Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 375
Filter
1.
Int J Pharm ; 661: 124411, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960341

ABSTRACT

Solasonine (SS) and solamargine (SM) are alkaloids known for their antioxidant and anticancer properties, which can be further enhanced by encapsulating them in nanoparticles. This led to a study on the potential therapeutic benefits of SS and SM against bladder cancer when encapsulated in lipid-polymer hybrid nanoparticles (LPHNP). The LPHNP loaded with SS/SM were prepared using the emulsion and sonication method and their physical-chemical properties characterized. The biological effects of these nanoparticles were then tested in both 2D and 3D bladder cancer cell culture models, as well as in a syngeneic orthotopic mouse model based on the MB49 cell line and ethanol epithelial injury. The LPHNP-SS/SM had an average size of 130 nm, a polydispersity index of 0.22 and a positive zeta potential, indicating the presence of chitosan coating on the nanoparticle surface. The dispersion of LPHNP-SS/SM was found to be monodispersed with a span index of 0.539, as measured by nanoparticle tracking analysis (NTA). The recrystallization index, calculated from DSC data, was higher for the LPHNP-SS/SM compared to LPHNPs alone, confirming the presence of alkaloids within the lipid matrix. The encapsulation efficiency (EE%) was also high, with 91.08 % for SS and 88.35 % for SM. Morphological analysis by AFM and Cryo-TEM revealed that the nanoparticles had a spherical shape and core-shell structure. The study showed that the LPHNP-SS/SM exhibited mucoadhesive properties by physically interacting with mucin, suggesting a potential improvement in interaction with mucous membrane. Both the free and nanoencapsulated SS/SM demonstrated dose-dependent cytotoxicity against bladder cancer cell lines after 24 and 72 h of treatment. In 3D bladder cell culture, the nanoencapsulated SS/SM showed an IC50 two-fold lower than free SS/SM. In vivo studies, the LPHNP-SS/SM displayed an antitumoral effect at high doses, leading to a significant reduction in bladder volume compared to the positive control. However, there were observed instances of systemic toxicity and liver damage, indicated by elevated levels of transaminases (TGO and TGP). Overall, these results indicate that the LPHNPs effectively encapsulated SS/SM, showing high encapsulation efficiency and stability, along with promising in vitro and in vivo antitumoral effects against bladder cancer. Further evaluation of its systemic toxicity effects is necessary to ensure its safety and efficacy for potential clinical application.

2.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673967

ABSTRACT

Breast cancer is one of the leading causes of death in the female population because of the resistance of cancer cells to many anticancer drugs used. Curcumin has cytotoxic activities against breast cancer cells, although it has limited use due to its poor bioavailability and rapid metabolic elimination. The synthesis of metal complexes of curcumin and curcuminoids is a relevant topic in the search for more active and selective derivatives of these molecular scaffolds. However, solubility and bioavailability are concomitant disadvantages of these types of molecules. To overcome such drawbacks, the preparation of inclusion complexes offers a chemical and pharmacologically safe option for improving the aqueous solubility of organic molecules. Herein, we describe the preparation of the inclusion complex of dimethoxycurcumin magnesium complex (DiMeOC-Mg, (4)) with beta-cyclodextrin (DiMeOC-Mg-BCD, (5)) in the stoichiometric relationship 1:1. This new inclusion complex's solubility in aqueous media phosphate buffer saline (PBS) was improved by a factor of 6x over the free metal complex (4). Furthermore, 5 affects cell metabolic rate, cell morphology, cell migration, induced apoptosis, and downregulation of the matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and signal transducer and activator of transcription-3 (STAT3) expression levels on MD Anderson metastasis breast-231 cancer (MDA-MB-231) cell lines. Results of an antitumor assay in an in ovo model showed up to 30% inhibition of tumor growth for breast cancer (MDA-MB-231) when using (5) (0.650 mg/kg dose) and 17.29% inhibition with the free homoleptic metal complex (1.5 mg/kg dose, (4)). While the formulation of inclusion complexes from metal complexes of curcuminoids demonstrates its usefulness in improving the solubility and bioavailability of these metallodrugs, the new compound (5) exhibits excellent potential for use as a therapeutic agent in the battle against breast cancer.


Subject(s)
Antineoplastic Agents , Curcumin , Curcumin/analogs & derivatives , Magnesium , beta-Cyclodextrins , beta-Cyclodextrins/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/pharmacokinetics , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Magnesium/chemistry , Apoptosis/drug effects , Female , Cell Line, Tumor , STAT3 Transcription Factor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Movement/drug effects , Solubility , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Chick Embryo , Matrix Metalloproteinase 9/metabolism
3.
Mar Drugs ; 22(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667784

ABSTRACT

Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses.


Subject(s)
Antineoplastic Agents , Antioxidants , Carotenoids , Neoplasms , Antioxidants/pharmacology , Antioxidants/therapeutic use , Humans , Carotenoids/pharmacology , Carotenoids/chemistry , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Animals , Archaea/metabolism
4.
Nat Prod Res ; : 1-6, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567750

ABSTRACT

Polysaccharides from wood-rooting fungi have attracted attention due to their broad pharmacological properties. Herein, we report the antitumor and immunomodulatory activities of acid polysaccharides isolated from fungi Gloeosoma mirabile. The polysaccharide extracts displayed significant antiproliferative activity against cancer cell lines (MCF-7, HCT-116, U-937) in a dose-dependent manner and induction of IL-6 in macrophage RAW 264.7. Furthermore, flow cytometry analysis showed that high polysaccharide concentrations induced apoptosis by 83% in HL-60 cells. Based on gas chromatography-mass spectrometry (GC-MS) and Fourier transform infra-red (FT-IR) spectroscopy studies, acidic polysaccharides from G. mirabile were mainly composed of arabinose, α-D-galactopyranose and methyl ß-D-galactopyranoside.

5.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675640

ABSTRACT

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Subject(s)
Chalcones , Plasmodium falciparum , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Humans , Cell Line, Tumor , Plasmodium falciparum/drug effects , Leishmania donovani/drug effects , Leishmania donovani/growth & development , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Molecular Structure
6.
Front Chem ; 12: 1321300, 2024.
Article in English | MEDLINE | ID: mdl-38666047

ABSTRACT

In the Chilean indigenous culture, the tree Drimys winteri (Winteraceae) Canelo is of great importance and is considered the sacred Mapuche tree. It has antibacterial and disinfectant properties and is used in the treatment of various diseases, such as fevers, ulcers, cancers, and respiratory tract problems. The essential oil obtained from D. winteri, DW_EO, is bioactive, possesses insecticidal and repellent properties against pests, and shows activity toward plant growth regulators. It also has a phytotoxic effect against the growth and germination of weeds. The essential oil obtained from the leaves and bark of Drimys winteri has demonstrated antifungal, immunomodulatory, anti-inflammatory, and anticancer properties in in vitro and in vivo studies. It also possesses antioxidant activity and antibacterial effects. The essential oil contains monoterpenes such as zafrol, pinenes, and linalool, among others, that contribute to its bioactivity. The DW_EO and bioactive compounds have great potential in various applications in medicine, industrial food, sanitizer, and other areas.

7.
Nutrients ; 16(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542765

ABSTRACT

(1) Background: Vitamin D levels in patients remain inadequately understood, with research yielding inconsistent findings. Breast cancer patients, particularly due to oncological therapies, face an increased risk of osteopenia, which can be exacerbated by a vitamin D deficiency. (2) Methods: The prospective observational "BEGYN-1" study assessed serum 25(OH)D levels at baseline and quarterly thereafter. Clinical, pathological, nutritional, vitamin supplementation, and lifestyle data were recorded. (3) Results: Before treatment, 68.5% of patients were vitamin D deficient (<30 ng/mL), with 4.6% experiencing severe deficiency (<10 ng/mL). The median baseline 25(OH)D levels were 24 ng/mL (range: 4.8 to 64.7 ng/mL). Throughout the study, the median vitamin D levels increased to 48 ng/mL (range: 22.0 to 76.7 ng/mL). Before diagnosis, 16.7% received vitamin D substitution, and 97.8% received vitamin D substitution throughout the year with a median weekly dose of 20,000 IU. It took at least three quarterly assessments for 95% of patients to reach the normal range. A multiple GEE analysis identified associations between 25(OH)D levels and supplementation, season, age, VLDL, magnesium levels, and endocrine therapy. (4) Conclusions: Physicians should monitor 25(OH)D levels before, during, and after oncological therapy to prevent vitamin D deficiency and to adjust substitution individually. While variables such as seasons, age, VLDL, magnesium, diet, and oncological interventions affect 25(OH)D levels, supplementation has the greatest impact.


Subject(s)
Breast Neoplasms , Vitamin D Deficiency , Humans , Female , Vitamin D , Breast Neoplasms/drug therapy , Magnesium/therapeutic use , Vitamins , Dietary Supplements
8.
Cancers (Basel) ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38339324

ABSTRACT

Colorectal cancer (CRC) is the third most common neoplasia in the world. Its mortality rate is high due to the lack of specific and effective treatments, metastasis, and resistance to chemotherapy, among other factors. The natural products in cancer are a primary source of bioactive molecules. In this research, we evaluated the antitumor activity of an acetogenin (ACG), laherradurin (LH), isolated from the Mexican medicinal plant Annona macroprophyllata Donn.Sm. in a CRC murine model. The CRC was induced by azoxymethane-dextran sulfate sodium (AOM/DSS) in Balb/c mice and treated for 21 days with LH or cisplatin. This study shows for the first time the antitumor activity of LH in an AOM/DSS CRC model. The acetogenin diminished the number and size of tumors compared with cisplatin; the histologic studies revealed a recovery of the colon tissue, and the blood toxicity data pointed to less damage in animals treated with LH. The TUNEL assay indicated cell death by apoptosis, and the in vitro studies exhibited that LH inhibited cell migration in HCT116 cells. Our study provides strong evidence of a possible anticancer agent for CRC.

9.
Mini Rev Med Chem ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38318827

ABSTRACT

Sativex is a cannabis-based medicine that comes in the form of an oromucosal spray. It contains equal amounts of Δ9-tetrahydrocannabinol and cannabidiol, two compounds derived from cannabis plants. Sativex has been shown to have positive effects on symptoms of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and sleep disorders. It also has analgesic, antiinflammatory, antitumoral, and neuroprotective properties, which make it a potential treatment option for other neurological disorders. The article reviews the results of recent preclinical and clinical studies that support the therapeutic potential of Sativex and the molecular mechanisms behind its neuroprotective benefits in various neurological disorders. The article also discusses the possible advantages and disadvantages of using Sativex as a neurotherapeutic agent, such as its safety, efficacy, availability, and legal status.

10.
Int J Mol Sci ; 25(4)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38396837

ABSTRACT

Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Mevalonic Acid , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
11.
Mar Drugs ; 22(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38393023

ABSTRACT

Mycalin A (MA) is a polybrominated C-15 acetogenin isolated from the marine sponge Mycale rotalis. Since this substance displays a strong antiproliferative bioactivity towards some tumour cells, we have now directed our studies towards the elucidation of the MA interactome through functional proteomic approaches, (DARTS and t-LIP-MS). DARTS experiments were performed on Hela cell lysates with the purpose of identifying MA main target protein(s); t-LiP-MS was then applied for an in-depth investigation of the MA-target protein interaction. Both these techniques exploit limited proteolysis coupled with MS analysis. To corroborate LiP data, molecular docking studies were performed on the complexes. Finally, biological and SPR analysis were conducted to explore the effect of the binding. Mortalin (GRP75) was identified as the MA's main interactor. This protein belongs to the Hsp70 family and has garnered significant attention due to its involvement in certain forms of cancer. Specifically, its overexpression in cancer cells appears to hinder the pro-apoptotic function of p53, one of its client proteins, because it becomes sequestered in the cytoplasm. Our research, therefore, has been focused on the possibility that MA might prevent this sequestration, promoting the re-localization of p53 to the nucleus and facilitating the apoptosis of tumor cells.


Subject(s)
Acetogenins , HSP70 Heat-Shock Proteins , Porifera , Animals , Humans , Acetogenins/pharmacology , Porifera/metabolism , Molecular Docking Simulation , HeLa Cells , Proteomics , Tumor Suppressor Protein p53/metabolism
12.
Mar Biotechnol (NY) ; 26(1): 181-198, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38273163

ABSTRACT

Natural substances are strategic candidates for drug development in cancer research. Marine-derived molecules are of special interest due to their wide range of biological activities and sustainable large-scale production. Melanoma is a type of skin cancer that originates from genetic mutations in melanocytes. BRAF, RAS, and NF1 mutations are described as the major melanoma drivers, but approximately 20% of patients lack these mutations and are included in the triple wild-type (tripleWT) classification. Recent advances in targeted therapy directed at driver mutations along with immunotherapy have only partially improved patients' overall survival, and consequently, melanoma remains deadly when in advanced stages. Fucose-containing sulfated polysaccharides (FCSP) are potential candidates to treat melanoma; therefore, we investigated Fucan A, a FCSP from Spatoglossum schröederi brown seaweed, in vitro in human melanoma cell lines presenting different mutations. Up to 72 h Fucan A treatment was not cytotoxic either to normal melanocytes or melanoma cell lines. Interestingly, it was able to impair the tripleWT CHL-1 cell proliferation (57%), comparable to the chemotherapeutic cytotoxic drug cisplatin results, with the advantage of not causing cytotoxicity. Fucan A increased CHL-1 doubling time, an effect attributed to cell cycle arrest. Vascular mimicry, a close related angiogenesis process, was also impaired (73%). Fucan A mode of action could be related to gene expression modulation, in special ß-catenin downregulation, a molecule with protagonist roles in important signaling pathways. Taken together, results indicate that Fucan A is a potential anticancer molecule and, therefore, deserves further investigation.


Subject(s)
Antineoplastic Agents , Melanoma , Phaeophyceae , Humans , Fucose , Sulfates/pharmacology , Melanoma/drug therapy , Cell Line , Polysaccharides/pharmacology , Polysaccharides/metabolism , Antineoplastic Agents/pharmacology
13.
Appl Spectrosc ; 78(3): 296-309, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224996

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary neoplasia of the liver with elevated mortality. Experimental treatment with antioxidants has a beneficial effect on the experimental models of HCC. Arthrospira maxima (spirulina) and its phycocyanin have antitumoral action on different tumoral cells. However, it is unknown whether phycocyanin is the responsible molecule for the antitumoral effect on HCC. Photoacoustic spectroscopy (PAS) stands out among other spectroscopy techniques for its versatility of samples analyzed. This technique makes it possible to obtain the optical absorption spectrum of solid or liquid, dark or transparent samples. Previous studies report that assessing liver damage in rats produced by the modified resistant hepatocyte model (MRHM) is possible by analyzing their blood optical absorption spectrum. This study aimed to investigate, by PAS, the effect of phycocyanin obtained from spirulina on hepatic dysfunction. The optical absorption spectra analysis of the rat blood indicates the damage level induced by the MRHM group, being in concordance with the carried out biological conventional studies results, indicating an increase in the activity of hepatic enzymes, oxidative stress, Bax/Bcl2 ratio, cdk2, and AKT2 expression results, with a reduction in p53 expression. Also, PAS results suggest that phycocyanin decreases induced damage, due to the prevention of the Bax, AKT2, and p53 altered expression and the tumor progression in a HCC rat model.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Rats , Animals , Phycocyanin/pharmacology , Phycocyanin/chemistry , Carcinoma, Hepatocellular/drug therapy , Tumor Suppressor Protein p53 , bcl-2-Associated X Protein , Liver Neoplasms/drug therapy
14.
Gastroenterol. hepatol. (Ed. impr.) ; 47(1): 51-62, ene. 2024. tab
Article in English | IBECS | ID: ibc-229085

ABSTRACT

Objective Data on anti-tumor necrosis factor (anti-TNF) treatment and suboptimal response (SOR) among patients with inflammatory bowel diseases (IBD) in Latin America (LATAM) are scarce. This study evaluated the incidence and indicators of SOR to anti-TNF therapy in patients with ulcerative colitis (UC) and Crohn's disease (CD) from Argentina, Colombia and Mexico. Patients and methods We performed retrospective analysis of data from LATAM patients of the EXPLORE study (NCT03090139) including adult patients with IBD who initiated anti-TNF therapy between March 2010 to March 2015. The cumulative incidence of SOR to first-line anti-TNF therapy was assessed. A physician survey to assess barriers to anti-TNF therapies was also carried out. Results We included 185 IBD patients (UC/CD: 99/86) treated with first-line anti-TNF from Argentina (38 UC; 40 CD), Colombia (21 UC; 25 CD) and Mexico (40 UC; 21 CD). 36.4% of patients with UC and 46.5% of patients with CD experienced SOR to anti-TNF therapy during the median (interquartile range) observational period: 49.0 months (37.2–60.1) in UC, and 50.0 months (40.9–60.1) in CD. The most common indicator of SOR among patients was augmentation of non-biologic therapy (UC: 41.7%; CD: 35.0%). Affordability and late referral to IBD specialist care centers were the most common barriers to anti-TNF therapies. Conclusions SOR to anti-TNF therapy was common in LATAM IBD patients, where augmentation with non-biologic therapy represented the most frequent indicator of SOR across indications. Our findings contribute to the current evidence on the unmet needs associated with anti-TNF in LATAM (AU)


Objetivo Los datos sobre tratamiento con antagonistas del factor de necrosis tumoral (anti-TNF) y su respuesta subóptima (RSO) en las enfermedades inflamatorias intestinales (EII) en América Latina (LATAM) son escasos. Se evaluaron la incidencia e indicadores de RSO a anti-TNF en pacientes con colitis ulcerosa (CU) y enfermedad de Crohn (EC) de Argentina, Colombia y México. Pacientes y métodos Se realizó un análisis retrospectivo de datos del estudio EXPLORE LATAM (NCT03090139), incluyendo pacientes adultos con EII que iniciaron anti-TNF entre marzo de 2010 a marzo de 2015. Se evaluó la incidencia acumulada de RSO a los anti-TNF en primera línea. Además, se realizó una encuesta a especialistas sobre las barreras del tratamiento con anti-TNF. Resultados Se incluyeron 185 pacientes con EII (CU/EC: 99/86) tratados con anti-TNF en primera línea de Argentina (38 CU; 40 EC), Colombia (21 CU; 25 EC) y México (40 CU; 21 EC); 36,4% de los pacientes con CU y 46,5% de los pacientes con EC experimentaron RSO a anti-TNF durante la mediana (intervalo intercuartílico) de 49 meses (37,2-60,1) en CU y 50 meses (40,9-60,1) en EC. El indicador más común de RSO fue el aumento del tratamiento no biológico (CU: 41,7%; EC: 35,0%). La accesibilidad y la derivación tardía a centros especializados fueron las barreras más comunes para el tratamiento con anti-TNF. Conclusiones La RSO a anti-TNF fue frecuente en pacientes con EII de LATAM, el aumento del tratamiento no biológico representó el indicador más frecuente de RSO. Nuestros hallazgos contribuyen a la evidencia actual sobre las necesidades insatisfechas asociadas a los anti-TNF en LATAM (AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Inflammatory Bowel Diseases/drug therapy , Colitis, Ulcerative/drug therapy , Crohn Disease/drug therapy , /administration & dosage , Retrospective Studies , Latin America
15.
Clin Epigenetics ; 16(1): 3, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172923

ABSTRACT

BACKGROUND: Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS: In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS: MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS: MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.


Subject(s)
Cyclin-Dependent Kinase 9 , Leukemia, Myeloid, Acute , Humans , Mice , Rats , Animals , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , Decitabine/pharmacology , DNA Methylation , Cell Line, Tumor , Leukemia, Myeloid, Acute/genetics , Apoptosis
16.
Recent Adv Antiinfect Drug Discov ; 19(4): 265-275, 2024.
Article in English | MEDLINE | ID: mdl-38275071

ABSTRACT

BACKGROUND: Plant products derived from natural sources have been used in medicine as a raw material and newer kinds of drug molecules in pharmaceuticals and other allied health sectors. Phytochemicals have numerous medicinal potentials, including anti- ageing, anti-carcinogenic, anti-microbial, anti-oxidant, and anti-inflammatory activity in medicine. Development and biological application of herbal products in modern medicine signified the value of traditional medicinal plants in health care systems. METHODS: The objective of the present study was to explore the scientific knowledge of the medicinal importance and therapeutic potential of artemetin in medicine. However, scientific investigations for their pharmacological activities in medicine have been done through scientific data analysis of different scientific research work collected from PubMed, Google, Science Direct and Google Scholar in order to know the biological importance of artemetin in medicine. Moreover, analytical data of artemetin have also been discussed in the present work. RESULTS: The present work scientific data signified the biological potential of artemetin in medicine. Artemetin has been derived from numerous medicinal plants and dietary herbs, including Artemisia absinthium, Artemisia argyi, Achillea millefolium, and Vitex trifolia. Artemetin has anti-malarial, anti-oxidant, anti-apoptotic, anti-microbial, anti-tumoral, antiatherosclerotic, anti-inflammatory, hypotensive and hepatoprotective effects. Further, the biological role of artemetin on lipid oxidation, cytokine production, lipoxygenase, and estrogen- like effects was also investigated in the present work. Analytical data on artemetin in the present paper signified their important role in the isolation, separation, and identification of different classes of pure phytochemicals, including artemetin in medicine. CONCLUSION: Scientific data analysis of artemetin signified its therapeutic potential in medicine for the development of newer scientific approaches for different human disorders.


Subject(s)
Plants, Medicinal , Humans , Plants, Medicinal/chemistry , Animals , Medicine, Traditional/methods , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
17.
Curr Protein Pept Sci ; 25(1): 27-43, 2024.
Article in English | MEDLINE | ID: mdl-37649287

ABSTRACT

INTRODUCTION: Brain tumors have high morbidity and mortality rates, accounting for 1.4% of all cancers. Gliomas are the most common primary brain tumors in adults. Currently, several therapeutic approaches are used; however, they are associated with side effects that affect patients'quality of life. Therefore, further studies are needed to develop novel therapeutic protocols with a more favorable side effect profile. In this context, cannabinoid compounds may serve as potential alternatives. OBJECTIVE: This study aimed to review the key enzymatic targets involved in glioma pathophysiology and evaluate the potential interaction of these targets with four cannabinoid derivatives through molecular docking simulations. METHODS: Molecular docking simulations were performed using four cannabinoid compounds and six molecular targets associated with glioma pathophysiology. RESULTS: Encouraging interactions between the selected enzymes and glioma-related targets were observed, suggesting their potential activity through these pathways. In particular, cannabigerol showed promising interactions with epidermal growth factor receptors and phosphatidylinositol 3- kinase, while Δ-9-tetrahydrocannabinol showed remarkable interactions with telomerase reverse transcriptase. CONCLUSION: The evaluated compounds exhibited favorable interactions with the analyzed enzymatic targets, thus representing potential candidates for further in vitro and in vivo studies.


Subject(s)
Brain Neoplasms , Cannabinoids , Glioma , Adult , Humans , Molecular Docking Simulation , Quality of Life , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Glioma/drug therapy , Glioma/metabolism , Glioma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism
18.
Mini Rev Med Chem ; 24(2): 159-175, 2024.
Article in English | MEDLINE | ID: mdl-36994982

ABSTRACT

Compounds from plants that are used in traditional medicine may have medicinal properties. It is well known that plants belonging to the genus Aconitum are highly poisonous. Utilizing substances derived from Aconitum sp. has been linked to negative effects. In addition to their toxicity, the natural substances derived from Aconitum species may have a range of biological effects on humans, such as analgesic, anti-inflammatory, and anti-cancer characteristics. Multiple in silico, in vitro, and in vivo studies have demonstrated the effectiveness of their therapeutic effects. In this review, the clinical effects of natural compounds extracted from Aconitum sp., focusing on aconitelike alkaloids, are investigated particularly by bioinformatics tools, such as the quantitative structure- activity relationship method, molecular docking, and predicted pharmacokinetic and pharmacodynamic profiles. The experimental and bioinformatics aspects of aconitine's pharmacogenomic profile are discussed. Our review could help shed light on the molecular mechanisms of Aconitum sp. compounds. The effects of several aconite-like alkaloids, such as aconitine, methyllycacintine, or hypaconitine, on specific molecular targets, including voltage-gated sodium channels, CAMK2A and CAMK2G during anesthesia, or BCL2, BCL-XP, and PARP-1 receptors during cancer therapy, are evaluated. According to the reviewed literature, aconite and aconite derivatives have a high affinity for the PARP-1 receptor. The toxicity estimations for aconitine indicate hepatotoxicity and hERG II inhibitor activity; however, this compound is not predicted to be AMES toxic or an hERG I inhibitor. The efficacy of aconitine and its derivatives in treating many illnesses has been proven experimentally. Toxicity occurs as a result of the high ingested dose; however, the usage of this drug in future research is based on the small quantity of an active compound that fulfills a therapeutic role.


Subject(s)
Aconitum , Alkaloids , Drugs, Chinese Herbal , Humans , Aconitine/pharmacology , Molecular Docking Simulation , Poly(ADP-ribose) Polymerase Inhibitors , Alkaloids/pharmacology , Alkaloids/therapeutic use
19.
Gastroenterol Hepatol ; 47(1): 51-62, 2024 Jan.
Article in English, Spanish | MEDLINE | ID: mdl-37062500

ABSTRACT

OBJECTIVE: Data on anti-tumor necrosis factor (anti-TNF) treatment and suboptimal response (SOR) among patients with inflammatory bowel diseases (IBD) in Latin America (LATAM) are scarce. This study evaluated the incidence and indicators of SOR to anti-TNF therapy in patients with ulcerative colitis (UC) and Crohn's disease (CD) from Argentina, Colombia and Mexico. PATIENTS AND METHODS: We performed retrospective analysis of data from LATAM patients of the EXPLORE study (NCT03090139) including adult patients with IBD who initiated anti-TNF therapy between March 2010 to March 2015. The cumulative incidence of SOR to first-line anti-TNF therapy was assessed. A physician survey to assess barriers to anti-TNF therapies was also carried out. RESULTS: We included 185 IBD patients (UC/CD: 99/86) treated with first-line anti-TNF from Argentina (38 UC; 40 CD), Colombia (21 UC; 25 CD) and Mexico (40 UC; 21 CD). 36.4% of patients with UC and 46.5% of patients with CD experienced SOR to anti-TNF therapy during the median (interquartile range) observational period: 49.0 months (37.2-60.1) in UC, and 50.0 months (40.9-60.1) in CD. The most common indicator of SOR among patients was augmentation of non-biologic therapy (UC: 41.7%; CD: 35.0%). Affordability and late referral to IBD specialist care centers were the most common barriers to anti-TNF therapies. CONCLUSIONS: SOR to anti-TNF therapy was common in LATAM IBD patients, where augmentation with non-biologic therapy represented the most frequent indicator of SOR across indications. Our findings contribute to the current evidence on the unmet needs associated with anti-TNF in LATAM.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Adult , Humans , Colitis, Ulcerative/complications , Crohn Disease/complications , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/complications , Latin America , Retrospective Studies , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha
20.
Front Oncol ; 13: 1251355, 2023.
Article in English | MEDLINE | ID: mdl-38044996

ABSTRACT

Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...