Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Fitoterapia ; 177: 106075, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897244

ABSTRACT

The Canadian prairie ecosystem is subjected to abiotic and biotic conditions that induce plants to produce secondary metabolites that affect mammalian physiology. Extracts prepared from certain plant species native to Canadian prairie and montane cordillera ecosystems have previously been shown to have anti-mitotic activity on human cancer cell lines. In this study, we investigated the glacier lily, Erythronium grandiflorum (Liliaceae), in which the species was the most phylogenetically distant from Asteraceae and had anti-mitotic activity. When added to cell lines, E. grandiflorum extracts induced rounded cell morphology and arrested cells in the G2/M phase of the cell cycle. Of the cells that displayed a rounded phenotype, all were positive for phospho-histone H3 and contained a distorted mitotic spindle. This anti-mitotic activity was distinct from that of the compound colchicine, which has been previously isolated from the Liliaceae family. By biology-guided fractionation, we isolated the natural product (+)-6-tuliposide A and are the first to report its anti-mitotic activity. These results reveal a chemical motif in secondary metabolites and expand the range of Canadian prairie plants with anti-mitotic activity that can become new scientific tools or used in the development of anti-proliferative medicines.

2.
Life Sci ; 351: 122836, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38879159

ABSTRACT

AIM: Exploring the efficacy of ß-carboline-based molecular inhibitors in targeting microtubules for the development of novel anticancer therapeutics. MATERIALS AND METHODS: We synthesized a series of 1-Aryl-N-substituted-ß-carboline-3-carboxamide compounds and evaluated their cytotoxicity against human lung carcinoma (A549) cells using the MTT assay. Normal lung fibroblast cells (WI-38) were used to assess compound selectivity. The mechanism of action of MJ-211 was elucidated through Western blot analysis of key pro-apoptotic and cell cycle regulatory proteins. Additionally, the inhibitory effect of MJ-211 on multicellular 3D spheroid growth of A549 cells was evaluated. KEY FINDINGS: Lead compound MJ-211 exhibited remarkable cytotoxicity against A549 cells with an IC50 of 4.075 µM at 24 h treatment and IC50 of 1.7 nM after 72 h of treatment, while demonstrating selectivity towards normal WI-38 cells. MJ-211 activated pro-apoptotic factors Bim and p53, and suppressed Cyclin B1, Phospho HSP 27, BubR1, Mad 2, ERK1/2, and NF-κB, indicating its potent antimitotic and pro-apoptotic effects. MJ-211 significantly suppressed the migration of cells and inhibited the growth of A549 cell-derived multicellular 3D spheroids, highlighting its efficacy in a more physiologically relevant model. SIGNIFICANCE: Cytotoxic effect of MJ-211 against cancer cells, selectivity towards normal cells, and ability to modulate key regulatory proteins involved in apoptosis and cell cycle progression underscore its potential as a promising template for further anticancer lead optimization. Moreover, the inhibitory effect of MJ-211 on multicellular spheroid growth suggests its efficacy in combating tumor heterogeneity and resistance mechanisms, thereby offering a promising avenue for future anticancer drug development.


Subject(s)
Carbolines , Microtubules , NF-kappa B , Humans , Carbolines/pharmacology , NF-kappa B/metabolism , Microtubules/drug effects , Microtubules/metabolism , A549 Cells , Antimitotic Agents/pharmacology , Down-Regulation/drug effects , Apoptosis/drug effects , MAP Kinase Signaling System/drug effects , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects
3.
Nat Prod Res ; : 1-5, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706426

ABSTRACT

Plant alkaloids are nitrogen containing secondary metabolites that have wide range of biological properties including anticancer activity. 'Lasiosiphon glaucus', or 'Gnidia glauca (Fresen.) Gilg,' known for its biological properties, requires exploration to evaluate cytotoxic and anticancer effects. The present study is aimed to evaluate L. glaucus leaf alkaloid extract (LgLAE) for antimitotic, thrombolytic, and cytotoxic properties. LgLAE demonstrated comparable antimitotic efficacy to methotrexate in Allium cepa root meristematic cells. Thrombolytic evaluation showed a maximum observed clot lysis of 41.39 ± 0.21% at 2 mg/100 µL. Cytotoxicity assay shows greater inhibition of MCF-7 (144.51 µg/mL) cancer cell proliferation than MCF-10A cells (409.86 µg/mL), indicating potential cancer-specific effects. Computational analysis revealed strong binding affinities between L. glaucus alkaloids (Ergocristine, Solasodine, Solanocapsine, Delphinine, and Harmidine) and relevant receptors. These findings highlight L. glaucus contains valuable natural compounds with pharmacological effects, particularly in antimitotic, thrombolytic, and cytotoxic effects, it essential for further investigation for cancer treatment.

4.
Cell Div ; 19(1): 3, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341593

ABSTRACT

INTRODUCTION: Anti-mitosis has been a key strategy of anti-cancer therapies, targeting at a fundamental property of cancer cells, their non-controllable proliferation due to overactive mitotic divisions. For improved anti-cancer therapies, it is important to find out whether cancer cells can proliferate independent of mitosis and become resistant to anti-mitotic agents. RESULTS: In this study, live-cell imaging was applied to both primary-cultures of tumor cells, and immortalized cancer cell lines, to detect aberrant proliferations. Cells isolated from various malignant tumors, such as Grade-III hemangiopericytoma, atypical meningioma, and metastatic brain tumor exhibit distinct cellular behaviors, including amoeboid sequestration, tailing, tunneling, nucleic DNA leakage, as well as prokaryote-like division such as binary fission and budding-shedding, which are collectively referred to and reported as 'non-mitotic proliferation' in this study. In contrast, benign tumors including Grade-I hemangiopericytoma and meningioma were not obvious in such behaviors. Moreover, when cultured in medium free of any anti-cancer drugs, cells from a recurrent Grade-III hemangiopericytoma that had been subjected to pre-operation adjuvant chemotherapy gradually shifted from non-mitotic proliferation to abnormal mitosis in the form of daughter number variation (DNV) and endomitosis, and eventually regular mitosis. Similarly, when treated with the anti-cancer drugs Epirubicin or Cisplatin, the cancer cell lines HeLa and A549 showed a shift from regular mitosis to abnormal mitosis, and further to non-mitosis as the dominant mode of proliferation with increasing drug concentrations. Upon removal of the drugs, the cells reversed back to regular mitosis with only minor occurrences of abnormal mitosis, accompanied by increased expression of the stem cell markers ALDH1, Sox, Oct4 and Nanog. CONCLUSIONS: The present study revealed that various types of malignant, but not benign, cancer cells exhibited cellular behaviors indicative of non-mitotic proliferation such as binary fission, which was typical of prokaryotic cell division, suggesting cell level atavism. Moreover, reversible transitions through the three modes of proliferation, i.e., mitosis, abnormal mitosis and non-mitosis, were observed when anticancer drug concentrations were grossly increased inducing non-mitosis or decreased favoring mitosis. Potential clinical significance of non-mitotic proliferation in cancer drug resistance and recurrence, and its relationship with cancer stem cells are worthy of further studies.

5.
J Evid Based Med ; 17(1): 37-53, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243639

ABSTRACT

BACKGROUND: Plantar warts are common infectious cutaneous growths causing severe physiological and psychological discomforts in patients and heaving global financial burdens. However, paucity of clear-cut guidelines for plantar warts, selecting appropriate treatments for plantar warts remains challenging. The objective of the study is to evaluate the efficacy and safety of common treatments for plantar warts. METHODS: PubMed, EMbase, and The Cochrane Library were searched from inception to March 1, 2023 for randomized controlled trials (RCTs) of plantar warts. The primary outcome (complete response) and secondary outcome (recurrence and pain) were extracted and combined using Bayesian network meta-analysis (NMA) with random-effect and fixed-effect models. RESULTS: Totally, 33 RCTs were included in the systematic review and quantitative NMA. In NMA of complete response, topical application of 1% cantharidin, 20% podophylotoxin, 30% salicylic acid (CPS), microneedles plus bleomycin (MNB), and intralesional bleomycin injection (INB) were the only three treatments significantly superior to no treatment (NT) and CPS was of the highest possibility to be the top-ranked treatment (SUCRA = 0.9363). However, traditional warts treatments, salicylic acid (SA) and cryotherapy were not superior to NT. CONCLUSIONS: The NMA has produced evidence for using CPS, MNB, and INB, which are all topical antimitotic treatments, to improve the management of plantar warts. The classic treatment modalities for plantar warts, including SA and cryotherapy, may play a less important role in the clinical practice of plantar warts.


Subject(s)
Bayes Theorem , Network Meta-Analysis , Randomized Controlled Trials as Topic , Warts , Humans , Warts/drug therapy , Antimitotic Agents/therapeutic use , Antimitotic Agents/administration & dosage , Salicylic Acid/therapeutic use , Salicylic Acid/administration & dosage , Bleomycin/administration & dosage , Bleomycin/therapeutic use , Podophyllotoxin/therapeutic use , Podophyllotoxin/administration & dosage , Cantharidin/therapeutic use , Cantharidin/administration & dosage , Administration, Topical
6.
Microsc Res Tech ; 87(5): 1031-1043, 2024 May.
Article in English | MEDLINE | ID: mdl-38205658

ABSTRACT

The genus Achyranthes belong to the family Amaranthaceae which constitutes an important group of herbs and shrubs with immense medicinal value. The present research work was conducted to investigate the anticancer potential of Achyranthes aspera L. leaves by focusing on the antioxidant, aniproliferative and antimitotic activities of leaf extracts. Plant extraction was carried out by soxhelt method with different solvents. Phytochemical characterization of the plants extracts using chemical methods identified the presence of cardiac glycosides, saponins, coumarins, proteins, tannins, flavonoids and triterpenes. Alkaloid was present in methanolic and ethanolic extract. High performance liquid chromatography showed presence of different concentration of myricetin, quercetin and kaempferol in different extracts with the highest concentration of myricetin (84.53 µg/mL) in n-butanolic extract. The extracts were then tested for antioxidant activity using 2,2-diphenylpicrylhydrazyl (DPPH) radical scavenging assay by spectrophotometric method. In DPPH radical scavenging assay, antioxidant activity of A. aspera ranged between 79.78 ± 0.034% and 58.63 ± 0.069%. Highest antioxidant activity was observed for methanolic extract and lowest for acetone. Antimitotic activity was determined by using Allium cepa assay in which microscopic investigation was carried out to observe normal and abnormal phases of mitosis. In this assay, n-butanolic extract had highest antimitotic activity with minimum mitotic index at 2 mg/mL (57 ± 0.0351%). The plant extracts also caused chromosomal and mitotic aberrations which were clearly observed under 40× and 100× magnification of compound microscope. Antiproliferative activity was determined by using yeast cell model in which light microscope with hemocytometer was used for cell counting. In case of Antiproliferative activity, the ethyl acetate extract of A. aspera had highest antiproliferative activity with lowest cell viability (22.14 ± 0.076%) at highest extract concentration (2 mg/mL) while methanol extract of A. aspera had highest antiproliferative activity with lower cell viability (24.24 ± 0.057%) at lowest extract concentration (0.25 mg/mL). The results of the study indicated that the leaves extract of A. aspera have strong potential to be used as a source of anti-cancer agent. RESEARCH HIGHLIGHTS: Achyranthes aspera L. leaves have various phytochemicals which contribute to its medicinal properties Various extracts of the leaves of A. aspera L. possess antioxidant, antimitotic and antiproliferative potential The results of the study indicated that the leaves extract of A. aspera have strong potential to be used as a source of anti-cancer agent.


Subject(s)
Achyranthes , Antimitotic Agents , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Achyranthes/chemistry , Microscopy , Plants , Methanol , Spectrum Analysis , Plant Leaves
7.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139302

ABSTRACT

Antimitotic agents are one of the more successful types of anticancer drugs, but they suffer from toxicity and resistance. The application of approved drugs to new indications (i.e., drug repurposing) is a promising strategy for the development of new drugs. It relies on finding pattern similarities: drug effects to other drugs or conditions, similar toxicities, or structural similarity. Here, we recursively searched a database of approved drugs for structural similarity to several antimitotic agents binding to a specific site of tubulin, with the expectation of finding structures that could fit in it. These searches repeatedly retrieved frentizole, an approved nontoxic anti-inflammatory drug, thus indicating that it might behave as an antimitotic drug devoid of the undesired toxic effects. We also show that the usual repurposing approach to searching for targets of frentizole failed in most cases to find such a relationship. We synthesized frentizole and a series of analogs to assay them as antimitotic agents and found antiproliferative activity against HeLa tumor cells, inhibition of microtubule formation within cells, and arrest at the G2/M phases of the cell cycle, phenotypes that agree with binding to tubulin as the mechanism of action. The docking studies suggest binding at the colchicine site in different modes. These results support the repurposing of frentizole for cancer treatment, especially for glioblastoma.


Subject(s)
Antimitotic Agents , Antineoplastic Agents , Antimitotic Agents/pharmacology , Tubulin/metabolism , Cell Line, Tumor , Structure-Activity Relationship , Colchicine/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin Modulators/chemistry , Drug Screening Assays, Antitumor , Cell Proliferation , Binding Sites
8.
DNA Repair (Amst) ; 132: 103583, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37871511

ABSTRACT

Eukaryotic DNA has evolved to be enclosed within the nucleus to protect the cellular genome from autoinflammatory responses driven by the immunogenic nature of cytoplasmic DNA. Cyclic GMP-AMP Synthase (cGAS) is the cytoplasmic dsDNA sensor, which upon activation of Stimulator of Interferon Genes (STING), mediates production of pro-inflammatory interferons (IFNs) and interferon stimulated genes (ISGs). However, although this pathway is crucial in detection of viral and microbial genetic material, cytoplasmic DNA is not always of foreign origin. It is now recognised that specifically in genomic instability, a hallmark of cancer, extranuclear material in the form of micronuclei (MN) can be generated as a result of unresolved DNA lesions during mitosis. Activation of cGAS-STING in cancer has been shown to regulate numerous tumour-immune interactions such as acquisition of 'immunologically hot' phenotype which stimulates immune-mediated elimination of transformed cells. Nonetheless, a significant percentage of poorly prognostic cancers is 'immunologically cold'. As this state has been linked with low proportion of tumour-infiltrating lymphocytes (TILs), improving immunogenicity of cold tumours could be clinically relevant by exhibiting synergy with immunotherapy. This review aims to present how inhibition of vital mitotic regulators could provoke cGAS-STING response in cancer and improve the efficacy of current immunotherapy regimens.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , DNA/metabolism , Cytoplasm/metabolism , Interferons , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
9.
Front Chem ; 11: 1238346, 2023.
Article in English | MEDLINE | ID: mdl-37663139

ABSTRACT

Aqueous extracts of Marrubium vulgare L. (M. vulgare) are widely used in traditional medicine for their therapeutic effects. Hence, this study aims to evaluate in vitro, in vivo, and in silico the biological activities of M. vulgare aqueous extract to further support their traditional use. Qualitative phytochemical tests of M. vulgare extracts showed the presence of primary and secondary metabolites, while quantitative analyses recorded revealed the contents of total phenols, flavonoids, and tannins, with values of 488.432 ± 7.825 mg/EAG gallic acid extract/g, 25.5326 ± 1.317 mg/EQ Quercetin extract/g and 23.966 ± 0.187 mg/EC catechin extract/g, respectively. Characterization of the phytochemical constituents of the extract revealed the presence of catechin and maleic acid as the most abundant while the evaluation of the antioxidant power revealed that the extract possesses significant antioxidant capacity, antimitotic potential, and antimicrobial properties against Streptococcus agalactiae and Staphylococcus epidermidis among many others. The antidiabetic activity of the extract showed a potent antihyperglycemic effect and a significant modulation of the pancreatic α-amylase activity as revealed by both in vitro and in vivo analysis, while an in silico evaluation showed that chemicals in the studied extract exhibited the aforementioned activities by targeting 1XO2 antimitotic protein, W93 antidiabetic protein and 1AJ6 antimicrobial protein, which revealed them as worthy of exploration in drug discovery odyssey. Conclusively, the result of this study demonstrates the numerous biological activities of M. vulgare and gives credence to their folkloric and traditional usage.

10.
Pharmaceutics ; 15(8)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37631234

ABSTRACT

Antibody-drug conjugates (ADCs) have demonstrated a great therapeutic potential against cancer due to their target specificity and cytotoxicity. To exert a maximum therapeutic effect on cancerous cells, we have conjugated two different payloads to different amino acids, cysteines (cys) and lysines (lys), on trastuzumab, which is a humanised anti-HER2 monoclonal antibody. First, trastuzumab was conjugated with monomethyl auristatin E (MMAE), an antimitotic agent, through a cleavable linker (Val-Cit) to prepare ADC (Tmab-VcMMAE). Then, the ADC (Tmab-VcMMAE) was conjugated with a second antimitotic agent, Mertansine (DM1), via a non-cleavable linker Succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) to form a dual conjugate (Tmab-VcMMAE-SMCC-DM1). Our results indicated that the dual-payload conjugate, Tmab-VcMMAE-SMCC-DM1, had a synergistic and superior cytotoxic effect compared to trastuzumab alone. Ultimately employing a dual conjugation approach has the potential to overcome treatment-resistance and tumour recurrences and could pave the way to employ other payloads to construct dual (or multiple) payload complexes.

11.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446273

ABSTRACT

Increasing awareness of the structure of microtubules has made tubulin a relevant target for the research of novel chemotherapies. Furthermore, the particularly high sensitivity of glioblastoma multiforme (GBM) cells to microtubule disruption could open new doors in the search for new anti-GBM treatments. However, the difficulties in developing potent anti-tubulin drugs endowed with improved pharmacokinetic properties necessitates the expansion of medicinal chemistry campaigns. The application of an ensemble pharmacophore screening methodology helped to optimize this process, leading to the development of a new tetrazole-based tubulin inhibitor. Considering this scaffold, we have synthesized a new family of tetrazole derivatives that achieved remarkable antimitotic effects against a broad panel of cancer cells, especially against GBM cells, showing high selectivity in comparison with non-tumor cells. The compounds also exerted high aqueous solubility and were demonstrated to not be substrates of efflux pumps, thus overcoming the main limitations that are usually associated with tubulin binding agents. Tubulin polymerization assays, immunofluorescence experiments, and flow cytometry studies demonstrated that the compounds target tubulin and arrest cells at the G2/M phase followed by induction of apoptosis. The docking experiments agreed with the proposed interactions at the colchicine site and explained the structure-activity relationships.


Subject(s)
Antineoplastic Agents , Glioblastoma , Humans , Tubulin/metabolism , Glioblastoma/drug therapy , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor , Cell Proliferation , Structure-Activity Relationship , Tubulin Modulators/chemistry , Colchicine/pharmacology , Cell Line, Tumor , Tetrazoles/pharmacology , Molecular Structure , Molecular Docking Simulation
12.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37513912

ABSTRACT

A series of novel 3-(prop-1-en-2-yl)azetidin-2-one, 3-allylazetidin-2-one and 3-(buta-1,3-dien-1-yl)azetidin-2-one analogues of combretastatin A-4 (CA-4) were designed and synthesised as colchicine-binding site inhibitors (CBSI) in which the ethylene bridge of CA-4 was replaced with a ß-lactam (2-azetidinone) scaffold. These compounds, together with related prodrugs, were evaluated for their antiproliferative activity, cell cycle effects and ability to inhibit tubulin assembly. The compounds demonstrated significant in vitro antiproliferative activities in MCF-7 breast cancer cells, particularly for compounds 9h, 9q, 9r, 10p, 10r and 11h, with IC50 values in the range 10-33 nM. These compounds were also potent in the triple-negative breast cancer (TBNC) cell line MDA-MB-231, with IC50 values in the range 23-33 nM, and were comparable with the activity of CA-4. The compounds inhibited the polymerisation of tubulin in vitro, with significant reduction in tubulin polymerization, and were shown to interact at the colchicine-binding site on tubulin. Flow cytometry demonstrated that compound 9q arrested MCF-7 cells in the G2/M phase and resulted in cellular apoptosis. The antimitotic properties of 9q in MCF-7 human breast cancer cells were also evaluated, and the effect on the organization of microtubules in the cells after treatment with compound 9q was observed using confocal microscopy. The immunofluorescence results confirm that ß-lactam 9q is targeting tubulin and resulted in mitotic catastrophe in MCF-7 cells. In silico molecular docking supports the hypothesis that the compounds interact with the colchicine-binding domain of tubulin. Compound 9q is a novel potent microtubule-destabilising agent with potential as a promising lead compound for the development of new antitumour agents.

13.
Pharmaceutics ; 15(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37376146

ABSTRACT

The design of colchicine site ligands on tubulin has proven to be a successful strategy to develop potent antiproliferative drugs against cancer cells. However, the structural requirements of the binding site endow the ligands with low aqueous solubility. In this work, the benzothiazole scaffold is used to design, synthesize, and evaluate a new family of colchicine site ligands exhibiting high water solubility. The compounds exerted antiproliferative activity against several human cancer cell lines, due to tubulin polymerization inhibition, showing high selectivity toward cancer cells in comparison with non-tumoral HEK-293 cells, as evidenced by MTT and LDH assays. The most potent derivatives, containing a pyridine moiety and ethylurea or formamide functionalities, displayed IC50 values in the nanomolar range even in the difficult-to-treat glioblastoma cells. Flow cytometry experiments on HeLa, MCF7, and U87MG cells showed that they arrest the cell cycle at the G2/M phases at an early time point (24 h), followed by apoptotic cell death 72 h after the treatment. Tubulin binding was confirmed by microtubule network disruption observed via confocal microscopy. Docking studies support favorable interaction of the synthesized ligands at the colchicine binding site. These results validate the proposed strategy to develop potent anticancer colchicine ligands with improved water solubility.

14.
Methods Mol Biol ; 2672: 129-139, 2023.
Article in English | MEDLINE | ID: mdl-37335472

ABSTRACT

Procedures to arrest metaphase chromosomes are used for determining chromosome numbers, chromosomal aberrations, and natural chromosome variation, as well as chromosome sorting. Here is described a technique of nitrous oxide gas treatment of freshly harvested root tips that is highly effective at producing an excellent mitotic index together with well-spread chromosomes. The details of the treatment and equipment used are provided. The metaphase spreads can be used directly for determining chromosome numbers or for in situ hybridization to reveal chromosomal features.


Subject(s)
Chromosome Aberrations , Nitrous Oxide , Humans , Metaphase , Chromosomes , In Situ Hybridization
15.
ChemMedChem ; 18(16): e202300081, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37256820

ABSTRACT

Pharmacophore hybridization is an attractive strategy to identify new leads against multifactorial diseases such as cancer. Based on literature analysis of compounds possessing 'vicinal diaryl' fragment in their structure, we considered Discoipyrroles A-D and Combretastatin A-4 (CA-4) as possible components in hybrid design. Discoipyrrole C (Dis C) and CA-4 were used as reference compounds in these studies and their hybrids, in the form of 4,5-diaryl-1H-pyrrol-3(2H)-ones, were synthesized from suitable amino acid precursors though their ynone intermediates. Of these, the hybrid having exact substitution pattern as that of CA-4 showed better potency and selectivity than Dis C, but its activity was less compared to CA-4. This new analog disrupted interphase microtubules by inhibiting tubulin assembly by binding to the colchicine site, induced multipolar spindles, caused cell cycle block and apoptosis in HeLa cells. It also inhibited colony formation and migration of breast cancer cell lines.


Subject(s)
Antineoplastic Agents , Tubulin , Humans , Models, Molecular , HeLa Cells , Cell Proliferation , Tubulin/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Cell Line, Tumor , Structure-Activity Relationship , Molecular Structure
16.
Environ Res ; 227: 115771, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36967001

ABSTRACT

Malignant melanoma is the most dangerous type of skin cancer. It is becoming more common globally and is increasingly resistant to treatment options. Despite extensive research into its pathophysiology, there are still no proven cures for metastatic melanoma. Unfortunately, current treatments are frequently ineffective and costly, and have several adverse effects. Natural substances have been extensively researched for their anti-MM capabilities. Chemoprevention and adjuvant therapy with natural products is an emerging strategy to prevent, cure or treat melanoma. Numerous prospective drugs are found in aquatic species, providing a plentiful supply of lead cytotoxic chemicals for cancer treatment. Anticancer peptides are less harmful to healthy cells and cure cancer through several different methods, such as altered cell viability, apoptosis, angiogenesis/metastasis suppression, microtubule balance disturbances and targeting lipid composition of the cancer cell membrane. This review addresses marine peptides as effective and safe treatments for MM and details their molecular mechanisms of action.


Subject(s)
Antineoplastic Agents , Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/pathology , Skin Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Apoptosis , Melanoma, Cutaneous Malignant
17.
3 Biotech ; 13(3): 74, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36748015

ABSTRACT

An efficient in vitro protocol for high-frequency polyploidization for the first time in gerbera hybrid (BGC-2019-01) was developed in the present study. Two-week-old in vitro-developed shoots (tips) were treated individually with 0.1%, 0.25% and 0.5% (w/v) colchicine solutions for 4, 6, 8, and 12 h. The colchicine-treated shoot tips were then inoculated on Murashige and Skoog (MS) medium fortified with 1.5 mg/l meta-Topolin for multiple shoot proliferation and later transferred into 1.5 mg/l indole-3-acetic acid-fortified MS medium for rooting of shoots. The ploidy levels of the colchicine-treated and regenerated plantlets along with the non-treated ones were confirmed via flow cytometry analysis and metaphasic chromosome count. The highest frequency of tetraploid plantlets (50%) were obtained when shoot tips were treated with 0.1% colchicine for 4 h. Morphological observations revealed that induced tetraploid plantlets exhibited delayed fresh shoot initiation, fewer but longer shoots, as well as fewer but broader leaves. Likewise, the study of stomata revealed that in comparison to their diploid counterparts, the tetraploid plantlets exhibited less frequent yet significantly larger stomata, and higher number of chloroplasts. The tetraploids were recorded with significantly higher chlorophyll, carotenoid, and anthocyanin content during the photosynthetic pigment analyses. During ex vitro acclimatization and field growth, the tetraploid plants exhibited delayed proliferation but with higher vigor and thickened broad leaves. The genetic uniformity among the diploid and the tetraploid plants was confirmed using conserved DNA-derived polymorphism (CDDP), directed amplification of minisatellite-region DNA (DAMD), inter simple sequence repeats (ISSR), and start codon targeted (SCoT) polymorphism marker systems. The tetraploids developed in the present study would be of immense importance for the genetic improvement of gerbera as far as its ornamental values are concerned.

18.
Bioorg Chem ; 131: 106334, 2023 02.
Article in English | MEDLINE | ID: mdl-36592487

ABSTRACT

Microtubule dynamic is exceptionally sensitive to modulation by small-molecule ligands. Our previous work presented the preparation of microtubule-targeting estradiol dimer (ED) with anticancer activity. In the present study, we explore the effect of selected linkers on the biological activity of the dimer. The linkers were designed as five-atom chains with carbon, nitrogen or oxygen in their centre. In addition, the central nitrogen was modified by a benzyl group with hydroxy or methoxy substituents and one derivative possessed an extended linker length. Thirteen new dimers were subjected to cytotoxicity assay and cell cycle profiling. Dimers containing linker with benzyl moiety substituted with one or more methoxy groups and longer branched ones were found inactive, whereas other structures had comparable efficacy as the original ED (e.g. D1 with IC50 = 1.53 µM). Cell cycle analysis and immunofluorescence proved the interference of dimers with microtubule assembly and mitosis. The proposed in silico model and calculated binding free energy by the MM-PBSA method were closely correlated with in vitro tubulin assembly assay.


Subject(s)
Antineoplastic Agents , Ethinyl Estradiol , Triazoles , Tubulin Modulators , Tubulin , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Ethinyl Estradiol/chemistry , Ethinyl Estradiol/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Microtubules , Triazoles/chemistry , Triazoles/pharmacology , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
19.
Molecules ; 28(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677621

ABSTRACT

Our previous study found that 2-phenyl-4-quinolone (2-PQ) derivatives are antimitotic agents, and we adopted the drug design concept of scaffold hopping to replace the 2-aromatic ring of 2-PQs with a 4-aromatic ring, representing 4-phenyl-2-quinolones (4-PQs). The 4-PQ compounds, whose structural backbones also mimic analogs of podophyllotoxin (PPT), maybe a new class of anticancer drugs with simplified PPT structures. In addition, 4-PQs are a new generation of anticancer lead compounds as apoptosis stimulators. On the other hand, previous studies showed that 4-arylcoumarin derivatives with 5-, 6-, and 7-methoxy substitutions displayed remarkable anticancer activities. Therefore, we further synthesized a series of 5-, 6-, and 7-methoxy-substituted 4-PQ derivatives (19-32) by Knorr quinoline cyclization, and examined their anticancer effectiveness. Among these 4-PQs, compound 22 demonstrated excellent antiproliferative activities against the COLO205 cell line (50% inhibitory concentration (IC50) = 0.32 µM) and H460 cell line (IC50 = 0.89 µM). Furthermore, we utilized molecular docking studies to explain the possible anticancer mechanisms of these 4-PQs by the docking mode in the colchicine-binding pocket of the tubulin receptor. Consequently, we selected the candidate compounds 19, 20, 21, 22, 25, 27, and 28 to predict their absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles. Pharmacokinetics (PKs) indicated that these 4-PQs displayed good drug-likeness and bioavailability, and had no cardiotoxic side effects or carcinogenicity, but we detected risks of drug-drug interactions and AMES toxicity (mutagenic). However, structural modifications of these 4-PQs could improve their PK properties and reduce their side effects, and their promising anticancer activities attracted our attention for further studies.


Subject(s)
Antineoplastic Agents , Structure-Activity Relationship , 4-Quinolones/pharmacology , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Podophyllotoxin/pharmacology , Molecular Structure , Cell Proliferation , Cell Line, Tumor , Dose-Response Relationship, Drug
20.
Bioorg Chem ; 131: 106282, 2023 02.
Article in English | MEDLINE | ID: mdl-36459777

ABSTRACT

The low aqueous solubility of colchicine site antimitotic agents, of which the trimethoxyphenyl (A ring) is a heavy contributor, is a serious drawback in their clinical development. We have designed new A ring analogs with chameleonic masked polar amino groups able to increase aqueous solubility and also behave as non-polar through intramolecular hydrogen bonds when bound to tubulin. We have incorporated these new A rings in several scaffolds (sulfonamides, combretastatins, phenstatins, isocombretastatins), synthesized, and assayed 43 representatives. The amino analogs show improved aqueous solubility and some of them (8, 60Z, and 67) nanomolar anti-proliferative potencies against human cancer cell lines, with the most favorable substituent being a 3-methylamino group. The antiproliferative effect relates to tubulin inhibition as shown by in vitro tubulin polymerization inhibition, immunofluorescence microscopy, and cell cycle and apoptosis analysis by flow cytometry. The compounds arrest the cell cycle of treated cells in G2/M and later develop an apoptotic response. Docking studies suggested binding at the colchicine site of tubulin with good agreement with the DFT models of the new structural variations made. The 3-methylamino-4,5­dimethoxyphenyl moiety is an example of the masked polar group incorporation (MPGI) strategy for soluble ligands binding to hydrophobic sites and a good trimethoxyphenyl ring replacement for the development of new colchicine site ligands.


Subject(s)
Antineoplastic Agents , Colchicine , Humans , Colchicine/chemistry , Cell Line, Tumor , Binding Sites , Tubulin/metabolism , Solubility , Structure-Activity Relationship , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL
...