in bacteria, including membrane proteins, ATP metabolic processes, DNA repair processes, metal-binding proteins, and stress response. Finally, detailed molecular modeling investigations indicated that PQQ exhibits a substantial binding affinity score for key microbial targets, including the mannoprotein Mp1P, the transcriptional regulator TcaR, and the endonuclease PvuRTs1I. Taken together, our study underscores the effectiveness of PQQ as a broad-spectrum antimicrobial agent capable of combating pathogenic fungi and bacteria, while also inhibiting biofilm formation and targeting several critical biological processes, making it a promising therapeutic option for biofilm-related infections.


Subject(s)
Biofilms , Microbial Sensitivity Tests , PQQ Cofactor , Proteomics , Biofilms/drug effects , PQQ Cofactor/pharmacology , PQQ Cofactor/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Computer Simulation , Fungi/drug effects , Molecular Docking Simulation , Antifungal Agents/pharmacology , Antifungal Agents/chemistry
12.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39204172

ABSTRACT

Despite the urgent need for new antibiotics, very few innovative antibiotics have recently entered clinics or clinical trials. To provide a constant supply of new drug candidates optimized in terms of their potential to select for resistance in natural settings, in vitro resistance-predicting studies need to be improved and scaled up. In this review, the following in vitro parameters are presented: frequency of spontaneous mutant selection (FSMS), mutant prevention concentration (MPC), dominant mutant prevention concentration (MPC-D), inferior-mutant prevention concentration (MPC-F), and minimal selective concentration (MSC). The utility of various adaptive laboratory evolution (ALE) approaches (serial transfer, continuous culture, and evolution in spatiotemporal microenvironments) for comparing hits in terms of the level and time required for multistep resistance to emerge is discussed. We also consider how the hit-to-lead stage can benefit from high-throughput ALE setups based on robotic workstations, do-it-yourself (DIY) continuous cultivation systems, microbial evolution and growth arena (MEGA) plates, soft agar gradient evolution (SAGE) plates, microfluidic chips, or microdroplet technology. Finally, approaches for evaluating the fitness of in vitro-generated resistant mutants are presented. This review aims to draw attention to newly emerged ideas on how to improve the in vitro forecasting of the potential of compounds to select for resistance in natural settings.

13.
Microb Pathog ; 195: 106886, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39182855

ABSTRACT

Given the ability of Staphylococcus aureus to form biofilms and produce persister cells, making infections difficult to treat with antibiotics alone, there is a pressing need for an effective antibiotic adjuvant to address this public health threat. In this study, a series of quinone derivatives were evaluated for their antimicrobial and antibiofilm activities against methicillin-susceptible and methicillin-resistant S. aureus reference strains. Following analyses using broth microdilution, growth curve analysis, checkerboard assay, time-kill experiments, and confocal laser scanning microscopy, menadione was identified as a hit compound. Menadione exhibited a notable antibacterial profile (minimum inhibitory concentration, MIC = 4-16 µg/ml; minimum bactericidal concentration, MBC = 256 µg/ml) against planktonic S. aureus and its biofilms (minimum biofilm inhibitory concentration, MBIC50 = 0.0625-0.25 µg/ml). When combined with oxacillin, erythromycin, and vancomycin, menadione exhibited a synergistic or additive effect against planktonic cells and biofilms of two S. aureus reference strains and six clinical isolates, highlighting its potential as a suitable adjuvant for further development against S. aureus biofilm-associated infections.

14.
J Oral Microbiol ; 16(1): 2388900, 2024.
Article in English | MEDLINE | ID: mdl-39139835

ABSTRACT

Background: Fusobacterium nucleatum, a pathobiont in periodontal disease, contributes to alveolar bone destruction. We assessed the efficacy of a new targeted antimicrobial, FP-100, in eradicating F. nucleatum from the oral microbial community in vitro and in vivo and evaluated its effectiveness in reducing bone loss in a mouse periodontitis model. Methods: A multispecies bacterial community was cultured and treated with two concentrations of FP-100 over two days. Microbial profiles were examined at 24-h intervals using 16S rRNA sequencing. A ligature-induced periodontitis mouse model was employed to test FP-100 in vivo. Results: FP-100 significantly reduced Fusobacterium spp. within the in vitro community (p < 0.05) without altering microbial diversity at a 2 µM concentration. In mice, cultivable F. nucleatum was undetectable in FP-100-treated ligatures but persistent in controls. Beta diversity plots showed distinct microbial structures between treated and control mice. Alveolar bone loss was significantly reduced in the FP-100 group (p = 0.018), with concurrent decreases in gingival IL-1ß and TNF-α expression (p = 0.052 and 0.018, respectively). Conclusion: FP-100 effectively eliminates F. nucleatum from oral microbiota and significantly reduces bone loss in a mouse periodontitis model, demonstrating its potential as a targeted therapeutic agent for periodontal disease.


FP-100 eliminates F. nucleatum from an in vitro multispecies microbial community at low doses without affecting bacterial diversity. FP-100 treatment leads to the in vivo elimination of F. nucleatum, reducing alveolar bone loss and levels of pro-inflammatory cytokines in the gingiva. FP-100 is a new antimicrobial to target F. nucleatum-mediated periodontal disease.

15.
Indian J Crit Care Med ; 28(6): 618-619, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39130378

ABSTRACT

How to cite this article: Kundu R, Baronia T, Sathe P. The Rise of Irrational Antimicrobial Combinations: Need for Clinical Jurisprudence? Indian J Crit Care Med 2024;28(6):618-619.

16.
Vet Med (Praha) ; 69(6): 207-216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39021880

ABSTRACT

We examined the antibacterial efficacy of streptomycin, hibiscus acid, and their combination against multidrug-resistant Shiga-toxin-producing Escherichia coli (STEC) and Salmonella Typhimurium in mice. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for streptomycin, hibiscus acid, and their combination against STEC and Salmonella. Fifteen sets of six mice in each set were utilised: six groups were orally exposed to 4 log10 colony forming units (CFUs) of S. Typhimurium and another six to STEC, and three acted as the controls. Six hours post-inoculation, specific groups of mice received either oral solutions containing hibiscus acid at 5 and 7 mg/ml; streptomycin at 50 and 450 µg/ml; hibiscus acid/streptomycin (5 mg/ml hibiscus acid and 50 µg/ml streptomycin); or isotonic saline. The study determined the MIC and MBC of 7 mg/ml of hibiscus acid; 300 and 450 µg/ml of streptomycin; and two concentrations of hibiscus/streptomycin (3 mg/ml / 20 µg/ml and 5 mg/ml / 50 µg/ml). Interestingly, the mice that were infected and subsequently treated with hibiscus acid at 7 mg/ml alone or in conjunction with streptomycin did not have either STEC or Salmonella in their faecal samples, and none of the mice died. In contrast, the untreated mice and those exclusively treated with streptomycin had the pathogens present in their stool, leading to the mortality of all the subjects.

17.
Reprod Sci ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981993

ABSTRACT

This study aimed to investigate the effect of diagnosis and treatment of chronic endometritis (CE) on the outcome of assisted reproductive technology (ART) with or without repeated implantation failure (RIF). This retrospective analysis included patients who underwent pathological examination for diagnosis of CE at Yamagata University Hospital. The examination was performed for all patients planned for ART with or without RIF. Patients who were examined within 6 months of the first oocyte retrieval or embryo transfer were included. We counted the number of CD138-positive cells within the endometrial stroma in patients' specimens and analyzed the patients' clinical information. Clinical rates of pregnancy and implantation were determined. A total of 80 women met the inclusion criteria: 13 CE-negative patients (17.3%) and 67 CE-positive patients (83.7%). A significant decrease was noted in the CD138-positive cell count between the first biopsy and second biopsy after CE treatment (p < 0.001). In addition, no significant differences were noted in ongoing pregnancy rates between the CE-negative patients and those who underwent CE treatment. The CD138-positive cell counts at first biopsy tended to be lower in each pregnancy group than in the non-pregnancy group. For patients planned to undergo ART, examination for diagnosis of CE with or without RIF could be considered. Pathological CD138-positive cell counts were considered useful for CE diagnosis and treatment decision-making. The study findings suggest the efficacy of antimicrobial agents in CE treatment, contributing to improved pregnancy outcomes.

18.
Helicobacter ; 29(3): e13106, 2024.
Article in English | MEDLINE | ID: mdl-38984746

ABSTRACT

Patients receiving hemodialysis (HD) often develop gastrointestinal diseases. Recently, although in general population, clinical guidelines for Helicobacter pylori have strongly recommended its eradication in patients to prevent gastric cancer, optimal eradication regimen and optimal dosage of drugs for patients receiving HD have not been established, due to possible incidence of adverse events. Some antimicrobial agents used in eradication therapy, particularly amoxicillin, can exacerbate renal dysfunction. Given the delayed pharmacokinetics of drugs in patients receiving HD compared with those in healthy individuals, drug regimen and dosage should be considered to minimize adverse effects. Although previous studies have investigated the benefits of eradication therapy for patients receiving HD, because most studies were small in terms of the number of enrolled patients, it is hard to show evidence. The numbers of eradication in HD patients have recently increased, and it is important to provide an optimal regimen. The consideration of eradication in patients undergoing HD with a reduction in the drug dose by 1/2-1/3 may prevent adverse events. Additionally, another important consideration is whether adverse events can be prevented while maintaining a similar eradication rate with reduced drug dosages. Recent meta-analysis findings indicate comparable eradication rates in patients receiving HD and healthy individuals, both with the same dosage regimen and at a reduced dosage regimen, with no significant differences (relative risk [RR] for successful eradication: 0.85 [95% confidence interval (CI): 0.48-1.50]). Unlike with the same dosage regimen (RR for adverse events: 3.15 [95% CI: 1.93-5.13]), the adverse events in the dosage reduction regimen were similar to those in healthy individuals (RR: 1.26 [95% CI: 0.23-6.99]). From a pharmacological perspective, the eradication regimen in patients receiving HD should consider the dosage (1/2-1/3 dosage), dosing number (bid), dosing timing of drugs (after HD), and susceptibility to antimicrobial agents.


Subject(s)
Anti-Bacterial Agents , Helicobacter Infections , Helicobacter pylori , Renal Dialysis , Humans , Helicobacter Infections/drug therapy , Renal Dialysis/adverse effects , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacokinetics , Helicobacter pylori/drug effects
19.
Polymers (Basel) ; 16(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39065324

ABSTRACT

The food industry is increasingly focused on maintaining the quality and safety of food products as consumers are becoming more health conscious and seeking fresh, minimally processed foods. However, deterioration and spoilage caused by foodborne pathogens continue to pose significant challenges, leading to decreased shelf life and quality. To overcome this issue, the food industry and researchers are exploring new approaches to prevent microbial growth in food, while preserving its nutritional value and safety. Active packaging, including antimicrobial packaging, has gained considerable attention among current food packaging methods owing to the wide range of materials used, application methods, and their ability to protect various food products. Both direct and indirect methods can be used to improve food safety and quality by incorporating antimicrobial compounds into the food packaging materials. This comprehensive review focuses on natural and synthetic antimicrobial substances and polymer-based films, and their mechanisms and applications in packaging systems. The properties of these materials are compared, and the persistent challenges in the field of active packaging are emphasized. Specifically, there is a need to achieve the controlled release of antimicrobial agents and develop active packaging materials that possess the necessary mechanical and barrier properties, as well as other characteristics essential for ensuring food protection and safety, particularly bio-based packaging materials.

20.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000152

ABSTRACT

Global public health is facing a major issue with emerging resistance to antimicrobial agents. Antimicrobial agents that are currently on the market are strong and efficient, but it has not been ruled out that these medications will eventually cause resistance to bacteria. Exploring novel bioactive compounds derived from natural sources is therefore, crucial to meet future demands. The present study evaluated the mode of action of the antimicrobial potential protease enzyme SH21. Protease SH21 exhibited antimicrobial activity, strong heat stability (up to 100 °C), and pH stability (pH 3.0 to 9.0). In terms of mode of action, we found that protease SH21 was able to disrupt the bacterial cell membrane as the results of the nucleotide leakage and cell membrane permeability assay. In addition, we also checked inner membrane permeability by PI uptake assay which suggested that protease SH21 has the ability to enter the bacterial cell membrane. Our results revealed that the antimicrobial protease SH21 might be a promising candidate for treating microbial infections.


Subject(s)
Bacillus , Microbial Sensitivity Tests , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Membrane Permeability/drug effects , Peptide Hydrolases/metabolism , Hydrogen-Ion Concentration , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Enzyme Stability
SELECTION OF CITATIONS
SEARCH DETAIL