Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.071
Filter
1.
Front Plant Sci ; 15: 1401050, 2024.
Article in English | MEDLINE | ID: mdl-38974980

ABSTRACT

Introduction: Drought stress usually inhibits plant growth, which may increase the difficulty of greening slopes. Methods: In this study, we systematically investigated the effects of arbuscular mycorrhizal (AM) fungi on the growth and drought tolerance of two plant species, Festuca elata and Cassia glauca, in a vegetation concrete environment by exogenously inoculating AM fungi and setting three drought levels: well water, moderate drought and severe drought. The results showed that plant growth was significantly inhibited under drought stress; however, AM fungi inoculation significantly promoted plant height, root length, and above- and belowground biomass in these two plant species. Results: Compared with, those in the CK treatment, the greatest increases in the net photosynthesis rate, stomatal conductance and transpiration rate in the AM treatment group were 36.72%, 210.08%, and 66.41%, respectively. Moreover, inoculation with AM fungi increased plant superoxide dismutase and catalase activities by 4.70-150.73% and 9.10-95.70%, respectively, and reduced leaf malondialdehyde content by 2.79-55.01%, which alleviated the damage caused by oxidative stress. These effects alleviated the damage caused by oxidative stress and increased the content of soluble sugars and soluble proteins in plant leaves by 1.52-65.44% and 4.67-97.54%, respectively, which further increased the drought adaptability of plants. However, inoculation with AM fungi had different effects on different plants. Conclusion: In summary, this study demonstrated that the inoculation of AM fungi in vegetation concrete environments can significantly increase plant growth and drought tolerance. The plants that formed a symbiotic structure with AM fungi had a larger root uptake area, greater water uptake capacity, and greater photosynthesis and gas exchange efficiency. In addition, AM fungi inoculation further increased the drought adaptability of the plants by increasing their antioxidant enzyme activity and regulating their metabolite content. These findings are highly important for promoting plant growth and increasing drought tolerance under drought conditions, especially for potential practical applications in areas such as slope protection, and provide useful references for future ecological engineering and sustainable development.

2.
Sci Total Environ ; 947: 174439, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971260

ABSTRACT

Ion-adsorption rare earth ore contains significant levels of leaching agents and heavy metals, leading to substantial co-contamination. This presents significant challenges for ecological rehabilitation, yet there is limited understanding of the toxicity thresholds associated with the co-contamination of ammonium sulfate (AS) and lead (Pb) on pioneer plants. Here, we investigated the toxicity thresholds of various aspects of alfalfa, including growth, ultrastructural changes, metabolism, antioxidant system response, and Pb accumulation. The results indicated that the co-contamination of AS-Pb decreased the dry weight of shoot and root by 26 %-77 % and 18 %-92 %, respectively, leading to irregular root cell morphology and nucleus disintegration. The high concentration and combined exposures to AS and Pb induced oxidative stress on alfalfa, which stimulated the defense of the antioxidative system and resulted in an increase in proline levels and a decrease in soluble sugars. Structural equation modeling analysis and integrated biomarker response elucidated that the soluble sugars, proline, and POD were the key physiological indicators of alfalfa under stresses and indicated that co-exposure induced more severe oxidative stress in alfalfa. The toxicity thresholds under single exposure were 496 (EC5), 566 (EC10), 719 (EC25), 940 (EC50) mg kg-1 for AS and 505 (EC5), 539 (EC10), 605 (EC25), 678 (EC50) mg kg-1 for Pb. This study showed that AS-Pb pollution notably influenced plant growth performance and had negative impacts on the growth processes, metabolite levels, and the antioxidant system in plants. Our findings contribute to a theoretical foundation and research necessity for evaluating ecological risks in mining areas and assessing the suitability of ecological restoration strategies.

3.
PeerJ ; 12: e17587, 2024.
Article in English | MEDLINE | ID: mdl-38952963

ABSTRACT

Watermelon is commonly affected by Fusarium wilt in a monoculture cropping system. Wheat intercropping alleviates the affection of Fusarium wilt of watermelon. The objective of this study was to determine the effects of wheat and watermelon intercropping on watermelon growth and Fusarium wilt. Our results showed that wheat and watermelon intercropping promoted growth, increased chlorophyll content, and photosynthesis of watermelon. Meanwhile, wheat and watermelon intercropping inhibited watermelon Fusarium wilt occurrence, decreased spore numbers, increased root vigor, increased antioxidant enzyme activities, and decreased malondialdehyde (MDA) content in watermelon roots. Additionally, wheat and watermelon intercropping enhanced the bacterial colonies and total microbes growth in soil, decreased fungi and Fusarium oxysporum f. sp. niveum (FON) colonies, and increased soil enzyme activities in watermelon rhizosphere soil. Our results indicated that wheat and watermelon intercropping enhanced watermelon growth and decreased the incidence of Fusarium wilt in watermelon. These effects could be due to intercropping inducing physiological changes, regulating soil enzyme activities, and/or modulating soil microbial communities.


Subject(s)
Citrullus , Fusarium , Plant Diseases , Soil Microbiology , Triticum , Citrullus/microbiology , Citrullus/growth & development , Triticum/microbiology , Triticum/growth & development , Fusarium/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Roots/microbiology , Plant Roots/growth & development
4.
Food Res Int ; 189: 114536, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876589

ABSTRACT

Walnut isolate protein (WPI)-epigallocatechin gallate (EGCG) conjugates can be employed to creat food-grade delivery systems for preserving bioactive compounds. In this study, WPI-EGCG nanoparticles (WENPs) were developed for encapsulating lycopene (LYC) using the ultrasound-assisted method. The results indicated successful loading of LYC into these WENPs, forming the WENPs/LYC (cylinder with 200-300 nm in length and 14.81-30.05 nm in diameter). Encapsulating LYC in WENPs led to a notable decrease in release rate and improved stability in terms of thermal, ultraviolet (UV), and storage conditions compared to free LYC. Simultaneously, WENPs/LYC exhibited a synergistic and significantly higher antioxidant activity with an EC50 value of 23.98 µg/mL in HepG2 cells compared to free LYC's 31.54 µg/mL. Treatment with WENPs/LYC led to a dose-dependent restoration of intracellular antioxidant enzyme activities (SOD, CAT, and GSH-Px) and inhibition of intracellular malondialdehyde (MDA) formation. Furthermore, transcriptome analysis indicated that enrichment in glutathione metabolism and peroxisome processes following WENPs/LYC addition. Quantitative real-time reverse transcription PCR (qRT-PCR) verified the expression levels of related genes involved in the antioxidant resistance pathway of WENPs/LYC on AAPH-induced oxidative stress. This study offers novel perspectives into the antioxidant resistance pathway of WENPs/LYC, holding significant potential in food industry.


Subject(s)
Antioxidants , Catechin , Juglans , Lycopene , Nanoparticles , Lycopene/pharmacology , Lycopene/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Juglans/chemistry , Humans , Nanoparticles/chemistry , Hep G2 Cells , Plant Proteins , Malondialdehyde/metabolism , Drug Stability , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects
5.
Front Plant Sci ; 15: 1410036, 2024.
Article in English | MEDLINE | ID: mdl-38911979

ABSTRACT

Human activities have increased nitrogen (N) and phosphorus (P) inputs to the Yellow River Delta and the supply level of N and P affects plant growth as well as ecosystem structure and function directly. However, the root growth, stoichiometry, and antioxidant system of plants in response to N and P additions, especially for herbaceous halophyte in the Yellow River Delta (YRD), remain unknown. A field experiment with N addition (0, 5, 15, and 45 g N m-2 yr-1, respectively) as the main plot, and P addition (0 and 1 g N m-2 yr-1, respectively) as the subplot, was carried out with a split-plot design to investigate the effects on the root morphology, stoichiometry, and antioxidant system of Suaeda salsa. The results showed that N addition significantly increased the above-ground and root biomass as well as shoot-root ratio of S. salsa, which had a significant interaction with P addition. The highest biomass was found in the treatment with 45 g N m-2 yr-1 combined with P addition. N addition significantly increased TN content and decreased C:N ratio of root, while P addition significantly increased TP content and decreased C:P ratio. The main root length (MRL), total root length (TRL), specific root length (SRL), and root tissue density (RTD) of S. salsa root were significantly affected by N addition and P addition, as well as their interaction. The treatments with or without P addition at the 45 g N m-2 yr-1 of N addition significantly increased the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities and soluble protein content of roots, decreased malondialdehyde (MDA) content. And there was a significant interaction between the N and P addition on SOD activity. Therefore, N and P additions could improve the growth of S. salsa by altering the root morphology, increasing the root nutrient content, and stimulating antioxidant system.

6.
Sci Rep ; 14(1): 14480, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914637

ABSTRACT

Aloe barbadensis is a drought-tolerant perennial medicinal plant with both nutritional and cosmetic uses. Drought is one of the main abiotic stresses limiting plant growth and development. However, the use of drought-resistant plants combined with beneficial soil micro-organisms could improve the effectiveness of biological methods to mitigate drought damage. This research aims to evaluate the effects of Funneliformis mosseae (MF), plant growth-promoting rhizobacteria (PGPR) (including Pseudomonas putida and Pantoea agglomerans), and their co-inoculation on the macronutrient status, antioxidant enzyme activities, and other morphophysiological traits of A. barbadensis under four irrigation regimes [25%, 50%, 75% and 100% of water requirement (WR)]. Three harvests were conducted, revealing that inoculation enhanced the survival rate and shoot fresh weight (SFW) compared to the control plants. However, at 25% WR, the SFW was reduced by 43% more than the control. across all harvests, while the PGPR + MF treatment showed increases of more than 19%, 11%, and 17% compared to the control, MF, and PGPR treatments, respectively. The results also showed that A. barbadensis exhibited innate drought tolerance up to a 50% WR level by enhancing physiological defenses, such as antioxidant enzyme activity. Inoculation increased the macronutrient status of the plant at all levels of irrigation regimes especially under severe drought conditions. The highest levels of nitrogen (N) (16.24 mg g-1 DW) and phosphorus (P) (11.29 mg g-1 DW) were observed in the PGPR + MF treatment at 100% WR. The maximum relative water content under MF inoculation and 75% WR (98.24%) (98.24%) was reached. PGPR + MF treatment alleviated drought-induced osmotic stress, as indicated by reduced antioxidant enzyme activities and electrolyte leakage. However, P. putida and P. agglomerans strains alone or in combination with F. mosseae increased plant yield, macronutrient uptake and antioxidant enzyme activity. This study underscores the potential of these PGPR and MF strains as invaluable biological tools for the cultivation of A. barbadensis in regions with severe drought stress.


Subject(s)
Aloe , Mycorrhizae , Aloe/metabolism , Aloe/microbiology , Mycorrhizae/physiology , Droughts , Pseudomonas putida/metabolism , Antioxidants/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Water/metabolism , Stress, Physiological , Soil Microbiology , Pantoea , Dehydration , Fungi
7.
Plant Biotechnol J ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856080

ABSTRACT

Transcriptional regulation mechanisms underlying chilling injury (CI) development have been widely investigated in model plants and cold-sensitive fruits, such as banana (Musa acuminata). However, unlike the well-known NAC and WRKY transcription factors (TFs), the function and deciphering mechanism of heat shock factors (HSFs) involving in cold response are still fragmented. Here, we showed that hot water treatment (HWT) alleviated CI in harvested banana fruits accomplishing with reduced reactive oxygen species (ROS) accumulation and increased antioxidant enzyme activities. A cold-inducible but HWT-inhibited HSF, MaHsf24, was identified. Using DNA affinity purification sequencing (DAP-seq) combined with RNA-seq analyses, we found three heat shock protein (HSP) genes (MaHSP23.6, MaHSP70-1.1 and MaHSP70-1.2) and three antioxidant enzyme genes (MaAPX1, MaMDAR4 and MaGSTZ1) were the potential targets of MaHsf24. Subsequent electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) and dual-luciferase reporter (DLR) analyses demonstrated that MaHsf24 repressed the transcription of these six targets via directly binding to their promoters. Moreover, stably overexpressing MaHsf24 in tomatoes increased cold sensitivity by suppressing the expressions of HSPs and antioxidant enzyme genes, while HWT could recover cold tolerance, maintaining higher levels of HSPs and antioxidant enzyme genes, and activities of antioxidant enzymes. In contrast, transiently silencing MaHsf24 by virus-induced gene silencing (VIGS) in banana peels conferred cold resistance with the upregulation of MaHSPs and antioxidant enzyme genes. Collectively, our findings support the negative role of MaHsf24 in cold tolerance, and unravel a novel regulatory network controlling bananas CI occurrence, concerning MaHsf24-exerted inhibition of MaHSPs and antioxidant enzyme genes.

8.
Prz Gastroenterol ; 19(2): 186-193, 2024.
Article in English | MEDLINE | ID: mdl-38939067

ABSTRACT

Introduction: Colon adenocarcinoma (COAD) is one of the most frequently identified cancers of the digestive system. It is worth noting that the 5-year survival rates for patients diagnosed early are approximately 90%, whereas for patients with advanced diagnosis it is only 10%. It may indicate that metastasis is a critical cause of death for cancer patients. Aim: The current study investigated the immunohistochemical expression of MnSOD in individuals living in Poland, who were diagnosed as colon adenocarcinoma patients, to assess its prognostic significance by correlating its expression with the clinicopathological factors and overall survival (OS). Material and methods: Paraffin-embedded adenocarcinoma samples were assessed immunohistochemically for MnSOD protein. The relationship between MnSOD immunoexpression and clinicopathological factors including the 5-year overall survival (OS) were evaluated. Results: Immunohistochemical expression of MnSOD protein was detected in colon adenocarcinoma samples and non-pathological samples of colon tissues. As demonstrated, the level of the MnSOD immunohistochemical reactivity was not correlated with clinicopathological factors. A multivariate analysis demonstrated that the grade of tumour differentiation and MnSOD immunoexpression in healthy tissues were independent risk factors for worse survival of patients. Conclusions: The high level of MnSOD immunoexpression in cancerous tissue was not associated with malignancy-related clinicopathological factors and 5-year overall survival of patients.

9.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931078

ABSTRACT

Blueberries (Vaccinium corymbosum L.) are cultivated worldwide and are among the best dietary sources of bioactive compounds with beneficial health effects. This study aimed to investigate the components of Peruvian blueberry using high-performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS/MS), identifying 11 compounds. Furthermore, we assessed in vitro the antioxidant activity and in vivo the antidepressant effect using a rat model and protective effect on lipid peroxidation (in the serum, brain, liver, and stomach). We also conducted molecular docking simulations with proteins involved in oxidative stress and depression for the identified compounds. Antioxidant activity was assessed by measuring total phenolic and flavonoid contents, as well as using 1,1-diphenyl-2-picrylhydrazin (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS•+), and ferric-reducing antioxidant power (FRAP) assays. Peruvian blueberries demonstrated higher antioxidant activity than Vaccinium corymbosum fruits from Chile, Brazil, the United States, Turkey, Portugal, and China. The results showed that oral administration of Peruvian blueberries (10 and 20 mg/kg) for 28 days significantly (p < 0.001) increased swimming and reduced immobility in the forced swimming test (FST). Additionally, at doses of 40 and 80 mg/kg, oxidative stress was reduced in vivo (p < 0.001) by decreasing lipid peroxidation in brain, liver, stomach, and serum. Molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions were performed. In the molecular docking studies, quercitrin and 3,5-di-O-caffeoylquinic acid showed the best docking scores for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, and xanthine oxidase; while 3,5-dicaffeoylquinic acid methyl ester and caffeoyl coumaroylquinic acid had the best docking scores for monoamine oxidase and serotonin receptor 5-HT2. In summary, our results suggest that the antidepressant and protective effects against lipid peroxidation might be related to the antioxidant activity of Peruvian Vaccinium corymbosum L.

10.
Plants (Basel) ; 13(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38931089

ABSTRACT

Cadmium (Cd) pollution has been rapidly increasing due to the global rise in industries. Cd not only harms the ecological environment but also endangers human health through the food chain and drinking water. Therefore, the remediation of Cd-polluted soil is an imminent issue. In this work, ryegrass and a strain of Cd-tolerant bacterium were used to investigate the impact of inoculated bacteria on the physiology and biochemistry of ryegrass and the Cd enrichment of ryegrass in soil contaminated with different concentrations of Cd (4 and 20 mg/kg). The results showed that chlorophyll content increased by 24.7% and 41.0%, while peroxidase activity decreased by 56.7% and 3.9%. In addition, ascorbic acid content increased by 16.7% and 6.3%, whereas glutathione content decreased by 54.2% and 6.9%. The total Cd concentration in ryegrass increased by 21.5% and 10.3%, and the soil's residual Cd decreased by 86.0% and 44.1%. Thus, the inoculation of Cd-tolerant bacteria can improve the antioxidant stress ability of ryegrass in Cd-contaminated soil and change the soil's Cd form. As a result, the Cd enrichment in under-ground and above-ground parts of ryegrass, as well as the biomass of ryegrass, is increased, and the ability of ryegrass to remediate Cd-contaminated soil is significantly improved.

11.
Immunopharmacol Immunotoxicol ; : 1-8, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38918176

ABSTRACT

OBJECTIVE: Periodontis is a chronic inflammatory disease induced by periodontopathogenic bacteria. The excessive immune response caused by persistent bacterial infection leads to alveolar bone resorption and ultimately tooth loss. Cardamonin is a biologically active substance that is found in the Zingiberaceae family, such as Alpinia zerumbet, and is classified as a natural chalcone. There have been no attempts to use cardamonin for the treatment of periodontitis, and no reports have examined the effects of cardamonin on periodontal tissue component cells. The aim of this study was to analyze effects of cardamonin on expression of inflammation mediators produced by TNFα-stimulated human periodontal ligament cells (HPDLCs), including its effects on signal transduction molecules. METHODS: Cytokine and chemokine levels were measured by ELISA. Protein expression in HPDLCs and activations of signal transduction pathway were determined by Western blotting. RESULTS: Our results indicate that cardamonin suppresses C-C motif chemokine ligand (CCL)2, CCL20, C-X-C motif chemokine ligand (CXCL)10, and interleukin (IL)-6 production and intercellular adhesion molecule (ICAM)-1 and cyclooxygenase (COX)-2 expression in TNF-α-stimulated HPDLCs. In addition, cardamonin induced the expression of the antioxidant enzyme, Heme Oxygenase (HO)-1, in HPDLCs. Furthermore, cardamonin suppressed TNF-α-stimulated c-Jun N-terminal kinase (JNK), nuclear factor (NF)-κB, and signal transducer and activator of transcription (STAT)3 signaling pathways in HPDLCs. CONCLUSION: We show that cardamonin reduces inflammatory mediator production by inhibiting the activation of several signaling pathways in this manuscript.

12.
Poult Sci ; 103(8): 103877, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38843563

ABSTRACT

This study aims to provide new insight on the association between the development of wooden breast myopathy and mitochondrial and glycolytic activity under oxidative stress. Myopathic muscle had higher oxidative stress together with altered glycolytic metabolism and tricarboxylic acid (TCA) cycle. This was evidenced by significantly elevated antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase), decreased citrate synthase activity and postmortem glycolytic potential with increasing wooden breast severity. In addition, affected muscles also exhibited higher initial and ultimate pH values as well as reduced total glucose and lactate contents. Citrate synthase activity was negatively correlated to antioxidant enzyme activities. Taken together, we propose that the development of the wooden breast lesion is a chronic process that may be related to the failure of muscle fibers to defend against the excessively generated oxidative products promoted by mitochondrial damage accompanied by impaired TCA cycle. Furthermore, there was a positive correlation between citrate synthase activity and glycolytic potential, which suggests that the wooden breast condition is linked to the overall altered energy metabolism of the muscle, including the oxidative phosphorylation and glycolytic pathways.

13.
Environ Sci Pollut Res Int ; 31(29): 42277-42294, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865046

ABSTRACT

Intercropping is a sustainable strategy recognized for boosting crop production and mitigating heavy metal toxicity in contaminated soils. This study investigates the effects of biochar amendments on Pb-contaminated soil, utilizing monocropping and intercropping techniques with C. olitorius and Z. mays. The research assesses Pb removal capacity, nutrient uptake, antioxidant enzymes, and soil Pb fractionation. In monocropping, the phytoremediation ratio for C. olitorius increased from 16.67 to 27.33%, while in intercropping, it rose from 19.00 to 28.33% with biochar amendments. Similarly, Z. mays exhibited an increased phytoremediation ratio from 53.33 to 74.67% in monocropping and from 63.00 to 78.67% in intercropping with biochar amendments. Intercropping significantly increased the peroxidase (POD) activity in Z. mays roots by 22.53%, and there were notable increases in shoot POD of C. olitorius (11.54%) and Z. mays (16.20%) with biochar application. CAT showed consistent improvements, increasing by 37.52% in C. olitorius roots and 74.49% in Z. mays roots with biochar. Biochar amendments significantly increased N content in soil under sole cropping of Z. mays and intercropping systems. In contrast, Cu content increased by 56.34%, 59.05%, and 79.80% in monocropping (C. olitorius and Z. mays) and intercropping systems, respectively. This suggests that biochar enhances nutrient availability, improving phytoremediation efficacy in Pb-contaminated soil. Phyto availability of trace metals (Zn, Mn, Cu, and Fe) exhibited higher levels with biochar amendments than those without. The findings indicate that intercropping and biochar amendments elevate antioxidant enzyme levels, reducing reactive oxygen species and mitigating Pb toxicity effects. This approach improves phytoremediation efficiency and holds promise for soil pollution remediation while enhancing nutrient content and crop quality in Pb-contaminated soil.


Subject(s)
Biodegradation, Environmental , Charcoal , Corchorus , Lead , Soil Pollutants , Soil , Zea mays , Charcoal/chemistry , Soil/chemistry , Metals, Heavy
14.
Insects ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38921096

ABSTRACT

Tetranychus truncatus (Acari: Tetranychidae) has caused serious economic losses on some crops (soybean, corn, and cotton) in China, and has developed resistance to most acaricides. Our laboratory study found that T. truncatus was resistant to pyridaben and also adapted to high temperature (34-40 °C). High temperature stress may cause arthropods to produce a large amount of reactive oxygen species (ROS), causing oxidative damage. Antioxidant enzymes, as the main antioxidants, can reduce the damage caused by excessive ROS in arthropods. In order to study the adaptation mechanism of the pyridaben-resistant strain of T. truncatus to high temperature and the role of antioxidant enzyme genes under high temperature stress, four antioxidant enzyme genes, TtSOD, TtPOD3, TtPOD4, and TtGSTs2, were screened according to the transcriptome sequencing data of pyridaben-susceptible and -resistant strains in T. truncatus. Firstly, the phylogeny and structure analyses of these four genes were carried out. Then, real-time quantitative PCR (RT-qPCR) technology was used to analyze the gene expression patterns of antioxidant enzymes in two strains of T. truncatus at three different high temperature ranges (34 °C, 38 °C, and 42 °C). The results showed that the expression levels of four antioxidant enzyme genes of two strains of T. truncatus were induced by high temperature stress, and the expression levels of antioxidant enzyme genes were significantly different in each development state. The gene expression of antioxidant enzyme genes in resistant strains at the adult stage was significantly higher than that in susceptible strains. After the TtSOD and TtPOD4 genes of adult mites of the resistant strain were silenced by RNA interference (RNAi) technology, the mortality rate of mites with TtPOD4 gene silencing reached 41.11% after 96 h at 34 °C, which was significantly higher than that of the control and TtSOD gene silencing. It has been confirmed that the TtPOD4 gene plays a key role in the adaptation of pyridaben-resistant strain of T. truncatus to high temperature. It lays a theoretical foundation for revealing the thermal adaptation mechanism of T. truncatus.

15.
Plant Physiol Biochem ; 211: 108716, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744087

ABSTRACT

In the context of global climate change, recurrent freeze-thaw cycles (FTC) and concurrent exposure to polystyrene nanoplastics (PSNPs) directly impact crop growth and indirectly affect resilience to abiotic stress. In January 2023, experiments at the Environmental Biology Laboratory, Jilin University, Changchun, China, exposed rye seedlings to 100 nm PSNPs at concentrations of 0, 10, 50, and 100 mg/L for seven days, followed by three FTC. Scanning electron microscopy (SEM) demonstrated that PSNPs migrated from the roots to the leaves, with FTC significantly exacerbating their accumulation within plant tissues. Transmission electron microscopy (TEM) observations showed that FTC disrupted normal cell division, and combined stress from NPs damaged plant organs, particularly chloroplasts, thereby substantially inhibiting photosynthesis. FTC delayed plant phenological stages. Under combined stress, malondialdehyde (MDA) accumulation in plant tissues increased by 15.6%, while hydrogen peroxide (H2O2) content decreased. Simultaneously, the activities of peroxidase (POD) and catalase (CAT) increased by 34.2% and 38.6%, respectively. Molecular docking unveiled that PSNPs could bind to the active center of POD/CAT through hydrogen bonding or hydrophobic interactions. The Integrated Biomarker Response (IBR) index highlighted FTC as a crucial determinant for pronounced effects. Moreover, an apparent dose-dependent effect was observed, with antioxidant enzyme activities in rye seedlings induced by low pollutant concentrations and inhibited by high concentrations. These results indicate that FTC and PSNPs can disrupt plant membrane systems and cause severe oxidative damage. Overall, this study provides compelling scientific evidence of the risks associated with NPs exposure in plants subjected to abiotic stress.


Subject(s)
Freezing , Polystyrenes , Secale , Seedlings , Seedlings/drug effects , Seedlings/metabolism , Polystyrenes/toxicity , Secale/drug effects , Secale/metabolism , Peroxidase/metabolism , Catalase/metabolism , Nanoparticles/toxicity , Molecular Docking Simulation , Malondialdehyde/metabolism
16.
Int J Pharm ; 659: 124202, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38705247

ABSTRACT

Photodynamic therapy (PDT) shows great potential in precision tumor treatment. However, its efficacy is inhibited by the antioxidant defense capacities of tumor cells. To address this challenge, a near-infrared light-controlled nanosystem (UCNPs@mSiO2@Azo@ZnPc&BBM, PB@UA) was developed using emission-switchable upconversion nanoparticles (UCNPs) to independently and precisely control the release of berbamine (BBM) and activation of photosensitizer for enhanced PDT in deep tissues. Firstly, BBM release was triggered by exciting PB@UA at 980 nm. The BBM could inhibit the activities of antioxidant enzymes and disrupt calcium ion regulation, making the tumor cells more susceptible to ROS-induced cell death in the following PDT treatment. The PDT was initiated by irradiating the photosensitizers of ZnPc on PB@UA at 808 nm and achieved a tumor inhibition rate of 80.91 % in vivo, which is significantly higher than that of unique PDT (31.78 %) or BBM (11.29 %) treatment and demonstrates the potential of our strategy for improved cancer treatment.


Subject(s)
Benzylisoquinolines , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Nanoparticles/chemistry , Animals , Humans , Benzylisoquinolines/administration & dosage , Benzylisoquinolines/chemistry , Benzylisoquinolines/pharmacology , Cell Line, Tumor , Mice, Inbred BALB C , Mice , Reactive Oxygen Species/metabolism , Neoplasms/drug therapy , Drug Liberation , Female , Mice, Nude
17.
Plant Physiol Biochem ; 212: 108706, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776824

ABSTRACT

Trichoderma spp. can enhance plant resistance against a wide range of biotic stressors. However, the fundamental mechanisms by which Trichoderma enhances plant resistance against Meloidogyne incognita, known as root-knot nematodes (RKNs), are still unclear. Here, we identified a strain of Trichoderma asperellum (T141) that could effectively suppress RKN infestation in tomato (Solanum lycopersicum L.). Nematode infestation led to an increase in the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) in roots but pre-inoculation with T141 significantly decreased oxidative stress. The reduction in ROS and MDA was accompanied by an increase in the activity of antioxidant enzymes and the accumulation of flavonoids and phenols. Moreover, split root test-based analysis showed that T141 inoculation in local roots before RKN inoculation increased the concentration of phytohormone jasmonate (JA) and the transcripts of JA synthesis and signaling-related genes in distant roots. UPLC-MS/MS-based metabolomics analysis identified 1051 differentially accumulated metabolites (DAMs) across 4 pairwise comparisons in root division test, including 81 flavonoids. Notably, 180 DAMs were found in comparison between RKN and T141-RKN, whereas KEGG annotation and enrichment analysis showed that the secondary metabolic pathways, especially the flavonoid biosynthesis, played a key role in the T141-induced systemic resistance to RKNs. The role of up-regulated flavonoids in RKN mortality was further verified by in vitro experiments with the exogenous treatment of kaempferol, hesperidin and rutin on J2-stage RKNs. Our results revealed a critical mechanism by which T141 induced resistance of tomato plants against the RKNs by systemically promoting secondary metabolism in distant roots.


Subject(s)
Disease Resistance , Flavonoids , Plant Diseases , Plant Roots , Solanum lycopersicum , Tylenchoidea , Solanum lycopersicum/parasitology , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Flavonoids/metabolism , Animals , Plant Diseases/parasitology , Plant Diseases/immunology , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Plant Roots/parasitology , Plant Roots/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Hypocreales/metabolism , Plant Systemic Acquired Resistance
18.
Front Plant Sci ; 15: 1385548, 2024.
Article in English | MEDLINE | ID: mdl-38756969

ABSTRACT

The application rate of potassium fertilizer is closely related to the yield of crops. Thin-shelled Tartary buckwheat is a new variety of Tartary buckwheat with the advantages of thin shell and easy shelling. However, little is known about application rate of potassium fertilizer on the yield formation of thin-shelled Tartary buckwheat. This study aimed to clarify the effect of potassium fertilizer on the growth and yield of thin-shelled Tartary buckwheat. A field experiment to investigate the characteristics was conducted across two years using thin-shelled Tartary buckwheat (Miku 18) with four potassium fertilizer applications including 0 (no potassium fertilizer, CK), 15 (low-concentration potassium fertilizer, LK), 30 (medium-concentration potassium fertilizer, MK), and 45 kg·ha-1 (high-concentration potassium fertilizer, HK). The maximum and average grain filling rates; starch synthase activity; superoxide dismutase and peroxidase activities in leaves; root morphological indices and activities; available nitrogen, phosphorus, and organic matter content in rhizosphere soil; urease and alkaline phosphatase activities in rhizosphere soil; plant height, main stem node number, main stem branch number, leaf number; grain number per plant, grain weight per plant, and 100-grain weight increased first and then decreased with the increase in potassium fertilizer application rate and reached the maximum at MK treatment. The content of malondialdehyde was significantly lower in MK treatment than in other three treatments. The yields of thin-shelled Tartary buckwheat treated with LK, MK, and HK were 1.22, 1.37, and 1.07 times that of CK, respectively. In summary, an appropriate potassium fertilizer treatment (30kg·ha-1) can delay the senescence, promote the grain filling, and increase the grain weight and final yield of thin-shelled Tartary buckwheat. This treatment is recommended to be used in production to achieve high-yield cultivation of thin-shelled Tartary buckwheat.

19.
BMC Plant Biol ; 24(1): 390, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38730367

ABSTRACT

Granulation of juice sacs is a physiological disorder, which affects pomelo fruit quality. Here, the transcriptome and ubiquitinome of the granulated juice sacs were analyzed in Guanxi pomelo. We found that lignin accumulation in the granulated juice sacs was regulated at transcription and protein modification levels. In transcriptome data, we found that the genes in lignin biosynthesis pathway and antioxidant enzyme system of the granulated juice sacs were significantly upregulated. However, in ubiquitinome data, we found that ubiquitinated antioxidant enzymes increased in abundance but the enzyme activities decreased after the modification, which gave rise to reactive oxygen species (ROS) contents in granulated juice sacs. This finding suggests that ubiquitination level of the antioxidant enzymes is negatively correlated with the enzyme activities. Increased H2O2 is considered to be a signaling molecule to activate the key gene expressions in lignin biosynthesis pathway, which leads to the lignification in granulated juice sacs of pomelo. This regulatory mechanism in juice sac granulation of pomelo was further confirmed through the verification experiment using tissue culture by adding H2O2 or dimethylthiourea (DMTU). Our findings suggest that scavenging H2O2 and other ROS are important for reducing lignin accumulation, alleviating juice sac granulation and improving pomelo fruit quality.


Subject(s)
Citrus , Lignin , Lignin/metabolism , Citrus/metabolism , Citrus/genetics , Fruit and Vegetable Juices/analysis , Reactive Oxygen Species/metabolism , Transcriptome , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , Fruit/metabolism , Fruit/genetics , Antioxidants/metabolism
20.
Plant Physiol Biochem ; 211: 108644, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710114

ABSTRACT

In this study, we have investigated the effect of carbon quantum dots (FM-CQDs) synthesized from marine fungal extract on Curcuma longa to improve the plant growth and curcumin production. The isolated fungus, Aspergillus flavus has produced a high amount of indole-3-acetic acid (IAA) (0.025 mg g-1), when treated with tryptophan. CQDs were synthesized from the A. flavus extract and it was characterized using ultraviolet visible spectrophotometer (UV-Vis) and high-resolution transmission electron microscopy (HR-TEM). The synthesized CQDs were excited at 365 nm in an UV-Vis and the HR-TEM analysis showed approximately 7.4 nm in size with a spherical shape. Both fungal crude extract (FCE) at 0-100 mg L-1 and FM-CQDs 0-5 mg L-1 concentrations were tested on C. longa. About 80 mg L-1 concentration FCE treated plants has shown a maximum height of 21 cm and FM-CQDs at 4 mg L-1 exhibited a maximum height of 25 cm compared to control. The FM-CQDs significantly increased the photosynthetic pigments such as total chlorophyll (1.08 mg g-1 FW) and carotenoids (17.32 mg g-1 FW) in C. longa. Further, antioxidant enzyme analysis confirmed that the optimum concentrations of both extracts did not have any toxic effects on the plants. FM-CQDs treated plants increased the curcumin content up to 0.060 mg g-1 by HPLC analysis. Semi quantitative analysis revealed that FCE and FM-CQDs significantly upregulated ClCURS1 gene expression in curcumin production.


Subject(s)
Aspergillus flavus , Carbon , Curcuma , Curcumin , Quantum Dots , Quantum Dots/chemistry , Curcuma/metabolism , Curcuma/microbiology , Carbon/metabolism , Carbon/pharmacology , Curcumin/metabolism , Curcumin/pharmacology , Aspergillus flavus/metabolism , Aspergillus flavus/growth & development , Indoleacetic Acids/metabolism , Endophytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...